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Abstract

Scientific documents, such as research articles, are rich sources of data for Information
Retrieval (IR) and text mining tasks, allowing the extraction and analysis of specialized
knowledge from extensive bodies of scholarly work. Along these lines, abstracts from scientific

articles can be a valuable source of information for understanding the scope of a study.

This study attempted to identify inherent groupings of psychology abstracts and to
analyze temporal trends in the reporting of method-related keywords examining a corpus of
85,452 articles. For this purpose, a glossary of 365 method-related terms was utilized, serving
as a gold standard collection. To meet the first objective, the retrieved keywords were
vectorized using SciBERT before being fed to a clustering model. Both an unsupervised and a
semi-supervised model were utilised. The best clustering results produced six clusters for the
unsupervised model and ten for the semi-supervised model. For the second objective, keyword

frequencies and TF-IDF scores were examined independently of the formed clusters.

Neither clustering approach yielded clear grouping formations. Terms were found to
overlap between clusters, even with the use of higher weights for those terms with high
theoretical discriminative value. Moreover, the number of abstracts with no method-related

terms appears to be facing a downward trend.

Overall, this study provides insights regarding temporal trends in the reporting of
method-related keywords in psychology research abstracts. The increasing presence of these
terms over the years reflects a shift towards greater methodological transparency and
standardization in abstract reporting. To enhance the identification of method grouping trends,
the use of a predefined glossary as a standalone gold standard for term retrieval should ensure
the inclusion of terms with high discriminative value, facilitating clearer differentiation of

abstracts based on method-related terms.
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1 Introduction

Scientific documents, such as research articles, are rich sources of data for IR and text
mining tasks, allowing the extraction and analysis of specialized knowledge from extensive
bodies of scholarly work [1]. In this framework, the extraction process can be conducted so
much at the document level as at the section level, depending on the aim of the task.

Extraction that occurs at the level of the entire document is pertinent to tasks whose
objective might be overall summarization, topic modeling, or full-text classification [2]. On the
other hand, by focusing on specific sections within a document, the distinct content typically
found in each of those sections of a scientific paper can be leveraged. Thereupon, information
about the objectives of a study, the methods used, or the key findings could be extracted using
text mining techniques for further analysis [2].

Along these lines, abstracts from scientific articles can be a valuable source of information
for understanding the scope of a study. Although abstract formats may vary based on field and
journal guidelines, they currently tend to follow a semi-structured format, that nonetheless
includes key elements, such as the study background, objectives, methods, results, and
conclusions.

According to the latest American Psychological Association (APA) publication manual
[3], empirical article abstracts should adhere to specific content guidelines. Among other
elements, essential features regarding the study method are requested to be included. These
guidelines emphasize the inclusion of essential methodological details, such as data-gathering
procedures, sample characteristics, research design, and materials used.

The APA's guidelines reflect methodological standards promoted by prestigious
organizations in psychology. While adherence to these guidelines does not inherently ensure
methodological rigor or replicability, it supports transparency and encourages robust reporting
practices. Importantly, such an emphasis on methodological clarity in abstracts represents a
shift towards greater transparency in psychological research, which was not always a standard

practice in the field.

In 2011, the publication of Bem’s paper [4], which claimed to provide experimental

evidence for precognition', sparked considerable controversy within the scientific community.

! Precognition refers to the phenomenon where individuals can perceive or be aware of future events before they
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His research was later found to have serious methodological flaws, whereas his findings, which
ultimately could not be replicated, raised critical questions about the methodologies and
standards employed generally in psychological research. Notably, six years prior to Bem’s
publication, loannidis had already voiced his concerns [5], highlighting that methodological
issues in psychology were not a sudden emergence, but rather longstanding problems. This
marked the inception of the replication crisis in the field.

In 2015, the Reproducibility Project culminated in a landmark study published in
Science, which succeeded in replicating only 36% of the 100 studies analyzed from leading
psychology journals [6]. Other large-scale replication initiatives, such as Many Labs 1 and 2
[7], further corroborated these findings, indicating that a significant number of psychological
studies, particularly within social psychology, exhibited low replicability.

The concepts of publication bias, p-hacking, and inadequate methodological reporting?
became central to the discourse surrounding the replication crisis and were thought of as factors
intertwined with it [8]. In response to these challenges, psychology journals and research
institutions have initiated reforms aimed at improving research integrity. For instance, the
abovementioned APA reporting guidelines exemplify efforts to enhance methodological
transparency and rigor in psychological research.

Fourteen years after his initial publication raising concerns, loannidis reiterated the
importance for vigilance against selection biases that skew reported p-values and contribute to
the broader misuse of statistical inference [9]. Enhancing the quality of psychological research
depends on robust methodological practices and, crucially, a commitment to methodological
transparency. This transparency can be fostered through systematic adoption of practices, such
as registered reports, data sharing, and pre-registration, all of which ensure comprehensive
method reporting and thereby support robust replication testing [8].

Considering the low reproducibility rate in psychological research, the current study
applies Natural Language Processing (NLP), text mining, and Machine Learning (ML) methods
to examine how methodological reporting in psychology article abstracts has evolved over the
last 30 years. More specifically, it employs a predefined glossary to retrieve method-related

keywords from the examined abstracts. The retrieved keywords are then vectorized using

happen.

2 Publication bias refers to the journals’ tendency to publish statistically significant results, leading to a distorted
understanding of research findings (e.g. overestimation of the effect size of a treatment or intervention). P-
hacking is defined as the practice of selectively reporting or manipulating data to achieve statistical significance,
often by re-analyzing data multiple times until a statistically significant result is obtained. Poor methodological
reporting is inadequate or unclear documentation of research methods, including sample size, data collection,
and analysis procedures, which hinders reproducibility and compromises transparency.
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SciBERT, and the generated vectors feed both an unsupervised and a semi-supervised
clustering model. In parallel to this process, and irrespective of the clustering method, frequency
and trend analyses are performed on the retrieved keywords. Hence, the objectives of the study

can be summarized as follows:

e To identify inherent method groupings of psychology abstracts, based on the
presence of method-related keywords.
e To analyze the prevalence of the retrieved keywords and their temporal trends.
The results of trend analysis indicate that there is an increasing presence of method-related
keywords in the examined abstracts over the years. With respect to the cluster analyses, generic
keywords dominate the cluster formation even with the semi-supervised approach in which

higher weights are assigned to keywords with theoretically high discriminative value.

Overall, through the effective investigation of these topics, research and method trends
can be illuminated, contributing to the transparency and rigor in research communication.
Moreover, abstracts with clear method-related information provide a better snapshot of the

research design and approach, contributing this way to the replicabililty of studies.
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2 Theoretical Background

Text mining is a critical process in NLP that encompasses several steps, ranging from
retrieving relevant information to analyzing text data to uncover latent knowledge and
structures. This pipeline integrates a variety of components, including core NLP techniques,
preprocessing methods, and ML applications. The following section delves into the theoretical
foundations of these components and highlights some of the most prevalent techniques used in

text mining.

2.1 NLP Analytical Axes

There are five main axes of analysis, namely morphological and lexical, syntactic,
semantic, pragmatic and discourse integration, each of which focuses on a different aspect of

language [10]. Figure 1 presents a schematic of the said axes.

Semantic
Analysis

Lexical Syntactic

Analysis Analysis

Disclosure Pragmatic
Integration Analysis

Figure 1: Axes of NLP analysis

To accommodate and facilitate these different layers of analysis, a variety of statistical, ML,
and deep learning techniques are employed, enabling more nuanced and effective
interpretations of language across each axis [11].

The morphological and lexical analysis axis is centered on breaking text into smaller
units, a process known as tokenization. Tokenization produces individual characters, words, or
even phrases based on the specific requirements of the NLP task. For these units to be

interpretable by a computer, several preprocessing steps are applied. The text is "decluttered"

-12-



by removing irrelevant elements, such as special characters, HTML tags, and stopwords (e.g.,
"a," "the," "and"), resulting in a more normalized form. Sentences are separated by punctuation
or other defined linguistic cues, and individual tokens are identified, often using whitespace or
punctuation as delimiters. Tokens may be further standardized by lowercasing, stemming, or
lemmatization [10].

Stemming and lemmatization are NLP preprocessing techniques used to reduce words
to their base or root forms, providing several benefits. First, they reduce vocabulary size,
thereby simplifying the complexity and computational load on subsequent NLP models. Search
and retrieval accuracy is also improved, as variations of a word are grouped together and
considered in searches. Moreover, by converting words with different tenses or derivations to
a common form, these techniques maintain consistency, allowing models to recognize related
words as the same concept. However, it needs to be highlighted that stemming and
lemmatization achieve this reduction differently.

Generally, stemming removes prefixes or suffixes from words, which can sometimes
produce truncated forms that are not valid words (e.g., "happiness" might be reduced to
"happi"). Over the years, various stemming methods have been developed to address issues of
under-stemming, over-stemming, or mis-stemming, leading to categories such as linguistic
knowledge-based, statistical, corpus-based, context-sensitive, and hybrid stemmers [12].
Linguistic knowledge-based techniques, for example, report higher accuracy for highly
inflected languages like Arabic and Hindi [12], underscoring the language-specific
requirements in NLP and the limitations of a one-size-fits-all approach. In contrast,
lemmatization is a more context-aware, linguistically-driven approach that reduces words to
their canonical dictionary form, known as lemma.

Unlike stemming, which mechanically truncates words, lemmatization leverages
vocabulary, morphological analysis, and part-of-speech (POS) information to ensure that the

output is a valid word. For instance, lemmatization converts "better" to "good" and transforms

nmn n

variations like "am," "are," and "is" to "be". In general, lemmatization is preferred when
accuracy and preservation of meaning are critical, such as in tasks involving sentence similarity.
In comparison, stemming is useful for simpler or more performance-sensitive applications
where speed optimization is prioritized [13].

The second axis of analysis pertains to the syntax of the sentence. In this phase, the
tokens derived from the previous analysis are assigned grammatical tags, such as noun, verb,

adjective etc., through a process known as POS tagging. At this point it is important to clarify
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that this assignment is often an integral component of lemmatization; thus, the chronological
order of these steps is not distinct and may vary depending on the employed techniques.

In general, POS tagging aids in understanding the grammatical structure of the sentence,
providing crucial information about how words relate to one another and serving as a precursor
for parsing. Over the years, the methods used for tagging have evolved from rule-based and
statistical taggers to more advanced ML and deep learning models [14]. The latter, often
referred to as stochastic taggers, can be broadly classified into two categories: supervised and
unsupervised, based on whether their training involves a dependent variable (i.e., they are
trained with pairs of input and defined output).

Common models in this framework include Hidden Markov Models (HMMs),
Conditional Random Fields (CRFs), and Neural Networks (NN). Additionally, there is a third
kind, the hybrid ones which aim to combine the strengths of both rule-based and ML
approaches. These hybrid systems employ rules to capture specific, known patterns while also
incorporating ML elements to generalize to unknown or ambiguous cases. As a general note it
is worth noting that the performance of taggers is highly dependent on the application domain
and the specific task at hand. However, stochastic and hybrid taggers consistently outperform
rule-based methods across nearly all comparison criteria [14].

POS tagging is intertwined with parsing, as the former elicits the information required
for the latter. As mentioned above, taggers clarify the role of each word, setting the stage for
parsing to analyze the syntactic structure of a sentence and reveal the relationships between
words and phrases. As with tagging, parsing approaches vary in purpose and methodology,
with some for example focusing on understanding syntax while others on resolving ambiguities
within sentences. Constituency and dependency parsing are two primary approaches for
elucidating the syntactic constituents of a sentence [11]. These approaches can be categorized
as either top-down or bottom-up.

Top-down approaches, such as constituency parsing, start with the overall structure of
the sentence and break it down into smaller units, providing a broad overview of the sentence's
organization. In contrast, bottom-up approaches, such as dependency parsing, begin with
individual words and build up the sentence structure from there, allowing for a more detailed
analysis of word relationships. That is achieved through the construction of parse trees that
illustrate the hierarchical and syntactic relationships between words. The constituency tree, on
one hand, depicts a sentence’s hierarchical structure by delineating the bigger grammatical

units into which words are arranged. On the other hand, the dependency tree, as its name
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suggests, depicts the grammatical links between the words, highlighting their
interdependencies.

Semantic parsing goes beyond syntax to interpret meaning, directly addressing
ambiguities, by selecting the most contextually appropriate interpretations [10]. Building on
syntactic parsing, in this third axis of analysis a sentence is mapped to its meaning using a
structured, machine-readable format. This structured format enables advanced NLP processes,
such as determining the correct sense of a word based on context, resolving coreferences, and
labeling words according to their roles in an action or event. Key components in this process
include identifying entities and their respective relationships as well as recognizing basic intent,
which is particularly important for commands and requests.

Three main types of those structured representations that are commonly used to express
sentence meaning are logical forms (such as lambda calculus), knowledge graphs (where
entities are represented as nodes and their relationships as edges), and SQL queries (where
natural language is translated into a database query to enable specific information extraction).
These structured, rich, representations form the basis of semantic-level analysis and along with
the aforementioned processes applied on them set the foundation for the axis of pragmatics.

Analysis on the pragmatic level extends on the direct, dictionary meanings of words
and sentence structures that the semantic level provides [10]. Speaker’s intent and tone as well
as the targeted audience are elements which are taken into account. Surrounding context is
examined to identify presuppositions within a sentence or phrase, allowing for the derivation
of implicatures and enabling the inference of meanings that are implied rather than directly
stated. At this level, language interpretation aligns with real-world usage, where meaning can
be inferred beyond literal content.

An example of language’s contextual understanding could be elucidated through the
pragmatic analysis of the sentence “It is cold outside”. Considering the speaker’s intention as
well as the respective context, this sentence could be interpreted as an implied request to close
the window, instead of a mere statement about the temperature. ML algorithms, such as Support
Vector Machines (SVMs), random forests and NN are frequently employed at this stage to
classify text based on its sentiment, intent and tone. By doing so, NLP models can generate
more nuanced and contextually relevant responses, enhancing their effectiveness in real-world
applications such as automated customer service.

Finally, discourse integration represents the highest and most complex level of NLP
analysis. At this level, the focus is on understanding relationships between sentences,

paragraphs, and larger units of text, aiming to derive the text’s overall meaning [11]. Discourse-
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level analysis builds on meanings from the pragmatic level to enable holistic interpretation,
essential for a range of NLP tasks such as text segmentation, classification, summarization, and
coherence assessment. In each of these tasks, text units are analyzed and skillfully combined,
acknowledging their interdependencies and the way they contribute to the overarching narrative
or argument. For instance, in text summarization, the discourse level helps identify the most
important information and organize it in a coherent and meaningful way. In general, this level
of analysis is particularly challenging due to the nuanced interplay between units, as discourse
often involves maintaining themes, tracking references, and managing shifts in tone or topic
across multiple sentences or paragraphs.

In conclusion, the levels of analysis in NLP are increasingly complex, from the lexical
level to the discourse level, with each level building upon the previous one to provide a deeper
understanding of the text. While this theoretical framework suggests a gradual increase in
complexity, the actual complexity of each level can vary depending on the specific task and the

nuances of the language being analyzed.

2.2 NLP Techniques: From Preprocessing to Machine
Learning Applications

At each analytical level presented in the previous segment, there is a wide range of
available techniques and tools to accommodate the diversity of NLP tasks. Generally, while the
goal of each task shapes the methodological pipeline used, there is often considerable variation
even among similar tasks. In the following section, and within the framework of the current

study, a selection of relevant techniques is outlined.

2.21 Text Preprocessing
In general, text preprocessing encompasses several methods designed to restructure and
organize text into a format more suitable for analysis. Figure 2, drawn from a recent 2022
review on preprocessing methods [15] presents a bar chart summarizing the overall

usage percentages of these methods across the examined studies.
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Figure 2: Overall Percentage Usage of Preprocessing Techniques
on UT

As shown in the chart, although preferred preprocessing techniques vary by discipline area,
stopword and punctuation removal, POS tagging, and tokenization are among the most popular.
For health science articles specifically, removal of numbers and conversion to lowercase are
also among the top five methods, while stemming is commonly preferred for articles from other
disciplinary areas. However, it needs to be noted that only articles utilizing Unstructured Text
(UT) were included in that review.

Moreover, its findings are partially corroborated by a more recent survey, conducted in
2024 [16]. The authors of this survey reported the prevalence of each preprocessing technique
across the relevant articles they examined. They specifically identified studies that, alongside
applying preprocessing techniques for their main Text Classification (TC) tasks, conducted
comparative evaluations of those techniques. Among the most commonly applied methods
were stopword removal (RSW), stemming (STM), lemmatization (LEM), conversion to
lowercase (LOW), punctuation removal (RPT), and noise replacement (RNS)®. Figure 3
displays the frequency distribution of these techniques, as reported in the 2024 survey. For
reference, Table 1 in the Appendix provides definitions of the acronyms used in Figure 3, along

with an example of each technique.

3 Noise replacement as a preprocessing technique does not refer to a single, distinct method. Instead, it
encompasses a variety of approaches, such as removing HTML tags, boilerplate content, and Unicode artifacts
through regular expressions, to ensure the text under analysis is free from uninformative elements.
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Figure 3: Frequencies of Preprocessing Techniques

The relevant articles identified in the survey served as benchmarks for assessing the main
objective of the study: evaluating the performance of nine modern Transformers (RoBERTa,
XLNet, ELECTRA, ANN, CNN, BiLSTM, NB, SVM, and LR) on four text classification tasks.
The analysis was based on whether employing the most prevalent preprocessing techniques, as
identified in the literature, led to improved performance. The results confirmed that text
preprocessing strategies can indeed impact the performance of modern classifiers, including
recent Transformers. However, it is important to note that the characteristics of the dataset play
a significant role in determining the extent to which preprocessing techniques enhance model
performance. Notably, Transformers appear to be less sensitive to preprocessing compared to
simpler classification models, particularly when applied to large datasets.

Nevertheless, different techniques, and their combinations, still have varying effects on
Transformer performance. For instance, while lowercasing is beneficial for ELECTRA,
stopword removal tends to improve performance with RoOBERTa and XLNet. For simpler
classification methods, the takeaway is more straightforward as the choice of preprocessing
techniques plays a crucial role in classification performance. Overall, given their varied impact
on model performance, understanding and selecting appropriate preprocessing techniques, such
as lowercasing, tokenization, stopword and punctuation removal are essential steps for

optimizing a range of information extraction tasks.

2.2.2 Lowercasing
Lowercasing is among the most common preprocessing techniques in NLP applications
and involves converting all characters in a text to lowercase. This step helps ensure consistency,

as it removes case distinctions between words, so "Apple" and "apple" are treated as the same
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word. Thereupon, a word embedding layer would not assign separate vectors based on case
differences. In general, lowercasing is particularly useful in tasks such as Information Retrieval
(IR), where the goal is to focus on the meaning of the text rather than its formatting. By
standardizing the case, lowercasing reduces the complexity of the text and helps improve the

performance of ML models [16].

2.2.3 Tokenization

Tokenization is a fundamental preprocessing step in NLP that is essential for converting
raw text data into a format that machines can process and understand effectively. In that raw
text data, characters other than well-defined words can be found, such as numerical digits,
symbols and punctuation marks, as well as whitespace characters. This blend imposes a
demanding challenge for computers which are designed to process structured data. Thereupon,
tokenization becomes a factor as it acts as a bridge between the complexity of human language
and the structured, numerical input required by computational models. In simple terms, without
tokenization, computers would lack the capacity to grasp the meaning and structure of natural
language. Moreover, they would fall short in their capability to distinguish individual words,
identify where sentences begin and end, or understand the relationships between different

linguistic elements [17]. Figure 4 illustrates the essence of the tokenization functionality.

Tokenization breaks sentence into small pieces

mm

Figure 4: Essence of Tokenization

There are three primary categories of tokenization methods, which differ based on the
level of granularity of the resulting tokens: character-level, subword-level, and word-level
tokenization [17]. Character-level tokenization breaks down text into individual characters.
This fine-grained approach is particularly useful for applications such as spelling correction,

language identification, and language modeling. It is also advantageous for languages like
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Japanese or Chinese, where words are not separated by spaces. Subword-level tokenization
falls between character-level and word-level tokenization. It splits words into smaller,
meaningful subword units using techniques like Byte Pair Encoding (BPE), WordPiece, and
SentencePiece.

This approach is particularly effective for handling rare or out-of-vocabulary (OOV)
words, improving performance on tasks involving diverse vocabularies. Finally, word-level
tokenization, the most straightforward method, decomposes text into individual words,
typically using whitespace or punctuation as delimiters. Word-level tokenization underpins
many traditional and modern NLP techniques, such as Bag of Words (BoW), TF-IDF, Latent
Dirichlet Allocation (LDA), and word embeddings. Figure 5 provides a schematic

representation of these tokenization methods.

Punctuation-based Rule-based
Tokenization Tokenization

Word-Level
Tokenization

Space-based
Tokenization

SentencePiece

Tokenization
methods

Character-Level Subword
Tokenization Tokenization

rd

Byte-Pair Encoding
(BPE) WordPiece

Figure 5: Schematic representation of the tokenization methods

Regarding the implementation of these methods, several well-established libraries
within the NLP ecosystem offer robust tokenization capabilities. Among the most prominent
ones are Natural Language Toolkit (NLTK), spaCy, Keras, and HuggingFace which stand out
for their comprehensive tokenization tools.

Overall, the selection of a tokenization method, and the relevant tools thereof, is
contingent upon the specific needs of the NLP project. While word-level tokenization may

suffice for numerous tasks, subword and character-level tokenization offer greater effectiveness
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when dealing with uncommon words, varied vocabularies, and intricate language structures.
Moreover, in a study published in 2022, Xue et al. [ 18] proposed a variant of the TS5 architecture,
referred to as By TS5, in the context of pre-trained language models. In their paper, they advocate
for processing byte sequences, i.e., raw text, rather than tokenized text, arguing that byte-level
models are more resilient to noise and demonstrate superior performance on tasks sensitive to
spelling and pronunciation. If we are indeed moving towards a token-free NLP framework, this
remains to be resolved. Nevertheless, for the time being, and regardless of the method chosen,

tokenization continues as an integral component of most NLP pipelines.

2.2.4 Stopwords Removal
Stopwords are words with low discriminative power, meaning they contribute
minimally to distinguishing between categories in text analysis tasks. They are common words,
such as "a", "the", "and", and "so" in English, primarily serving grammatical or connective
purposes without adding significant semantic value. Stopwords are frequently encountered in
texts and vary by language and, at times, by domain. They generally carry little informative or
predictive value. Consequently, stopword removal is a widely used preprocessing technique in

text mining and IR to streamline text data and improve processing efficiency.

One primary benefit of stopword removal is that it reduces the volume and size of the
dataset, which can enhance the effectiveness and accuracy of text mining applications [19].
However, in certain tasks, such as machine translation, text summarization, and sentiment
analysis, removing stopwords can lead to a substantial loss of meaning, potentially degrading
the quality of analysis. Therefore, stopword removal is not universally recommended and

should be evaluated based on the specific task requirements [19].

Two main approaches to stopword identification are static and dynamic methods. The
static, or traditional, approach relies on predefined lists of stopwords, which serve as a reference
to identify uninformative tokens in text. While straightforward, this method may not capture
domain-specific stopwords, necessitating adjustments for specialized text, such as scientific or
legal documents. Nonetheless, a wide array of established stopword resources, like those
provided by NLTK and SpaCy, are readily available and cover a broad range of general
language needs. The dynamic approach, in contrast, uses statistical or data-driven techniques
to identify stopwords based on their behavior within a specific dataset. This method does not
depend on a pre-existing list but instead examines the dataset to determine which terms should

be treated as stopwords.
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Common techniques within this approach include methods based on Zipf's Law, mutual
information, and random sampling of data chunks [16]. Zipf’s Law identifies terms with low
frequency for removal, assuming these terms are unlikely to carry meaningful information and
lack discriminative power. Mutual Information measures the information content of each word
by assessing its contribution to distinguishing specific categories or classes in the corpus.
Thereupon, words with low mutual information values are evenly distributed across categories
and thus offer minimal discriminative value.

Finally, random sampling uses Kullback—Leibler (KL) divergence to evaluate segments
of the dataset, ordering terms within each chunk by their informativeness. These dynamic
techniques allow for tailored stopword identification that can better capture relevant terms in
specific contexts. However, they are more computationally demanding and often require fine-
tuning to set appropriate frequency or significance thresholds. In practice, a hybrid approach
can be employed, where a standard stopword list provides a baseline, and additional context-
relevant stopwords are identified dynamically within the dataset. This combination can offer

improved accuracy and relevance for specialized text mining applications.

2.2.5 Keyword Extraction

In the field of text mining and IR, keyword extraction is the process of identifying and
extracting key terms or phrases from a document that convey essential information relevant to
the specific task. By isolating these relevant terms, the main elements of a document can be
recognized without the need to analyze its full content [20]. For instance, in the context of
scientific articles, particularly their abstracts, such key elements may refer to various sections
of a study, including methods, results, and conclusions. Once extracted and appropriately
processed, i.e. vectorized, these elements can serve as input for NLP applications in ML, such
as text clustering and classification, and for association rule mining to identify co-occurrence

patterns [21], [22].

The diverse range of data types as well as the multitude of contexts and applications
have led to the development of numerous approaches, techniques and tools for keyword

extraction.

2.2.51 Direct & Dictionary-Based Matching

Direct matching shares features with dictionary-based methods, as both approaches rely
on predefined information that guides the extraction process. In exact matching, this involves

a list of terms that must match precisely, whereas a dictionary-based method may allow for
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synonyms, homophones, as well as stemmed or lemmatized forms to be detected.

In this framework, the quality and comprehensiveness of the list or dictionary plays a
critical role in determining the value of the extraction process. Examples of predefined
resources used in these methods include domain-specific lexicons, such as those containing

biomedical terms [23].

Although these methods generally lack the adaptability to contextual variations offered
by more advanced techniques, such as ML and deep learning, they can still be effective in
scenarios where keyword and phrase consistency is expected. This can be encountered in
specialized domains with well-defined terminologies [24] or in targeted search applications

[25], such as e-commerce platforms or recommender systems.

Moreover, dictionary-based approaches have been employed throughout the years, both
as standalone solutions [26], [27] and in combination with more sophisticated, context-aware
methods [28]. In a recent work [26], a tailored dictionary was developed to remove stopwords
in the Khmer language, while in [28], a geoscience dictionary was constructed and employed
for matching and identifying geoscience concepts as part of a layered process for classifying
geoscience reports and documents.. Additionally, while these approaches can be effective
independently, hybrid methods may provide enhanced flexibility. For example, exact matching
can be used to identify specific keywords, which could then be further refined using regular
expressions (RegEx), fuzzy matching, or even pre-trained LLMs, depending on the specific

requirements of the task.
2.2.5.2 Rule-Based & RegEx

Following the basic techniques of direct and dictionary-based matching, rule-based and
RegEx are two additional traditional approaches commonly employed for keyword extraction.
Rule-based leverage predefined linguistic rules and domain-specific knowledge to
identify the relevant keywords. Those rules can be crafted based on syntactic, semantic or
statistical features of the text [20]. In general, although ML approaches often outperform rule-
based models in terms of flexibility and scalability, the latter still hold significance due to their

simplicity and their interpretability [20].

On the other hand, RegEx utilize formal language to describe and capture patterns in
text through specific string-matching sequences. These sequences can represent characters,

words, or even phrases, and are often applied to structured patterns such as dates or phone
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numbers. Over the years, RegEx techniques have been extensively used and highly optimized
[27]. Within standard RegEx engines, the "leftmost-longest" matching approach is typically
applied where the engine identifies the leftmost match that is also the longest, and subsequent

searches begin at the rightmost position of the previous match.

In their study, Riveros et al. [29] extend this standard approach by introducing REQL,
a modified query language capable of addressing all-match semantics*, thereby enabling the
capture of overlapping patterns. Similarly, Chida et al. [30] enhance the functionality of
standard RegEx by incorporating real-world extensions, such as backreferences and
lookarounds. These extensions transcend basic membership testing by enabling substring
extraction, significantly broadening the practical applications of RegEx. These examples are
indications of how advanced RegEx variants continue to offer solid solutions for data extraction

challenges.
2.2.5.3 Fuzzy Matching

Fuzzy matching is another approach that can be used for keyword extraction,
particularly when the predefined resources used in direct and dictionary-based matching are
not sufficient or when the context is too complex for rule-based and regular expressions.

Fuzzy matching builds upon the mathematical principles of fuzzy logic, accommodating
uncertainty and imprecision by capturing a continuum between a clear-cut match and a
mismatch [31]. In text mining, this involves comparing input text to a set of predefined
keywords or phrases, while allowing for flexibility in the matching process. This is achieved
through algorithms that compute similarity scores between strings, such as edit distance, token-
based similarity, or phonetic matching. Fuzzy matching proves particularly valuable in handling
noisy or ambiguous data, where exact matches are impractical. A recent review on fuzzy
techniques in text mining highlights that these methods are frequently combined with statistical
approaches, as well as machine and deep learning models, to address primarily feature
extraction tasks [31]. Moreover, Figure 6 illustrates the trajectory of publications and citations

related to the use of fuzzy techniques in text mining on Web of Science (WOS) since 1993 [32].

4 All-match semantics in the context of RegEx engines refers to a behavior where the RegEx engine attempts to
find all possible matches of a pattern within a given input string, even if these matches overlap. This contrasts with
the more common first-match or longest-match semantics, where the engine prioritizes specific types of matches
based on its configuration (e.g., greedy or lazy matching). In engines supporting all-match semantics, the RegEx
does not stop processing once it finds a match or skip over overlapping potential matches. Instead, it explores and
captures every occurrence of the pattern that satisfies the given constraints, including overlapping instances.
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Figure 6: Co-occurrences of fuzzy & text mining on WOS

Although the data reveals a decline in the number of publications over the past two years, the
high co-occurrence of fuzzy matching and text mining remains noteworthy. This decrease may
reflect the growing adoption of LLMs, whose advanced capabilities increasingly address
similar challenges in feature extraction and keyword analysis. Nevertheless, fuzzy matching
continues to hold relevance as a complementary approach, particularly in applications requiring

flexible, or domain-specific solutions.
2.2.5.4 Context-aware & Learning-based

The techniques presented so far, such as fuzzy matching and dictionary-based
approaches, provide valuable tools for keyword extraction by addressing surface-level
variations and exact matching challenges. However, these methods lack the ability to
acknowledge the broader linguistic and contextual nuances in which keywords appear. Context-
aware techniques, driven by advancements in deep learning, bridge this gap by leveraging
semantic understanding to identify keywords based on their relevance and role within the text.

A cornerstone of these methods is the use of embeddings, which form the foundation
for transitioning from traditional, surface-level approaches to semantically rich, context-aware
systems [33]. Embeddings are dense, multi-dimensional representations of words or phrases,
capturing both their syntactic and semantic properties. Unlike static embeddings from earlier

models like Word2Vec [34] and GloVe [35], modern LLMs generate contextual embeddings,
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where the representation of a word dynamically changes depending on its surrounding text.
This allows context-aware methods to discern subtle differences in meaning, such as
distinguishing "mean" as a measure of central tendency from "mean" as an adjective which

characterizes someone as unkind or unfair.

Furthermore, the role of embeddings in a keyword extraction process differs based on
the type of method employed [36]. Within supervised frameworks, embeddings are utilized as
input features for training deep learning models. This way, the keyword detection task is
converted into a classification or regression problem [36]. In this setup, the model is trained to
determine whether a candidate word in a text is a keyword or non-keyword, utilizing the local
and global relationships captured by the embeddings. In contrast, unsupervised methods
leverage embeddings to identify patterns and relationships without labeled data [36]. For
example, embeddings enable clustering by grouping semantically similar words or phrases
based on their proximity in the embedding space. Additionally, they support similarity-based
techniques that rank potential keywords by comparing their embeddings to the broader context

of the text.

In the presented context, both supervised and unsupervised methods refer to a class of
approaches which aim at classificatory keyword extraction (CKE). Approaches that differ from
generative keyword extraction [37]. CKE approaches operate by scanning contiguous text
portions to ascertain whether a word is to be included in a pool of keywords, while models for
generative keyword extraction focus, in addition to the extraction, on predicting - generating -
keywords which are not present in the text [37]. Figure 7 [38] depicts a schematic representation

of the generic architecture of a two-stage, supervised and usupervised, keyphrase extraction

framework.
~
Dynamic o Learning
Candidate Extraction Sperved with Annotated Data
J
Input Candidate Keyphrase Keyphrase Importanc Top-K
Document Extraction Estimation Keyphrases
R
Heuristic-based Unsupervised Learning
Candidate Extraction e without Annotated Data
J

Figure 7: Two-stage generic pipeline for keyphrase extraction
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The stages of this generic framework comprise the extraction of candidate phrases as a first
step and as a second, the application of supervised or unsupervised methods to determine which

of those phrases are actual keyphrases.
2.2,5.5 Extraction Evaluation

The most common evaluation metrics for a keyword extraction task are precision, recall and

F1-score [36].

Precision is a metric for evaluating the accuracy of a model’s prediction and it is defined as the

ratio of the true keywords/phrases to the total number of predicted keywords/phrases made by

the model:
Keywords
. _ phrases
Precision = Keywords Keywords
True + False
phrases phrases

Recall is a metric for evaluating the effectiveness of a model and is defined as the ratio of the

true keywords/phrases to the total number of actual keywords/phrases in the text:

Keywords
True phrases Precision - Recall
Recall = F1- 2 -
ect Keywords NonKeywords Score Precision + Recall
True—————+ False—————
phrases phrases

[36].
To elaborate, execution time is a crucial parameter, especially as it influences the scalability of
the method. This factor becomes particularly critical when extraction is performed in real-time
applications. Another important consideration is data type, as the length of the input document
affects the search space. Longer documents, such as full scientific papers or meeting transcripts,
present more challenges during the extraction process, compared to shorter texts like abstracts
or emails. Furthermore, the structural consistency of the document is also significant, as more
standardized formats tend to facilitate the extraction process. Additionally, author-assigned
keywords are often used as a gold standard for evaluation, particularly in datasets involving
scientific articles or abstracts, where domain-specific expertise is crucial [36]. However, this
approach can be double-edged. While a gold-standard collection of keywords helps assess the
effectiveness of an extraction method, it can also bias the evaluation by excluding potentially
relevant terms that were not included by the author.

Overall, the final evaluation of a keyword extraction model is a delicate process that

depends on the application context. Nevertheless, it is also important to note that there are
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viewpoints which advocate for the use of semantic-based metrics, as opposed to traditional

direct-matching ones, to better capture the nuanced meaning of keywords [38], [39].

2.2.6 Keyword Vectorization

After successfully extracting meaningful keywords from a text, the next crucial step in
order to proceed with other advanced text analytics tasks is to convert these keywords into a
numerical format that can be utilized by ML algorithms. This process, known as vectorization,
is essential for transforming textual data into a structured form that computers can understand.
Furthermore, through this process semantic relationships between words are captured, allowing
algorithms to account for semantic differences instead of solely syntactic. Moreover, vectorized
text can potentially be integrated with structured data, enabling more comprehensive analyses
that combine textual and non-textual insights. In this section, some key vectorization techniques
are outlined, ranging from traditional, statistical methods to more sophisticated, context-aware,

and deep-learning-based ones like word embeddings and Transformer-based models [40].

2.2.6.1 BoW & TF-IDF

BoW and TF-IDF are two foundational methods used for text vectorization in NLP.

BoW, originally developed as a multi-purpose feature - variable - extraction method,
has been extensively applied in computer vision for tasks such as classification, detection, and
recognition [41]. Thereupon, the underlying principle of BoW remains consistent across

disciplines; it converts features into numerical vectors.

In the context of NLP, BoW represents each unique word in the text as a feature and
constructs a feature, numerical, vector for each sentence, with each dimension corresponding
to the frequency of a specific word in the sentence. Despite its simplicity and ease of
implementation, BoW has notable limitations. It fails to account for word order or the context
in which words appear, leading to sparse vector representations that lack the ability to capture

semantic relationships between words [40].

TF-IDF builds upon the BoW model by incorporating a weighted scoring system.
Unlike BoW, which simply counts the frequency of each word in a document, TF-IDF adjusts
the raw frequency by assigning higher weights to words that occur less frequently and lower
weights to those that appear more commonly across the corpus [40]. This is basically its IDF

component. Although this technique addresses the issue with the word importance, just like
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BoW it falls short in the representation of the word relationships. This lack is what prompted

the generation of the word embeddings.

2.2.6.2 Word Embeddings

Word embeddings is a more sophisticated text vectorization technique, created to
account for the deficiencies of the previous methods to capture semantic word relationships.
The differentiating element is that they generate high-dimensional vector spaces, with each
word being represented by an array of values, instead of the basic, binary, representation they
are given by traditional older methods. Various models have been developed for creating word
embeddings, with Word2Vec and GloVe being among the most widely used and well-known
approaches [42].

Word2Vec [34] is a neural network-based model designed to produce dense vector
representations of words. Its core principle involves training a neural network to predict context
words from a target word, or vice versa, thereby learning vector representations that encode the
semantic meaning of words. The model captures semantic relationships between words through
two primary architectures, Continuous Bag of Words (CBOW) and Skip-gram [42]. CBOW
predicts a word based on its surrounding context whereas Skip-gram predicts surrounding
context words from a given target word. Word2Vec has demonstrated efficacy in numerous
applications, including recommendation systems and knowledge discovery tasks [42]. It has
nonetheless its own drawbacks, as the handling of OOV words is done in a suboptimal manner
by assigning random vectors to them. Moreover, using Word2Vec for learning new languages
can be convoluted and tedious, as its parameterization in one language cannot be used in

another; requiring that the training begins from scratch. [42].

GloVe [35] combines two methodologies to generate word embeddings. It leverages
word co-occurrence statistics, capturing how frequently words appear together across a corpus,
to derive broader semantic meanings. That materialized through the construction of a large
matrix table in which the frequencies of the word pairings are recorded. Subsequently, through
the application of matrix factorization techniques, that matrix is simplified, and numerical
vectors are generated for individual words. Those vectors encode both the semantic meaning
of the words as well as the relationships between them. GloVe extends the Word2Vec
functionality as it exhibits comparable performance but with faster training and even with a
small corpus [43]. However, like Word2Vec, it faces limitations in handling OOV words
effectively.
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2.2.6.3 Contextualized Embeddings

The introduction of Transformers marked a paradigm shift with a profound impact on
text vectorization. Unlike earlier models that processed text sequentially, Transformers
introduced the ability to process entire sentences simultaneously. This innovation enabled the
resolution of long-standing challenges, such as polysemy (multiple meanings of a single word)
and homonymy (words that are spelled and pronounced the same but have different meanings).
Transformer-based models, including BERT [44], RoOBERTA [45], ELMo [46], and UMLFiT
[47] allow the generation of contextualized word embeddings, accounting for the surrounding
context of a word. With this capability, a two-fold objective is achieved. Different embeddings
are created not only for a polysemous word, but also for words with a unique meaning which
take on different nuances based on the particular context. These are functionalities that could
not materialize only with the local semantic meaning derived from the traditional and static
methods. Figure 8 [42] presents a diagrammatic overview of central word embedding

techniques.
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Figure 8: Diagrammatic overview of embedding techniques

2.2.7 Clustering
Clustering is a fundamental data mining technique that groups data points based on
measures of similarity. By identifying similarities between data points, clustering facilitates the
discovery of patterns, insights, as well as the overall organization and summarization of data

[48].
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Unlike classification and regression, clustering is an unsupervised method, as it usually
operates without labeled data. When there is no ground truth for the algorithm to match, the
clusters are derived intrinsically through an exploratory process. Nonetheless, there are cases
of semi-supervised learning, where some predefined categories guide the clustering process.
Constrained K-Means and Semi-Supervised Fuzzy C-Means are examples of algorithms used

in such scenarios [49]. Figure 9 presents a generic framework for a clustering operation [50].

Dat Featur ineeri . . .
Raw dataset RS Clustering algorithm selection/

Cleaned dataset . .
Distance metric

Knowledge

: Result validation Cluster formation
extraction

Figure 9: Diagrammatic representation of a clustering analysis
workflow

Clustering algorithms are employed across a wide range of applications in daily life and
can process various data types, including vectorized text. Figure 10 [50] illustrates the different
data types used in clustering, while Figure 11, taken from a recent review [50], depicts the

frequency of studies by clustering application domain, with text mining leading the list.
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Distribution of papers on clustering applications
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Figure 11: Number of studies per application domain

This variety, coupled with the rise of big data and increasingly complex data structures,
drives the continuous advancement of clustering algorithms. Consequently, an extensive range
of clustering algorithms has been developed to address the diverse demands arising from these
complexities. The way clustering algorithms operate, the types of data they handle, the
underlying assumptions about cluster structures, and their optimization criteria are central

factors used to classify them into different categories.

The taxonomy of clustering algorithms is constantly evolving, with new leaves being
added to the respective dendrogram. However, the parent branches remain consistent,

encompassing hierarchical and partition-based clustering.

Hierarchical clustering operates on the principle of partitioning data objects into
hierarchical levels [48]. These hierarchical levels are formulated in a bottom-up or top-down
approach, or agglomerative and divisive respectively. The bottom-up method builds clusters
from single objects. These objects are iteratively merged until a single cluster is formed or a
stopping criterion is met. Conversely, the top-down method begins with all objects grouped in

a single cluster, which is repeatedly divided into smaller clusters until each object forms its
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own cluster or a stopping criterion is reached. In this framework, the measure of similarity is

crucial in determining how clusters are merged or split.

Partition-based clustering does not produce a hierarchical structure; instead, it partitions
the dataset directly into distinct, homogeneous groups. The group formation process seeks to
uncover the inherent groupings within the dataset, guided by an objective criterion function,
most commonly the squared error®. In this framework, the dataset is iteratively partitioned and
the measure of similarity determines the assignment of data points to clusters in a way that
could minimize intra-cluster or maximize inter-cluster distance [48].

Partition-based clustering can be categorized into hard (crisp) and soft (fuzzy)
approaches, depending on the nature of cluster membership assignment. In hard clustering,
each data point is assigned exclusively to a single cluster, resulting in binary membership. In
contrast, soft clustering assigns fractional degrees of membership to each data point, allowing
it to belong to multiple clusters simultaneously. Figure 12 [50] provides an overview of the

taxonomy of contemporary clustering techniques.
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Figure 12: Taxonomy of clustering techniques

According to Al-Jabery et al. [51], there are nine key properties for evaluating the
performance of a clustering algorithm. These properties overlap with those proposed by Singh
et al. [50] in their recent review, with some minor differences. Common elements between the
two proposals include scalability, robustness, high dimensionality, mixed data types, and
parameter reliance. However, Al-Jabery et al. highlight the order of input patterns and the
number of clusters as separate properties that affect clustering performance, while Singh et al.
focus on computational complexity and convergence speed, treating them as distinct factors
that require separate consideration. Furthermore, Singh et al. categorize these properties into
two groups; Dataset and Computational Methods. Figure 13 provides a diagrammatic
representation of the parametric characteristics they proposed, which influence the performance

of a clustering algorithm.
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Figure 13: Clustering parametric characteristics

Overall, these characteristics essentially constitute the open challenges in clustering evaluation.
As a result, a wide range of evaluation metrics has been developed to assess each of these

parameters, with their optimization indicating better clustering performance.
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3 Related Work

Over the years, the rapid growth in scientific publications has created a vast corpus of
information, offering immense potential for extracting meaningful insights. However, manually
analyzing such large volumes of text is both impractical and inefficient. As a result, text mining
techniques have become indispensable for analyzing scientific literature, enabling the discovery
of patterns and knowledge inherent in these texts. To illustrate these applications, this section
presents exemplary studies from the past five years that employ modern text mining, NLP, and

ML techniques to extract valuable insights from scientific documents.

3.1 Psychology

Schiekiera et al. [21] tackled the issue of positive result reporting in psychotherapy
studies by evaluating the classification performance of a fine-tuned SciIBERT model and a pre-
trained Random Forest model. Their analysis was conducted on a corpus of 1,978 in-domain
and 300 out-of-domain abstracts. Building on earlier work by De Winter & Rodou [52], they
compared these models against rule-based benchmarks using n-grams derived from phrases
like “significant difference” and statistical parameters such as “p<.05.” Abstracts were
classified into two categories: “positive results only” or “mixed/negative results”, where the
distinction depended on the presence or absence of statistically significant results. A single
negative result within an abstract categorized it as negative. To address potential bias from this
sensitivity, a logistic regression classifier was employed as an additional benchmark, factoring

in the abstract’s length.

The SciBERT model achieved the best performance, with an accuracy of 0.86 on in-
domain data and 0.85-0.88 on out-of-domain data. The Random Forest model showed solid
but slightly lower performance, achieving accuracies of 0.80 and 0.79-0.83, respectively.
Following validation, the SciBERT model was applied to infer patterns of positive result
reporting in a corpus of 20,212 randomized control trial abstracts from PubMed. Logistic
regression analysis revealed an initial rise in positive result reporting starting in the early 1990s,
peaking in the early 2010s. This was followed by a modest decline and a subsequent moderate

increase in the early 2020s.

For prediction tasks, linear regression analysis was conducted on the inference data,

split into two periods: 1990-2005 and 2005-2022. A breakpoint around 2011 indicated a
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significant shift in reporting trends. Despite limitations, such as relying on abstracts instead of
full texts and potential oversimplification in categorization, the study demonstrated that ML

models are valuable tools for identifying and analyzing trends in positive result reporting.

Within similar research lines, Sokolova et al. [22] aimed to identify emerging trends
and prominent topics within the fields of clinical psychology and psychotherapy. For this
purpose, they utilized metadata from scientific papers available in the Microsoft Academic

Graph database, focusing on publications from 2000 to 2019.

To meet their objective, they utilized a text mining system developed by Gokhberg et
al. [53], which incorporates the Python Gensim package to enable a layered text mining
approach alongside NLP and ML techniques. Their methodology consisted of two key steps:
first, identifying a relevant set of terms for the subject area, and second, formulating thematic

clusters based on these terms and creating trend maps.

For term identification, a two-fold approach was implemented, combining quantitative
and qualitative methods. Initially, noun phrases related to clinical psychology and
psychotherapy were extracted from the database using n-grams and skip-grams. A 200-
dimensional vectorized space was then created using Word2Vec, grounded in an initial set of
keywords curated by experts. The extracted phrases were subsequently filtered through expert
evaluation and by assessing their cosine similarity to the psychotherapy vector. Terms with a

cosine similarity greater than 0.5 were retained, forming the finalized list of terms.

The significance and dynamics® of each term were then calculated. After additional
filtering to remove overly general terms, a final list of 234 terms was established, which
included only those with a dynamics value exceeding 118%. Significance was defined as a
measure of a term's importance, adjusted for variations in document volume across years, while
dynamics reflected whether a term was gaining or losing prominence annually, thereby
indicating its popularity.

To present their findings, the authors organized the terms into seven thematic clusters.
Notably, terms could belong to more than one cluster, reflecting the conceptual overlap across
topics. They also created trend maps showcasing the top 10 most significant terms within each

cluster. Among the findings:

e In the mental disorders cluster, gambling disorder ranked as the most significant term.

6 Significance calculates the overall normalized frequency of a term over multiple years by summing its yearly
occurrence rates, weighted by the total number of documents each year. Dynamics measures the average annual
percentage change in a term's relative significance over a specified time period.
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e In the symptoms, negative mental factors, and experiences cluster, moral injury was
the leading term.

e For the psychotherapy cluster, mindfulness therapy emerged as the most rapidly
growing term.

e In the interventions, methods, and factors of treatment cluster, medication-assisted
treatment held the highest absolute significance.

e In the pharmacology and neurobiology cluster, computational psychiatry was the top
term.

e In the skills, positive factors, and personal growth cluster, self~-compassion had the
highest absolute significance.

e Finally, in the general and other terms cluster, common mental health disorders

ranked highest.

In conclusion, this study is the first to systematically capture research trends in
psychotherapy and clinical psychology, providing a strong foundation for future investigations.
However, the study underscores the necessity of domain expertise, particularly in determining

the relevance of keywords.

3.2 Urban Planning

In [54], Weng et al. investigated key topics in scientific publications at the intersection
of Al, ML, and urban planning. Their dataset comprised 593 articles sourced from Scopus, and

their methodological approach was divided into three phases.

Phase 1 involved clustering abstracts. The authors utilized the pretrained GPT-3 model
to generate similarity embeddings for the abstracts. To reduce the dimensionality of these
embeddings, they applied Uniform Manifold Approximation and Projection (UMAP), the
results of which were then used as input for the HDBSCAN clustering algorithm. Since
HDBSCAN requires the dimensionality of the input to be smaller than the number of data points
(in this case, 593 abstracts), the authors reduced the dimensions to a range of 20 to 500.
Additionally, they optimized the minimal cluster size parameter by experimenting with values
between 10 and 50. The resulting clusters were evaluated using the Silhouette score to

determine their quality.

Phase 2 focused on identifying keywords to represent abstracts in each cluster. The

authors used the Stanford CoreNLP toolkit for preprocessing and extracted candidate keywords

-38-



based on syntactic patterns. For each abstract and its candidate keywords, pairwise cosine
similarity was computed, and the keywords were ranked according to their relevance to the
corresponding abstract. To finalize the keyword list for each abstract, they applied the Maximal
Marginal Relevance (MMR) algorithm, which prioritizes keywords with high similarity to the

abstract while minimizing redundancy with other keywords.

Phase 3 involved grouping the extracted keywords. The same techniques used in Phase
1 for abstract clustering were applied to the keyword grouping process. Specifically, similarity
embeddings were generated for the keywords, UMAP was used for dimensionality reduction,
and HDBSCAN was employed for clustering, with the Silhouette score as the evaluation metric.
However, unlike the abstract clustering process, where outliers were iteratively treated as
separate clusters until all clusters contained fewer than 50 abstracts, only one iteration was
performed for the keyword grouping. Outliers in this step were discarded, leaving only
representative keywords for the cluster topics. The representativeness of each keyword group

was assessed using the coverage’ metric.

Regarding the abstract clustering, 24 clusters were identified, each containing between
10 and 46 abstracts. These clusters were distributed across three well-defined bands, with 17
clusters achieving good Silhouette scores (>0.5). Only two clusters had negative Silhouette
scores, representing 8% of the total abstracts. In the keyword grouping, a total of 2,965
keywords were identified, which were organized into 98 keyword groups. On average, each
cluster contained three keyword groups, and every cluster had at least one keyword group with

good coverage (>50%).

Complementing the numerical results presented in the paper, the authors also developed
a web-based visualization tool to provide a comprehensive view of the outcomes from each

phase of the study.

In conclusion, this study presents a comprehensive approach to extracting keywords
and identifying relevant topics, incorporating modern techniques such as the use of GPT-3 for

generating embeddings.

7 Coverage was calculated as the proportion of abstracts in the cluster that include at least one keyword from the
group. Higher coverage means that the keyword group captures a larger portion of the abstracts in the cluster,
making it more representative.
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3.3 mHealth

In a systematic review conducted in 2019, Park et al. utilized text mining techniques on
a corpus of 5,600 journal articles retrieved from WoS to examine trends in the field of mHealth
research [55]. The review covered studies published over a decade, specifically from 2008 to
2018. Specifically, they analyzed the titles and abstracts of the retrieved studies using KH
Coder 3, an open-source software package designed for quantitative content analysis and text
mining. After removing stopwords, the authors extracted terms related to medical conditions,
types of interventions, and study populations. The list of terms was finalized through consensus
among researchers to ensure that only meaningful and relevant terms were retained.
Subsequently, the relationships between the identified terms were evaluated using Document
Frequency (DF) and a co-occurrence network. To measure the similarity between paired terms,

Jaccard’s coefficient and betweenness centrality were employed.

The analysis identified 48 medical terms, with mood disorders (9.7%), diabetes (9.4%),
and infections (8.5%) being the most prevalent. Regarding intervention-related terms, 30
unique terms were identified. Among these, cell phone was the most frequently mentioned
intervention (DF = 18.7%)), followed by SMS (14.7%) and internet-based interventions (13%).
A notable shift in trends was observed after 2012, with the use of mobile application
interventions surpassing those of cell phone, SMS, and internet-based interventions. In terms
of study populations, the term female appeared most frequently (DF = 20%), followed by
healthcare workers (13.4%) and children (10.8%).

In analyzing the strength of relationships between paired terms, the strongest association
was observed between female populations and pregnancy issues, with a Jaccard value of 0.22.
Additionally, cell phone emerged as the central node in the co-occurrence network. Expectedly,
it was linked to other intervention types such as SMS and mobile applications, as well as to a

range of medical conditions, including mood disorders, anxiety, and diabetes.

In conclusion, this review applied straightforward text mining techniques to
quantitatively assess trends in mHealth research, offering a foundational perspective for trend
analysis in the field. However, the reliance on DF as a text processing measure introduces
inherent biases. To address this limitation, incorporating TF-IDF could have helped mitigate

these biases, thereby enhancing the robustness of the findings.
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3.4 Al & Healthcare

In [56], Shin et al. examined research trends at the intersection of Al and healthcare
technology. To achieve their study objectives, they collected 15,260 studies from Elsevier’s
Scopus database spanning a period of 55 years (1863-2018). They specifically utilized the
abstracts of these papers for analysis, applying text and temporal frequency analysis techniques
as a first step. For preprocessing, they employed the integrating functionalities of the OpenNLP
morpheme analyzer to extract relevant terms from the abstracts. Out of 11,008 extracted words,
3,949 terms were retained based on criteria that included a TF-IDF value higher than 0.3 and
occurrence in more than eight papers. These retained words were subsequently input into an

LDA-based topic modeling process.

In the topic modeling step, the parameters o and 3 were set at 7.0 and 0.1, respectively,
and 1000 iterations of Gibbs sampling® were performed. The authors also reported a similarity
value of 0.05 between research subjects, although the specific similarity metric used was not
disclosed. To supplement the topic modeling results, they conducted a two-mode network
analysis using the top seven words assigned to each topic to demonstrate the lack of overlap

between research topics.

The topic modeling identified seven research topics, with three major ones emerging:
Al for Clinical Decision Support Systems (CDSS), Al for Medical Imaging, and Internet of
Healthcare Things (IoHT), listed in order of prominence. In the final step, the authors employed
word cloud analysis and ego network analysis. The word cloud targeted the top 100 allocation
probabilities, while the ego network analysis focused on the top five words associated with
each of the three major topics. For the first topic (Al for CDSS), the word Medical Doctor had
the highest connection and mediation centrality and was linked to terms such as Medical
Prescription, Hospital, and Decision Making. For the second topic (Al for Medical Imaging),
key terms included Medical Image, Brain, Segmentation, Human Tissue, and Computed
Tomography (CT), highlighting research themes related to augmented reality. For the third
topic (IoHT), the top five words were Sensor, Body Area Network (BAN), Monitoring, Real-
Time, and Safety. Among these, Sensor exhibited the highest centrality and mediating

centrality, and was closely connected to terms like IoT, Accelerometers, and Human Activity

8 The alpha (a), beta (), and Gibbs sampling values are important parameters and techniques associated with
LDA and influence the quality and efficiency of the topic modeling process. The o value controls how concentrated
the topics are in documents. The S controls how concentrated words are in topics, while the Gibbs sampling refers
to the number of iterations - cycles - before convergence.
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Recognition (HAR), indicating a research trend towards personalized healthcare.

In conclusion, although written in a convoluted way, this paper provides a
comprehensive overview of the research trends in Al and healthcare. A notable limitation that
could be attributed to it, is that it lacks some methodological details regarding the performed

analyses, resulting to a not so clear reporting.

Overall, these studies exemplify contemporary techniques for retrieving information
from scientific documents, particularly abstracts. In the field of psychology, the studies by
Schiekiera et al. [21] and Sokolova et al. [22] assert their pioneering roles in addressing their
respective challenges through the analysis of information extracted from scientific abstracts.
Although the authors of the presented studies acknowledge the use of abstracts instead of full
documents as a limitation, this approach could gain traction due to its accessibility and the
increasingly standardized reporting practices. Furthermore, a key insight is that information
found in abstracts is effectively utilized to identify trends in research and reporting within the

domain under examination.
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4 Materials & Methods

This section outlines the methodology and materials used to achieve the study's
objectives. More specifically, we provide a detailed description of the following processes:
data collection, data cleaning and preprocessing, terms retrieval, terms vectorization, clustering

models, as well as the statistical analyses.

4.1 Data Collection

Data were collected using 3 highly regarded databases in the fields of health, psychology
and behavioral sciences, i.e. Elsevier’s Scopus, PubMed’s MEDLINE and Ovid’s PsycINFO.
For the purposes of the current study the abstract as well as basic metadata of psychology
articles published in the mentioned databases between 1995 and 2024 were retrieved. Basic
metadata comprised "Title"”, "Journal”, "Publication Year", "Authors", "Abstract”, "DOI",
"ISSN", "Volume", "Issue", "Pages", "Keywords", "Publication Type" and "MeSH Terms".

For retrieving articles from PubMed, its publicly available API, Entrez Programming
Utilities  (E-utilities), was employed. The specific search term applied was:
' (Psychology[MeSH Major Topic]) AND ("1995/01/01" [Date -
Publication] : "2024/08/15" [Date - Publication]) AND
(English[Language]) AND (Clinical Trial[pt] OR Randomized
Controlled Trial[pt] OR Observational Study[pt] OR Case
Report [pt] OR Comparative Study[pt] OR Meta-Analysis[pt])'. This
search initially yielded 1,578 results. For the complete script, see “dataPubMed.py” in the
provided Github repository [57].

For Elsevier’s Scopus, the non-commercial SCOPUS Search API was used. The query
targeted specific psychology journals: ' ((EXACTSRCTITLE ("Psychological
Medicine") OR EXACTSRCTITLE ("Clinical Psychology Review") OR
EXACTSRCTITLE ("Cognitive Therapy and Research") OR
EXACTSRCTITLE ("Psychological Science") OR
EXACTSRCTITLE (“Journal of Clinical Psychology in Medical
Settings”) OR EXACTSRCTITLE (“Behavior Research and Therapy”) AND
DOCTYPE (ar) ) '. This query initially returned 30,483 results. For the complete script, see

“dataFElsevier.py” in the provided Github repository [57].
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For Ovid’s PsycINFO, the Advanced Search feature was employed. 'Psychology' was
set as a major keyword, and additional filters were applied, including 'Articles with Abstracts,'
'APA PsycArticles,’ and 'Original Articles'. The initial query returned 195,192 results.

Moreover, the date range was specified as a separate parameter in Elsevier’s Scopus
retrieval script and applied as an additional limit in Ovid’s PsycINFO search.
The selection of Elsevier’s Scopus journals and the application of the '"APA PsycArticles' and
'Original Articles' limits in PsycINFO are aligned with the study’s objectives. The chosen
journals are known for publishing empirical studies, and limiting them to 'Original Articles'
ensured the exclusion of publication types like editorials, book reviews, corrections, and

reports.

4.2 Cleaning & Preprocessing

The initial corpus consisted of a total of 227,253 records. After removing duplicates, as
well as records without available abstracts, and outliers such as editorials and commentaries,
the final dataset amounted to 85,452 articles. Due to the qualitative and contextual nature of the
data, substituting missing values with generic placeholders or statistical measures would not
preserve the integrity of the information. Therefore, instead of attempting imputation, missing
values were consistently labeled as “n/a” to indicate the absence of a value without distorting
the analysis. Moreover, to further ensure data integrity and consistency, redundant information
such as author ranking numbers and boilerplate texts was removed and data was coded in a
consistent format for each feature. Additionally, publication years were validated to confirm
they fell within the targeted date range.

For the keyword extraction, three glossaries were drawn from relevant, publicly available,
psychology textbooks [58], [59], [60]. Each glossary includes method-related and statistical
single and multi-word entries (hereafter jointly referred to as 'terms') commonly encountered
in psychological research. Before merging the glossaries, duplicates were removed as well as
those terms that refer to ethical guidelines, such as “anonymity” and “APA ethics code” and
generic methodological concepts, such as “heuristics” and “deductive reasoning”. The final
glossary consisted of 365 terms, serving as the gold standard collection for the extraction
process. For the complete glossary refer to the glossary Hyphenated.json and
glossarySpaced.json in the provided GitHub repository [57].

After finalizing the glossary, the first preprocessing step involved converting all

glossary terms and the corpus of abstracts to lowercase. Multiword terms from the glossary
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appearing in the abstracts were hyphenated using Python's regular expressions module to
preserve their integrity during tokenization. Additionally, Python’s inflect library was used to
handle both singular and plural forms of the terms. For the complete script, see
“prepro_Hyphen.py” in the provided GitHub repository [57].

The next preprocessing steps involved stopword removal and tokenization. The prior
hyphenated terms were replaced temporarily by placeholders to ensure they were treated as
single units during tokenization. They were converted back to their hyphenated form after the
completion of tokenization. Moreover, numbers, decimals, and percentages embedded in the
text were processed using custom regular expressions. This ensured that numeric values (e.g.,
75%, 0.8, =3.14) were correctly identified, extracted, and handled separately from other tokens.
The NLTK package was used for the preprocessing steps, along with the FregDist function to
count occurrences of glossary terms in their exact form. For the complete script, refer to

“prepro_NLTK.py” in the provided GitHub repository [57].

4.3 Terms Retrieval

For the retrieval of the terms from the abstracts, two approaches were combined on the
preprocessed text. Specifically, two variants of the final glossary were created, one with
hyphenated terms and another with spaced terms. Direct string matching was first applied using
the hyphenated glossary, aiming to retrieve terms that had been previously hyphenated. For
terms that were not directly matched, fuzzy string matching was applied using the spaced
version of the glossary. To account for minor variations, the threshold for fuzzy matching was
set at 90%. The RapidFuzz library was used for this purpose, specifically its fuzz.partial ratio
function.

For the complete retrieval script and glossaries, refer to direct&fuzzy NLTK.py,
glossaryHyphenated.json, and glossarySpaced.json in the provided GitHub repository [57].

4.4 Clustering Analysis

To identify inherent method groupings of the examined abstracts the retrieved terms were
vectorized and we used their vectors to feed both an unsupervised a semi-supervised clustering

model. A detailed description of these processes is presented in this section.

-45-



4.4.1 Terms Vectorization

The terms extracted from the abstracts were vectorized before being used in downstream
analysis. For this purpose, the SciBERT model was employed. SciBERT is a pre-trained
language model designed specifically for scientific text, making it a suitable choice given the
nature of the dataset in the current study. CLS embeddings were generated for the retrieved
terms within the context of their corresponding abstracts. The CLS token is used to represent
the entire input sequence (the abstract plus the key term). The embedding corresponding to this
token is then used as the representation of the key term within the context of the abstract. For
terms that appear multiple times within the same abstract, the average of their embeddings is
computed. Additionally, to obtain a single embedding for each abstract, the embeddings of all
the terms within that abstract are aggregated using mean-pooling. For the complete script, refer

to embeddings.py in the provided GitHub repository [57].

4.4.2 Unsupervised Clustering

For the identification of inherent groupings within the examined abstracts, the keyword
embeddings generated from the process previously described were used. Although the
embeddings for each keyword were averaged, SciIBERT inherently retains 768 dimensions for
each individual embedding. To address this, UMAP was applied. UMAP’s functionality aids
not only in reducing the dimensionality of the embeddings but also in preserving the local and
global structure of the data. Additionally, UMAP visualizations provide an initial exploration

of the data, which can guide the clustering analysis more efficiently.

UMAP allows for a set of parameter settings that influence the clustering results. Before
settling on a final UMAP configuration, several parameters were examined. Specifically, a
range of values for the number of neighbors, the minimum distance, the distance metric, and
the number of components was tested. Table 2 summarizes the different tested parameters.
Configurations that appeared most promising through the UMAP visual exploration were
selected for testing with the clustering algorithms. For the complete script, refer to

umapReductionUnsupervised.py in the provided GitHub repository [57].

Table 2: UMAP Parameter Testing

Parameter Values
n_neighbors 5,10, 15, 30, 50, 100
min_dist 0.1-0.5
distance metric cosine, correlation,
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euclidean
2,3,5,10, 50

n_components

K-Means and DBSCAN were the two clustering algorithms that were tested. As with
UMAP, their parameterization affects the clustering performance. For DBSCAN, the different
parameters tested can be found in Table 3. For the complete script, refer to cluster DBSCAN.py
in the provided GitHub repository [57].

Table 3: DBSCAN Parameter Testing

Parameter Values
eps_values 0.2-0.8
min_samples_values 2-8
. . cosine, correlation,
distance metric .
euclidean

For k-means, the different parameters tested can be found in Table 4. For the complete

script, refer to cluster k-means.py in the provided GitHub repository [57].

Table 4: K-Means Parameter Testing

Parameter Values
n_clusters 3-9
random_state 42
max_iter 300
init_method k-means++

For the evaluation of the clustering algorithms, the Silhouette score was used as a
quantitative metric. Furthermore, the t-distributed Stochastic Neighbor Embedding (t-SNE)
technique was employed for visual inspection of the clustering results in high-dimensional
data. t-SNE includes parameters that affect the visualization quality but do not influence the
clustering performance itself. To ensure efficient exploration, t-SNE settings were tested only
on the clustering models with the highest Silhouette scores. Table 5 presents the tested t-SNE

settings.

Table 5: T-sne Parameter Testing

Parameter Values
n_components 2
random_state 42

perplexity 20 - 60 (increments of 10)
learning_rate 200 - 600 (increments of 100)
n_iter 1000 and 2000
metric cosine
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Outliers were identified for the chosen clustering model based on two specific criteria:
a Silhouette score lower than 0.2 or a distance greater than 2.0 from the cluster centroid. Since
the number of outliers (115) was small relative to the dataset's size, and no discernible pattern
emerged upon manual inspection of their corresponding abstracts, it was decided not to apply
specific treatments for these points. For the complete script, refer to clusterOutliers.py in the

provided GitHub repository [57].

4421 Cluster Analysis

To further analyze the composition of the clusters, descriptive statistics were calculated.
Specifically, the following metrics were computed to gain insights into the clusters'
characteristics: Silhouette coefficients, homogeneity indices, cluster size, total terms, and
unique terms per cluster. For the full script used to calculate these metrics, refer to
clusterDescriptivesUnsupervised.py —in the provided GitHub repository [57].

Additionally, to assess the importance of each cluster's terms, TF-IDF scores were
computed. A key difference from typical TF-IDF calculations is the use of binary counts instead
of word frequencies for the TF component. This means that the TF value is 1 if a term is present
in an abstract, and 0 if it is absent. The frequency of the term's appearance is not considered, so
the focus is on whether a term is "present" or "absent" rather than how often it appears. For the

full script, refer to ¢f~idf Binary.py in the provided GitHub repository [57].

Furthermore, Jaccard similarity scores were calculated based on the TF-IDF term scores
to measure pairwise similarity between the clusters. For the full script, refer to

JjaccardSimilarityUnsupervised.py in the provided GitHub repository [57].

4.4.3 Semi-supervised Clustering

In addition to the unsupervised clustering approach utilized in this study, a semi-
supervised technique was explored to potentially enhance the clustering outcomes. For this
purpose, a weighting scheme was developed, assigning varying weights to the glossary terms.
The goal of this weighting approach was to guide the clustering algorithm in emphasizing key
concepts with high theoretical discriminative value. Figure 14 in the Appendix depicts the
employed weighting scheme for the emphasized terms. The rest of the glossary terms were
assigned a weight value of 1.

The weight assignment was applied on the embedding level. More specifically, as a first

step, the average term embeddings were calculated. Given the usage of SciBERT for the

-48-



generation of the embeddings, a single term had initially different embeddings across different
abstracts. Thereupon, those different term embeddings were averaged by summing them and
dividing them by the respective total term count. After the calculation of the averaged term
embeddings for each term found in an abstract, weights were applied according to the
mentioned weighting scheme, and the abstract embeddings were updated based on the
weighted, averaged, term embeddings. For the full scripts with which the averaged term
embeddings were produced, the weights were assigned, and the abstract embeddings were
updated refer to avgTermEmbed.py and weightedAbstractEmbed.py in the provided GitHub
repository [57].

The clustering method closely followed the unsupervised approach, with some
modifications to tested parameters. UMAP reduced embedding dimensionality, excluding
n_neighbors=50, 100 and n_components=50 while cosine was the sole distance metric
examined. For the complete script of the UMAP technique, refer to the
umapReductionSemiSupervised.py in the provided GitHub repository [57].

Regarding the clustering algorithm, only k-means was tested, with the same parameter
values as in the unsupervised approach. Furthermore, the Silhouette score and -SNE were used
for evaluation purposes in the same manner as in the unsupervised approach. The decision to
test a subset of the parameters was based on the results derived from the unsupervised approach.
For the complete script of the clustering refer to cluster k-means SemiSupervised.py in the
provided GitHub repository [57].

Finally, cluster analysis comprising descriptive statistics and TF-IDF scores was
conducted to provide insights on the clusters’ composition. For the full script used to calculate
these metrics, refer to clusterDescriptivesSemiSupervised.py, and

JjaccardSimilaritySemiSupervised.py in the provided GitHub repository [57].

4.5 Frequency & Trend Analyses

To gain an overall perspective of the dataset regarding term occurrences, the corpus of
abstracts was analyzed independently of cluster formation. More specifically, we calculated
descriptive statistics to summarize the presence and distribution of extracted terms across the
abstracts, including the proportion of abstracts containing terms, the average number of terms
per abstract, the median, and the standard deviation. For the complete script used to calculate

these descriptives, refer to termsStats.py in the provided GitHub repository [57].
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For the assessment of the overall importance of the retrieved terms and their evolution
over time, frequency and trend analyses were conducted. This analysis included calculating the
frequencies of individual terms and term pairs, as well as their respective TF-IDF scores. The
TF-IDF calculation follows the same binary logic as described for the clusters above; however,
the TF term is adjusted based on the total number of abstracts in each year. For the complete
scripts used to calculate the weighted frequencies and the interactive dashboards, refer to #f-
idf AllAbstractsByYear.py, interactiveTF-IDF AllAbstractsByYear.py and co-occurrences.py,

interactive_co-occurrences.py in the provided GitHub repository [57].

Finally, a trend analysis was conducted to explore temporal variations in term
occurrences. Specifically, we analyzed the proportion of abstracts without term presence for
each year, calculated as the annual number of abstracts without terms divided by the total
number of abstracts for that year. For the complete script used to calculate this, refer to
noKeys DualAxis.py in the provided GitHub repository [57].

Figure 15 shows a schematic representation of the employed methodology.
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Figure 15: Schematic representation of the employed methodology
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5 Results

This section presents the results of our research. For the clustering analysis, we report
the tested UMAP configurations, descriptive statistics of the formed clusters, and evaluation
metrics, including Silhouette scores and t-SNE visualizations, for both the unsupervised and
semi-supervised approaches. Regarding the frequency and trend analyses, we provide
descriptive statistics on term occurrences, irrespective of cluster formation, along with the
corresponding TF-IDF scores. Additionally, we examine temporal trends, including the annual

proportion of abstracts without any terms.

5.1 Clustering Analysis

5.1.1 Unsupervised Clustering

The UMAP configuration that yielded the best clustering results, based on the Silhouette
score and the inspected UMAP and t-SNE visualizations, had the following parameter settings:
10 neighbors (n_neighbors), 0.1 minimum distance (min_dist), cosine distance metric, and 50

components (n_components).

The best clustering model was based on the k-means algorithm, which produced 6
clusters. The parameter settings for k-means were: random_state set to 42, max _iter at 300, and

init_method set to k-means++.

For t-SNE, the parameter settings were: random_state also set to 42, perplexity at 40,
learning_rate at 300, n_iter at 2000, and early exaggeration at 18, with cosine as the metric.
This combination of parameters resulted in a Silhouette score of 0.765. Figure 16 depicts the

respective t-sne visualization.
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t-SNE Visualization of Clustering
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Figure 16: t-sne Visualization of Unsupervised Clustering

As observed in the t-SNE visualization, the resulting clusters varied in size. The number

of records in each cluster is presented in Table 6.

Table 6: No. of records per cluster

Records
Cluster 0 15078
Cluster 1 24890
Cluster 2 10301
Cluster 3 10712
Cluster 4 4716
Cluster 5 1095

Additionally, the proportional composition of the clusters relative to the overall dataset is
illustrated in Figure 17, where the size of each slice corresponds to the proportion of records in

each cluster.
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Cluster Proportional Composition

3

Figure 17: Proportional Cluster Composition

Four out of the six clusters appear to be more balanced in size, while clusters 4 and 5

are significantly smaller. The respective Silhouette coefficients, mean and standard deviation

(sd), for each cluster can be found in Figure 18.
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Figure 18: Mean Silhouette Scores with SD per Cluster



All clusters have a Silhouette score above 0.6, with cluster 0 having the lowest (0.64),
and cluster 5 the highest (0.93). Furthermore, SD, represented by the respective error bars, is
low for all clusters, with cluster 0 having the highest (0.09).

Figure 19 depicts the compactness of each cluster in relation to its separation from other
clusters. Compactness is represented by the average distance of points in a cluster to their
centroid, while separation as the smallest distance between the centroid of a cluster and any

other cluster centroid.
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Figure 19: Compactness vs. Separation

Higher values in the x-axis indicate that points are more loosely grouped, while higher

values in the y-axis suggest that the cluster is well-separated from others.

To illustrate the composition of terms within the clusters, Table 7 presents the total
number of terms in each cluster, along with the unique terms identified in each one.
Additionally, the TF-IDF scores are provided to account for cluster size in relation to these term
counts. Click here [61] to view the interactive plot for the top 30 terms per cluster. Use the
legend on the right to toggle between clusters, and hover over the bars to see the normalized
frequency of each term. The plot displays bars for the top 30 terms based on their TF-IDF

scores, and the tooltips provide the normalized frequency for each term.

Table 7: Sum of terms & unique terms for each cluster
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Total Terms Unique Terms
Cluster 0 34697 215
Cluster 1 56118 223
Cluster 2 20263 203
Cluster 3 31085 203
Cluster 4 11289 177
Cluster 5 1927 102

Certain terms are prevalent across all clusters. Notably, participants, experiment, and
sample consistently rank among the top terms in every cluster. In addition to this, a heatmap
was generated to illustrate the overlap in keywords between clusters, using their respective

Jaccard similarity scores. Figure 20 displays this heatmap.
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Figure 20: Jaccard similarity scores between clusters

All clusters, except cluster 5, show strong similarity, with the highest score (0.79) observed

between cluster 1 and cluster 0.

5.1.2 Semi-supervised Clustering

The UMAP configuration that yielded the best clustering results, based on the Silhouette

score, had the following parameter settings: 30 n_neighbors, 0.5 min dist and 10
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n_components. The resulting Silhouette score was 0.4598. Figure 21 depicts the respective t-

sne visualization.
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Figure 21: t-sne Visualization of Semi-supervised Clustering

The number of clusters that were identified was 10 and they varied in size. The number

of records in each cluster is presented in Table 8.

Table 8: No. of records per cluster

Records
Cluster 0 7504
Cluster 1 7714
Cluster 2 3960
Cluster 3 7129
Cluster 4 9249
Cluster 5 5709
Cluster 6 18045
Cluster 7 1987
Cluster 8 2338
Cluster 9 2973

The proportional composition of the clusters relative to the overall dataset is illustrated
in Figure 22, where the size of each slice corresponds to the proportion of records in each

cluster.
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Cluster Proportional Composition

Figure 22: Proportional Cluster Composition Semi-supervised

Six out of 10 clusters, namely from 0 to 5, are comparable in size. Moreover, almost one third

of the abstracts are placed in cluster 6. The respective Silhouette coefficients, mean and SD, for

each cluster can be found in Figure 23.
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Figure 23: Mean Silhouette Scores with SD per Cluster

Only cluster 8 shows a sufficient Silhouette score, with a small SD.

To illustrate the composition of terms within the clusters, Table 9 presents the total
number of terms in each cluster, along with the unique terms identified in each one.
Additionally, the TF-IDF scores are provided to account for cluster size in relation to these term
counts. Click here [62] to view the interactive plot for the top 30 terms per cluster. Use the
legend on the right to toggle between clusters, and hover over the bars to see the normalized

frequency of each term. The plot displays bars for the top 30 terms based on their TF-IDF

scores, and the tooltips provide the normalized frequency for each term.

Table 9: Sum of terms & unique terms for each cluster

Total Terms Unique Terms

Cluster 0 8205 15
Cluster 1 30022 208
Cluster 2 4302 12
Cluster 3 16852 149
Cluster 4 24580 157
Cluster 5 11063 132
Cluster 6 50827 205
Cluster 7 3048 18
Cluster 8 2372 9

Cluster 9 3921 22

In addition to this, a heatmap was generated to illustrate the overlap in keywords

between clusters, using their respective Jaccard similarity scores. Figure 24 displays this

heatmap.
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Figure 24: Jaccard similarity scores between clusters

5.2 Frequency & Trend Analyses

Out of 85,452 abstracts, 66,792 (78.16%) contained extracted terms. On average, each

abstract had 1.82 terms, with a median of 1 term per abstract and an SD of 1.62. Figure 25

presents the top 10 detected terms.
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Figure 25: Top 10 Terms in abstracts

For a weighted term presentation, click here [63] to view the interactive plot for the top
30 terms per year. Use the legend on the right to toggle between years, and hover over the bars
to see the TF-IDF scores for each term normalized by the total number of abstracts per year.

By the same token, click here [64] to get the interactive plot with the normalized term
co-occurrence frequencies per year. Use the legend on the right to toggle between years, and
hover over the bars to see the normalized frequencies. No Terms indicate the number of
abstracts with no extracted terms for each particular year. Finally, in Figure 26 the proportion

of abstracts with no terms over the years is presented.
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Figure 26: Proportion of abstracts with no terms

A downward trend is observed over the years, indicating that the number of abstracts without

method-related terms has been dropping.
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6 Discussion

This study examined methodological terminology in psychology research by analyzing
a corpus of psychology abstracts. More specifically, we researched how terms are grouped

together and whether there are patterns in the way psychological terminology is used.

Results from both unsupervised and semi-supervised clustering approaches did not
yield clear inherent groupings. In the unsupervised approach, both K-Means and DBSCAN
were tested to leverage their complementary characteristics, as K-Means assumes spherical
clusters and requires the number of clusters to be predefined, while DBSCAN detects arbitrary-
shaped clusters and handles noise explicitly. However, neither approach produced distinct
clusters, as overlapping terms were observed across clusters. That was the case also for the
weighted approach in which more generic terms had been assigned lower weights. This element
was partially mitigated with the semi-supervised approach, yet by examining the respective
TF-IDF scores of the terms found in each cluster, no clear thematic groupings could be derived.
Moreover, although the produced Jaccard similarity heatmap implied no significant overlapping
between certain clusters, the terms found in those clusters were not differentiating to the extent
that a clear theme could be drawn. Nevertheless, an elucidating finding was that the method-
related research terms comprising the glossary tend to appear more over the years, as the

number of abstracts with no terms is following a downward trend.

In the context of identifying topics and emerging trends from scientific abstracts, the
findings of related work as presented in the relevant section are not directly comparable, as
those studies dealt with positive reporting [21] and the niche of clinical psychology and
psychotherapy [22]. Hence, the considerations that can be made pertain mostly to the methods

employed by those studies and how these methods compare with the methods utilized here.

A major difference lies in how terms were retrieved from the abstracts. In those studies,
more dynamic approaches were employed to extract key terms, as opposed to the predefined
gold standard collection used here. While those studies also emphasize the contribution of
domain experts in refining the keyword list, their approach begins with terms drawn directly
from the dataset, which are then filtered by experts. Consequently, the machine learning

methods applied in those studies benefited from a better-refined input.

Furthermore, method-related terminology might not be clearly reported in psychology

abstracts. Although the reporting of method-related terms appears to increase over the years,
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those terms with high discriminative value, which would naturally place an abstract in a certain
cluster might be lacking from abstracts. For example, a combination of terms like repeated
measures anova, attrition, dependent t-test, line graph, trend analysis, multiple time points
could point with a high degree of confidence to a longitudinal study. Nevertheless, this kind of

informative pattern seems to be lacking from the examined abstracts.

Overall, the use of a predefined glossary may contribute to the poor clustering results.
While the glossary consists of terms frequently used in psychology research to describe
methodologies, it runs the risk of lacking context-specificity. Additionally, the application of
SciBERT for vectorizing the terms does not appear to have provided the intended benefit. The
rationale behind using SciBERT was to generate contextualized embeddings that could capture
the nuanced meanings of terms, thereby negating the need for topic modeling. This is also why
the average of the term embeddings across different abstracts was calculated. However, the
clustering results did not support this approach. This suggests that, although SciBERT is
optimized for scientific text, psychological terminology may require more domain-specific
embedding techniques. Thereupon, a lighter vectorizer, such as Word2Vec, might have been

more effective.

Despite the mentioned limitations, the current study has some strong elements, offering
some extra value to the field. More specifically, it offers an updated view regarding the use of
certain method-related terms in psychology abstracts. The lack of terms with discriminative
power from psychology abstracts could affect how psychological research is translated into
practice and guide the way of future reporting by leading to clearer ways of mapping
psychological concepts. These findings could have practical implications for the development
of more standardized abstract writing guidelines and the enhancement of methodological
transparency in psychological research reporting. Future research might benefit from exploring
alternative clustering approaches specifically designed for psychological terminology, or from
developing more sophisticated term discrimination techniques that account for the

interconnected nature of psychological concepts.
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7 Conclusion & Future Work

7.1 Conclusion

This study provides valuable insights into the temporal trends in reporting method-
related keywords in psychology research abstracts, highlighting both the growing presence of

such terms over time and the challenges in their clear categorization.

A key takeaway is that using a predefined glossary of method-related terms as a gold
standard for keyword retrieval proved challenging, as evidenced by the clustering results.
Neither the unsupervised nor semi-supervised models produced distinct clusters, with terms
overlapping between them. Additionally, the use of SciBERT for term vectorization may not

be suitable for fixed-term applications like those employed in this study.

Overall, while the clustering approaches did not yield distinct groupings, these findings
highlight the need for more standardized reporting of methodological details in abstracts and
suggest opportunities for improving how psychological research methods are documented and

classified.
7.2 Future Work

Based on the findings of our study, several suggestions can be made to enhance future
research in this area.
First, the glossary used could be refined through contextualized filtering, dynamically
adjusting to the dataset at hand. This could be followed by a manual labeling approach based
on the refined extracted terms, allowing for the training of a corresponding machine learning
model to yield more targeted results.
Additionally, given the high number of overlapping terms observed with K-Means and
DBSCAN, a hierarchical clustering algorithm might offer better differentiation. A two-level
approach could be employed, where first-level clustering groups similar abstracts based on
broader patterns, and second-level clustering within each group captures finer distinctions.
Lastly, clustering could be based on significant co-occurrences rather than single-term

vector representations. A term co-occurrence graph, where nodes represent terms and edges
represent their co-occurrence in abstracts, could be constructed. Graph-based clustering
algorithms could then be applied to identify method groupings based on structural patterns in

the network.
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Appendix

Table 1: Acronym Definitions

Acronym Technique Raw Processed
DON Do Nothing “Like a Rolling Stone” | “Like a Rolling Stone”
Replace Noise “@Obama tells “USER tells
RNS #metoo! bit.ly/—" HASHTAG! URL”
RSA Replace Slang/Abbreviations “‘omg you are so nice!” “Oh my God you are
so nice!”
Replace Contraction “I don’t like butterflies.” “l do not like
RCT butterflies.”
Remove Repeated Punctuation “l like her!!l” “l like her
RRP multiExclamation”
Removing Punctuation “You. are. cool.” “You are cool”
RPT
Remove Numbers “You are gr8.” “You are gr.”
RNB
Lowercasing “You Rock! YEAH!" “you rock! yeah!”
LOW
Remove Stop Words “This is nice” “is nice”
RSW
Spelling Correction “Tllenia is so kind!” “lenia is so kind!”
SCO
Part-of-Speech Tagging “Kim likes you” “Kim (PN) likes (VB)
POS you (NY
Lemmatization “l am going to “I be go to shop”
LEM shopping”
Stemming “Girl's shirt with “Girl shirt with differ
STM different colors” color”
Remove Elongation “You are cooool!” “You are cool!”
ECR
Emoticon Handling “y “happy”
EMO
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NEG

Negation Handling

‘I am not happy today!”

“l am sad today!”

WSG

Word Segmentation

“#sometrendingtopic”

“some+trending+topic

74-




Figure 14: Weighting scheme for the emphasized terms
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