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Abstract 

Formula 1 has developed over the years into a data-intensive sport with hundreds of sen-

sors collecting data and capturing metrics for every car and driver during each race. Now-

adays, teams are leveraging advanced analytics to make informed strategic decisions and 

to gain a competitive edge. Furthermore, predictive analytics has emerged as a valuable 

tool, benefiting teams, athletes, fans, and investors alike. Despite this, the integration of 

environmental factors, such as weather conditions, into predictive models remains under-

explored. 

This dissertation investigated various predictive modelling techniques, focusing on tradi-

tional statistical methods and advanced data mining methods. The models were evaluated 

using historical and weather data from season 2014 to season 2023, the hybrid era of 

Formula 1. The results show that ensembles methods, particularly Gradient Boosting con-

sistently outperformed others in predictive accuracy, reaching an 𝑅2 score higher than 

0.98 when incorporating weather data.  

Additionally, this study offers actionable insights into the features that affect Formula 1 

performance predictions, by identifying and quantifying their effect. The research high-

lights the critical influence of features like qualifying position, grid position, and points, 

offering actionable insights. Moreover, key findings reveal that integrating weather data 

significantly enhances model accuracy, with environmental factors such as temperature, 

humidity, and rainfall playing a crucial role in performance. 

This study aims to help the stakeholders who seek a deeper understanding about the pre-

dictive process and the relative merits of different modelling techniques in the context of 

Formula 1. By bridging the gap between traditional statistical methods and modern ma-

chine learning approaches, this study contributes to the growing field of predictive ana-

lytics in motorsport, paving the way for more precise and adaptive strategies, interesting 

for teams, investors, and analysts. 

 

Myrotheou Sofia 

17/01/2024 
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1 Introduction 

Formula 1 (F1), often considered the pinnacle of motorsport, is a global phenomenon 

renowned for its high-speed competition, use of state-of-the-art technology, and elite 

drivers. Formula 1 has changed significantly. Since its humble beginnings in 1950 with 

the Formula One World Championship, F1 has evolved significantly. Everyone is aware 

of the progress. The evolution came not only in terms of technical innovation and safety 

but also as being a global sporting brand and business. Formula 1 is a phenomenon known 

nowadays to all. The sport's dynamic nature and complex data at hand present a unique 

blend of predictability and unpredictability. 

 

In recent years, especially the last decade, the intersection of data science and motorsports 

has accelerated. Many data scientists are attracted to the field of Formula 1, since it stands 

out as a sport that collects a wealth of real-time data. The availability of increased vol-

umes of data, additionally with historical metadata, has spurred major advancements with 

regards to sports analysis, enabling teams to predict race outcomes, track positions, and 

optimize strategies (Heilmeier, Graf, et al., 2020). Nevertheless, the area remains still 

underexplored.  

 

Beyond the team themselves, accurate predictions significantly impact a wide variety of 

stakeholders, including investors, team managers, and owners (Heilmeier, Graf, et al., 

2020). In addition to that, the sports betting industry with accurate predictive models can 

hold substantial financial value, with the beneficiaries to be bookmarked, bettors, fans, or 

commentators (R. P. Bunker & Thabtah, 2019).  

 

Predicting Formula 1 race results accurately is still a difficult task, even with the wealth 

of data available today. This issue of accurate predictions comes from the convergence 

of multiple and complex variables, such as car design, driver skill, and external factors 

like weather conditions. These variables additionally depict usually non-linear relation-

ships of the data. 
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Despite the implementation of traditional statistical models for sports outcome predic-

tions, their accuracy frequently suffers due to their inability to accurately represent the 

complexities of the data. Emerging techniques, such as artificial neural networks (ANNs), 

demonstrate promise because they can process large datasets and adapt to complex pat-

terns. However, their potential in Formula 1 remains underexplored, as the whole area 

does (Van Kesteren & Bergkamp, 2023). The effect of the weather data is still to be fully 

explored as the whole area.  

 

Among the findings of the research is the power of ensemble models. Among the four 

models used, the two ensemble models were the most accurate ones. Additionally, the 

new finding this research offered is that the effect of the weather is not as great as it 

thought. Even though the addition of weather data improves the accuracy of all four mod-

els, and along with it the generalization since feature selection was applied, as a measur-

able effect it is not as important as the driver’s and the team's performance. Its overall 

effect comes secondary when compared to driver and team performance.  

1.1 Problem Statement 

 

The complex dynamics and non-linear interactions of Formula One races are frequently 

not well captured by traditional statistical models used to forecast race results. Advances 

in machine learning, particularly with the neural networks, offer new opportunities for 

improved accuracy. In addition to ANNs the ensemble models gain ground substantially. 

Nonetheless, application on predictive modelling in motorsports and especially F1 re-

mains underexplored. An issue noticed is the limited number of studies addressing the 

integration of weather data and measuring their impact on predictions. 

 

The goal of this research is to methodically review existing predictive models in Formula 

1. Next, it aims to develop a strong predictive algorithm for forecasting the drivers posi-

tions in each race. Traditional statistical models are useful, yet they frequently lack pre-

cision in capturing the complex, nonlinear dynamics of motorsports and, in the extent of 

the F1 races. Since the importance of all factors is stated, this study aims to determine the 



  -13- 

most significant factors influencing race outcomes by measuring the influence of weather 

on the accuracy of predictions made by various models. 

 

Moreover, this study, by leveraging historical data (2014–2023) and environmental vari-

ables, such as temperature, humidity, and rainfall, aims to identify key predictors of race 

outcomes and evaluate the performance of various predictive models. The findings aim 

to provide useful information for teams, investors, and other stakeholders while contrib-

uting to the broader field of predictive analytics in motorsport. 

 

1.2 Research Questions 

 

First and foremost, the question of this research to focus on Formula 1 stems from the 

personal liking of the author. More specifically, the following Research Questions guide 

this study: 

1. Review existing predictive modelling approaches in sports analytics in general and 

specifically in motorsports. This question was raised in order to identify the models used 

in the area, their strengths and weaknesses and find the most appropriate ones to use in 

this research 

 

2. Analyse the significance of various features in influencing prediction accuracy and the 

extent to which they affect the results. This next question was raised because the most 

important question when it comes to predicting the outcome of any sport race or match is 

the factors that influenced the outcome. Discovering the features that contribute to the 

outcome is crucial to understanding the sport in general. Moreover, there is the forever 

question in Formula 1 of how much the weather influences the outcomes, a question try-

ing to be measured in this research.  

 

3. Develop and test models that can reliably predict the finishing positions in Formula 1 

races. This question is the last step in this research. The conclusion of the analysis is to 

model a predictor able to rank accurately the final positions in a race outcome.  
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1.3 Scope 

 

This research uses a dataset spanning 2014–2023. For the seasons 2018-2023, there are 

additional weather data. The scope of this research revolves around investigating the ef-

ficacy of various machine learning models. These models are trained to accurately predict 

race outcomes. 

 

Moreover, by incorporating weather data (2018-2023), the study searched for the role of 

weather in improving the model’s performance. Another part of the research concerning 

the weather is the extent to which these variables affect the predictions and the extent to 

which weather plays a role in the final ranking of the drivers. 

 

Lastly, it is reported that the findings provide useful insights for F1 teams and data scien-

tists. Moreover, contributing to the broader field of predictive analytics in sport affects 

other stakeholders such as investors. 
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2 Background 

In this chapter of the dissertation, all the methods and algorithms used to come to results 

and conclusions will be explained. Additionally, the most relevant works from the exist-

ing literature will be summarized. 

 

In general, the research showed a variety of papers concerning sports prediction methods, 

with basketball being the most “famous” sport choice for research. However, it was lack-

ing when it came to motorsports, especially in Formula 1. For the purposes of this disser-

tation, existing research concerning NASCAR analytics was used to extract the infor-

mation needed for Formula 1, in addition to the few papers researching specifically For-

mula 1. 

2.1 Data Mining and Machine Learning 

 

By combining techniques from database systems administration, Machine Learning 

(ML), and statistics, Data Mining (DM) aims to identify and extract significant and mean-

ingful patterns within data. Additionally, its aim is to identify relationships from large 

datasets (Han et al., 2011). Classification, regression, clustering, and association rule 

learning are the methods used in Data Mining (Müller & Guido, 2017). 

 

Data Mining and Machine Learning use mostly the same algorithms. However, their end 

use is different. Compared to Machine Learning, Data Mining uses the same algorithms 

to find patterns, trends, and relationships in data. Its primary goal is the discovery of 

hidden knowledge (Han et al., 2011). Among its methods mentioned before, the most 

famous data mining techniques, used in sports analytics are clustering, classification, and 

regression, and thus these methods are explained in more detail.  
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On the other hand, Machine Learning uses the same algorithms to learn from the data. 

The models are trained and then can make predictions or decisions without necessarily 

being explicitly programmed to do so. Using the same methods, classification, and re-

gression, its primary goal is predictive analysis (Watt et al., 2016). Additionally, Machine 

Learning can use reinforcement learning (Andriy Burkov, n.d.) but it was not used in this 

dissertation, thus not mentioned further in this Chapter.  

 

To sum up, the models explained and used in this dissertation are Classification and Re-

gression. Both methods are used for knowledge discovery and predictive analysis. Mean-

while the Clustering methods is used mainly in preprocessing steps, in knowledge dis-

covery. With the  mentioned techniques, Data Mining enables the discovery of trends and 

insights within data (Van Kesteren & Bergkamp, 2023) and it categorized into three 

stages. First the data preparation, then model building, and finally the results interpreta-

tion. These stages are also used in this research. 

 

The mentioned methods mainly use statistical models. These statistical models are math-

ematical representations that describe relationships between variables in given data(Watt 

et al., 2016). There are multiple reasons, why these ‘old’ statistical models are still in use. 

Firstly, their evolution has influenced the data-driven modelling, using historical data to 

find the relationships. Moreover, their effectiveness has widened their use. Lastly, they 

are used as the foundation for more complex algorithms(Grover & Mehra, 2008).  

 

Now that Data Mining and Machine Learning as concepts and as methods used are clearly 

stated, a clear distinction between classification and regression is needed. The reason that 

both are modelling techniques in use is that they are used for different problems. Both are 

the two primary supervised learning techniques, used in predictive modelling.  

 

Supervised learning is a paradigm, used to mention models that is trained on labelled 

dataset, where each input X corresponds to output Y (Watt et al., 2016). This technique 

allows the algorithm to train and then predict the target value for new unseen data(Han et 

al., 2011). Supervised learning has great application in business environments (Shmueli, 
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2010). Supervised learning comes in contrast with unsupervised learning, the method us-

ing unlabelled data. Unsupervised learning is further analysed in the clustering section. 

 

Classification and Clustering, being supervised learning methods, is now clear rely on 

labelled data. So, what is their difference? Their output differs, in classification we have 

discrete values as outputs, while in regression, continuous (James et al., 2017). By dis-

crete values, the values representing separate items are included. Discrete values can be 

counted individually. These values are typically represented by integers. On the other 

hand, with continuous values, measurements that can take any values in any range are 

included. While continuous values are not countable, they are measurable and are usually 

represent with fractions or decimals.  

2.1.1 Classification 

 

Classification is a method, as it was mentioned above, of supervised learning, thus pre-

dicting the categorical label of new data, based on patterns learned from already labelled 

datasets. The trained model assigns the class label to previously unknown- unseen data 

(Black et al., 2023). Among the many classification modelling techniques, the most com-

mon methods for classification include decision trees, k-nearest neighbour, Support Vec-

tor Machines (SVM) and naive bayes  (Andriy Burkov, n.d.). 

 

When it comes to classification, the models distribute the inputs into distinct groups 

named classes, thus the name classification: the separation of data into classes. A widely 

mentioned example among data scientists is identifying whether an email is 'spam' or 'not 

spam' (Han et al., 2011). In the area of sports prediction, there are studies, that are also 

presented in this dissertation, where the classification model is used. In these cases the 

models can have outcomes, such as win or lose. The classification between two options 

is called binary classification. However, classification can have more than just two out-

comes, for instance the options in win, tie, or lose. 

 

Support Vector Machines (SVM) 
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Support Vector Machines (SVMs), traditionally used for classification, are supervised 

learning models that can however be used for both classification and regression tasks 

(Andriy Burkov, n.d.). Concerning the regression use of it, they will be analysed later in 

this section. 

 

With regards to the classification task only, the primary goal of SVM is to find the optimal 

hyperplane that separates data points of different classes in a high-dimensional space 

while maximizing the margin between the classes (Müller & Guido, 2017). The output of 

the model is different classes for the data. 

 

Maximizing the margin is one of the SVMs' primary characteristics, one of its key factors. 

SVMs aim is establishing a decision boundary that has the maximal possible distance. 

This boundary is the so-called margin, between the closest data points from each class. 

Support Vector Machine get their name for the fact that the algorithm utilizes the data 

points, that are the closest to the said margin. These points are also known as the support 

vectors (Black et al., 2023; Watt et al., 2016). By focusing on these points, the support 

vector, this algorithm, can thus set the maximal possible margin and ensuring that this is 

the optimal one.  

 

Another important key feature is that they can also handle non-linear data. The separating 

boundary does not need to be a line. Even though they were first use for linear separation 

it is not necessary. Using kernels, for example the polynomial of the famous RBF (Radial 

Basis Function) SVM can handle and separate nonlinearly mapped data (Watt et al., 

2016). The kernel is nothing more than mathematical formulations used to transform the 

data.  

 

SVMs even though as a model is old, they are still widely use. The reason for this is that 

they can very effectively work on high-dimensional spaces and finding hyperplanes. Ad-

ditionally, they are considered to be robust to overfitting (Watt et al., 2016). The use of 

SVMs is less common compared to decision trees and ensemble methods (R. Bunker & 

Susnjak, 2022). 
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Bayesian 

 

Another model that fits under the category of classification is the Bayesian model. The 

Bayesian model is using the probabilistic framework of bayes to predict / determine the 

category or rank based on the features (data) provided (Andriy Burkov, n.d.). The Bayes-

ian models are built on the bayes theorem and assume that the features are conditionally 

independent. Using this theorem the Bayesian models estimate the likelihood of a data 

belonging to a particular class.  

 

Decision Trees  

 

Another famous classification methods are the decision trees. It is a common method and 

powerful. Decision trees pose questions at each node and then partition data into subsets 

based on feature values, mimicking a tree-like model structure (Han et al., 2011). The 

nodes represent features or questions, the branches the outcomes and the leaves the final 

prediction, decision, the class the data belong to.  

 

Among the advantages of these models are their interpretability. Decision  Trees offer 

simple yet powerful insights into the data. They are versatile and act like a white box, a 

model that is easily interpreted (Han et al., 2011). Additionally, they are fast (R. Bunker 

& Susnjak, 2022). Moreover, they are frequently chosen by analysts because they can 

handle non-linear relationships effectively and they require minimum preprocessing since 

they can work with raw data, without normalization or scaling. Another important ad-

vantage is that they can handle both categorical and numerical data (Watt et al., 2016) 

(Han et al., 2011). 

 

Despite their significant advantages, decision trees tend to be prone to overfitting. This 

happens if the model becomes too complex and deep. Also, they are biased towards small 

chances in the dataset. Lastly, they can become computationally expensive when dealing 

with large dataset (Han et al., 2011).  
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All these disadvantages of Decision Trees led the scientist in search of a better solution, 

but while keeping of the important advantages of the said structure. This need led to the 

use ensemble methods such as random forests (Han et al., 2011). Ensemble models, com-

bine multiple models to improve prediction accuracy and improve generalization. The 

accuracy of these ensemble models, the committees of models, is higher.  

 

Random Forests 

 

From the various Ensemble Methods The Random Forests specifically combines all the 

advantages of decision trees, without carrying the load of its disadvantages (Han et al., 

2011). With the ensemble techniques one can retain the interpretability while at the same 

time boosting accuracy (R. Bunker & Susnjak, 2022).  

 

More specifically, Random forests are an ensemble learning method that aggregates pre-

dictions from multiple decision trees. As an aggregated method, an ensemble method, 

they combine outputs and generalize better than their cousins, decision tree models. The 

model can generalize through majority voting (for classification) or averaging (for regres-

sion). Consequently, random forests enhance predictive accuracy and reduce overfitting 

(Han et al., 2011).  

 

In sports predictions, random forests can combine features like the player’s skill, team 

strategy and historical data to predict outcomes with relative high accuracy. Additionally, 

these algorithms including Random Forests and Boosting algorithms, are frequently used 

due to their robustness against overfitting. Moreover, in (R. Bunker & Susnjak, 2022)  

variants like CART (Classification and Regression Trees) and Logistic Model Trees 

(LMT) are noted for high accuracy in sports like American Football and Basketball, re-

spectively. 

 

2.1.2 Regression  

 

Regression is another old statistical method, used to examine the relationship between a 

dependent variable and one of more independent variables. It enables the user to identify 
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relationships among multiple factors and predicting continuous outcomes based on the 

input (Schneider et al., 2010). Regression is of many types, the ones discussed in this 

paper include - Linear Regression, Lasso Regression, Support Vector Regression, Ridge 

Regression, Polynomial Regression (Tatachar, 2021). As stated above, in regression, the 

model predicts continuous numerical outcomes, such as forecasting house prices based 

on features like size and location(Han et al., 2011). In the context of sports predictions, 

continuous values can be predicted times gaps or ranked positions. 

 

Linear Regression 

 

There are many forms of regression, for example the linear regression. Linear regression 

is a technique used to predict a continuous target variable. its main goal is to model the 

relationship between the predictor and the target fitting them on a straight line (Watt et 

al., 2016). The model finds the optimal values, by minimizing the sum of squared errors, 

which measure the differences between the predicted and the actual values. 

Among its strengths is the simplicity, the speed, how the coefficient provides insights to 

the direction of their relationship and the strength of the relationships. However, the 

model has its weakness. Primarily, it assumes linearity and normality and it is extremely 

sensitive to outliers (Watt et al., 2016).  

 

A regularized version of it, is the Ridge Regression. Ridge Regression, also known as 𝐿2 

regularized regression, is a linear regression technique that addresses multicollinearity in 

datasets by introducing a penalty term to the ordinary least squares cost function. (Müller 

& Guido, 2017), (James et al., 2017). It is particularly effective when the predictor vari-

ables are highly correlated or when the number of predictors exceeds the number of ob-

servations. It ensures robust predictions in high-dimensional datasets. In sports prediction 

it can be useful to predict and athletes race times.  

 

Logistic Regression 

 

The logistic regression is another method.  This kind of regression is often considered a 

classification method under a different name, however for the text’s continuity it is pre-

sented here. The logistic regression is valued for its reliability and computational 
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simplicity. Logistic Regression, by contrast to the rest of the regression n methods, is 

widely used mainly for binary classifications. As mentioned above, binary classification 

is a type of assigning data into just two classes- groups.  For instance, it could be used in 

win/loss scenarios in sports. 

 

 Its simple implementation and its ease in understanding both the process and the results, 

make it a valuable tool. Logistic regression is deemed as a valuable method for under-

standing the influence of different factors on match outcomes (R. Bunker & Susnjak, 

2022) . These characteristics of the model, have solidified Logistic Regression as a foun-

dation in predictive modelling in sports area, especially when the analysing data call for 

binary outcomes  

 

Support Vector Machines 

 

SVMs, are not only used in classification scenarios. These models can also be adapted 

for regression tasks too. through Support Vector Regression (SVR) the model identifies 

a hyperplane that minimizes the error. The aim is again maintaining a defined margin. 

SVR is preferred for being particularly effective in high-dimensional spaces. Addition-

ally, when the number of features exceeds the number of samples again, they are ex-

tremely effective.  

The model in general, like in the classification scenario, balances well the trade-off of 

bias and variance and thus providing robust predictions. 

 

Decision Trees  

 

Decision Trees as algorithm can be used for regression tasks too. They can successfully 

support both classification and regression tasks (Han et al., 2011; James et al., 2017). 

They are used to predict a continuous target variable, by recursively splitting the data. 

The goal is to model the relationship between the input and the continuous output by 

partition the data to regions, where each region is as similar as possible.  

Among the advantages of using Decision Trees for regression is that they are easy to 

interpret, since the tree structure is easy to visualize and humanly understand it. 
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Additionally, it supports nonlinear relationships and lastly, as mentioned in the classifi-

cation part the data can be used raw. There is no need for scaling and normalization.  

Among the disadvantages, as mentioned above, is the potential risk of overfitting with 

trees too complex and deep and the sensibility to minor changes, since they can change 

the tree a lot.  

As an extension of the Decision Trees, the ensemble model of random forests can apply 

the same principles they did on the classification task to continuous data, making it a 

versatile tool for regression tasks. 

2.1.3 Clustering 

 

While classification and regression are supervised techniques, clustering is not. As an 

unsupervised method, the model is trained on unlabelled data. In other words, the model 

is given data without instructions about the output and the target, and the goal of the 

algorithm is to find patterns, structures, and relationships (Watt et al., 2016).  

Clustering’s goal is to group data objects into clusters, meaning groups based on their 

similarity. The model’s goal is to ensure that the data points within each cluster are similar 

to each other and dissimilar to the rest of the data. This method is useful to discover 

patters, and in this dissertation, it was used like so. 

 

K-Means 

 

K-Means is a widely used unsupervised learning algorithm designed to partition a dataset 

into k distinct clusters. It is an iterative algorithm that groups data points based on their 

similarity and assigns them to clusters, minimizing the intra-cluster variance(Han et al., 

2011). 

 

As a process K-Means first select the k initial cluster centroids randomly or using prede-

fined heuristics. Then, the model assigns each data point to the nearest cluster centroid 

based on a distance metric (e.g. Euclidean distance). Then come the update. It recalculates 

the cluster centroids as the mean of all data points assigned to each cluster. Finally, it 

repeats the assignment and update steps until centroids stabilize or a predefined number 
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of iterations is reached(Han et al., 2011). This repetition of the steps makes K-Means an 

iterative method. 

 

K-means are used due to their simplicity and computational efficiency. Additionally, it is 

a method easy to implement. These reasons make K means a preferable choice for ex-

ploratory data analysis. Moreover, it is scalable and flexible. 

 

On the disadvantages of the method, one can include the need for predefined k, number 

of clusters. Additionally, it is sensitive to a poor initialization, which can lead to subopti-

mal clustering results. Moreover, K-Means is sensitive to outliers, as they can signifi-

cantly distort cluster centroids. 

 

K-Means clustering has significant applications in sports analytics, particularly in seg-

menting players, teams, or events based on performance or other metrics. Clustering play-

ers based on attributes such as speed, stamina, and skill levels can help coaches devise 

training strategies tailored to specific groups. Teams can be grouped based on perfor-

mance metrics like win rates, goal differentials, or possession statistics to identify patterns 

and competitive advantages. In sports like football or basketball, clustering game events 

(e.g., shots, passes, turnovers) can uncover tactical insights and improve strategic plan-

ning. By analysing fan behaviour data, K-Means can cluster fan segments for targeted 

marketing campaigns or stadium seating arrangements. 

2.1.4 Data Prepossessing  

 

Data preprocessing is an essential and pretreatment step in the data analysis and machine 

learning method. It is usually called a pipeline. It involves transforming raw, sometimes 

unstructured, data into a clean and structured format. This happens because models need 

a correct format of data that suitable for analytical tasks. This process includes several 

key operations. 

 

Data preprocessing includes the step of data cleaning. This is usually the initial step. 

This step addresses the problems of missing values, correcting errors, and removing 
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inconsistencies, when they exist in the data. Data integration is another critical step of 

data preprocessing. The analysts, in this step of the preprocessing, combines data from 

multiple sources. At the same time, the focus is also in resolving discrepancies in naming 

and additionally in eliminating redundancies. These two preprocessing steps’ goals are to 

improve data quality. This happens to ensure the reliability and accuracy of subsequent 

analytical and predictive models. 

 

In addition to the first two steps, another preprocessing task is the data transformation. 

Data transformation converts raw data into suitable formats for analysis. In this step often 

normalization and discretization are included. The first process of the two is the scaling 

of data attributes to a specific range (e.g., [0, 1]). On the other hand, discretization, sepa-

rates into groups continuous values into categorical ranges. For example, discretization 

can convert the variable "age" into labels like youth, adult, and senior (Han et al., 2011). 

These transformations make multi-level abstraction easier, which in its turns makes data 

mining and interpretation of the output more effective.  

 

Finally, feature extraction plays a crucial role in choosing the most pertinent attributes 

for each problem, or each analysis. There are various techniques that can be used to select 

these “most important feature” and to determine the most useful variables. It is important 

to note that data reduction methods aim to minimize the dataset size without compro-

mising the quality of the outcomes. When successfully achieving this, it is ensured all the 

information needed is retained. 

 

All the steps mentioned above ensure that raw data is prepared in a way that optimally 

supports complex analysis and any algorithm the analysts wish to implement. 

 

Correlation analysis and Mutual Information 

 

When building predictive models for sports, such as Formula 1, both correlation analysis 

and mutual information are crucial in the feature selection process. Additionally, they 

play a very important role in understanding the relationships between variables. These 

two techniques complement each other in identifying critical features, both linear and 
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nonlinear and improving model accuracy. For this research they were part of the feature 

extraction step. 

 

Correlation Analysis 

 

Correlation analysis is a statistical method that was used to get the most important feature 

for making accurate prediction. It evaluates the strength of the linear relationship between 

the variables.  Simply put, correlation analysis measures the statistical relationship be-

tween two variables, the change in one variable due to the change of another.  

 

This analysis finds if there is an existing relationship between two variables. It indicates 

both the strength, how strong two variables are related and direction, positively or nega-

tively of the association of two variables. By positive correlation it means that both are 

moving in the same direction, one increasing the other does too, and by negative it means 

that when the one increases the other decreases.  

 

The two most common measures used in Correlation Analysis is Pearson's correlation 

and the Spearman’s rank correlation. The Pearson’s coefficient for linear relationships 

measures the linear relationship between two continuous variables. The Spearman's rank 

correlation measures any monotonic relationships and is used mainly when the data do 

not follow a gaussian distribution(Rovetta, 2020) . 

 

Mutual Information 

 

Mutual information was also used in the feature extraction part. Mutual information was 

additionally picked in this research to identify non-linear relationships. Since sports pre-

dictions includes many complex relationships, correlation analysis was not enough on its 

own.  

 

Mutual information measures the quantity of information obtained about one random var-

iable through another. It measures the reduction in uncertainty of one variable given 

knowledge of the other. With this method, it manages to capture both linear and nonlinear 
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dependencies. This metric is valuable in the process of feature selection as mentioned 

above. The importance hides in helping to identify variables that share significant infor-

mation with the target variable(Belghazi et al., 2018). 

 

To compare these two and discuss as to why we need them both it is important to note 

that while correlation analysis is efficient for identifying linear relationships it is not 

enough. Mutual Information can identify nonlinear patterns that Correlation analysis 

might have overlooks, making both essentials. Thus, both simple-linear and complex-

nonlinear relationships are successfully considered when these methods are combined 

during the feature extraction step. The inclusion of both the above measures leads to re-

liable predictions since the variables affecting the outcome are successfully identified. 

Finally, the use of those two measures can reduce overfitting and thus improving the 

model’s interpretability, enhancing its predictive accuracy. 

2.1.5 Evaluation Metrics 

 

It should be highlighted that performance metrics are different from loss functions. Loss 

functions show a measure of model performance, they are used to train a machine learning 

model (using some kind of optimization like Gradient Descent), and they are usually dif-

ferentiable in the model’s parameters. Model performance metrics on the other hand, are 

used to monitor and measure the performance of a model usually after training, and don’t 

need to be differentiable (Plevris et al., 2022). 

 

Evaluation metrics are essential to assess the performance and the effectiveness of statis-

tical or machine learning models. It is important to note that rarely one measure is enough. 

By using different metrics for performance evaluation, one can improve the overall pre-

dictive power of the mod (Plevris et al., 2022).  These metrics provide valuable insights 

to the reliability of the predictions. For the regression tasks such as the one in this research 

the most important metrics to compare the performance of the models are the Mean Ab-

solute Error, the Mean Squared Error, and the R squared.  

 

Mean Absolute Error 
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Mean Absolute Error (MAE) is a metric used to evaluate the accuracy of a regression 

model. It corresponds to the average (mean) absolute differences (error) between the pre-

dicted values against the actual values. It uses the 𝑙1-norm loss. The metric provides a 

simple measure of model prediction error in regression tasks. MAE is less sensitive to 

outliers compared to metrics like Mean Squared Error. The MAE is estimated of 𝑛 num-

ber of observations and corresponds to the difference in the actual values and the pre-

dicted as the following formula explains.  

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

Where: 

𝑦𝑖: Actual values 

𝑦̂𝑖: Predicted values. 

𝑛: number of observations 

 

In general, it is used to provides a clear and intuitive measure of the average error. It is 

easy to understand and additionally, it is a metric robust, like mentioned above, a measure 

less sensitive to outliers, especially compared to Mean Squared Error 

 

Mean Squared Error 

 

Mean Squared Error (MSE) is another metrics used in evaluation regression tasks. It 

measures the average difference of the squared values between the predicted and actual 

values. This way this metric gives an emphasis on larger error, since it is squaring them. 

The formula below explains the metric (Tatachar, 2021).   

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 −  𝑦̂𝑖)

2

𝑛

𝑖=1

 

Where:  

𝑦𝑖: Actual values 

𝑦̂𝑖: Predicted values. 

𝑛: number of observations 
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Even though the measure squares the error is widely used, because it magnifies even the 

significant deviations. This exaggeration of the errors the models makes, it makes the 

metric ideal to point out the larger errors, which are not desirable in any predictive model.  

 

R squared 

 

The last metric used in this research is the R-Squared (𝑅2) or the coefficient of determi-

nation. This metric measures the proportion of variance in the dependent variable that is 

explained by the independent variables. In these cases, if R 2 is calculated as the ratio of 

the variance explained by the model to the total variance used mainly in nonlinear regres-

sion (Plevris et al., 2022) 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
 

Where:  

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙: Sum of squared residuals 

𝑆𝑆𝑡𝑜𝑡𝑎𝑙: total sum of squared  

 

The used of 𝑅2  is to measure the goodness of fit of the model to the data. It evaluates 

how well any model fits and captures the variability of the target variable. However, 

𝑅2 alone cannot stand as a metric, that’s why the other two metrics were used as well.  

 

In conclusion, the value of evaluation metrics is very important in assessing any model’s 

performance. Without being able to evaluate the performance of the trained model it is 

impossible to value its worth (Tatachar, 2021). 

Concerning the sports analysis domain and its complexities, evaluation is particularly 

needed. In this researcher’s regression task, each of the chosen metric provides useful 

insights into the model's predictive accuracy, error behaviour, and overall reliability. The 

combination of these metrics ensures a comprehensive understanding of each model’s 

strengths and weaknesses, leading to better predictions and clearer for the user insights.  
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2.2 Data Science for Sports Prediction: Applications 
and Challenges 

 

Sports Analytics is a recently risen area of statistical studies and rapidly growing. It in-

volves all the processes of data collection and data analysis in order to extract useful 

information concerning the sports industry (Sarlis & Tjortjis, 2020). The useful infor-

mation derived from the sports analysis can be the outcome. This is called sports predic-

tions, the area this dissertation is interested in. However, there are more areas of interests 

in sports analytic.  Statistical analysis can also be leveraged to interpret and optimise team 

strategies, as well as financial aspects of the sports. Additionally, Sports Analytics can be 

used to predict injuries and their impact (Papageorgiou et al., 2024b)(Sarlis & Tjortjis, 

2024). 

 

In sport analysis Data Mining (DM) and Machine Learning (ML) techniques are to pro-

cess historical performance data and players statistics to produce predictions and out-

comes that are in the interest of the analyst. In addition, they can be used to analyse con-

textual data, such as the weather. In general, they can be used to make predictions and 

forecast and additionally to extract useful insights  

 

Machine Learning and Data Mining both use many of the same algorithms. For the pur-

pose of this study, for Machine Learning, Multilayer Perceptron (MLP) and Artificial 

Neural Networks (ANNs) will be deemed as its algorithm while Classification, Clustering 

and Regressionn are deemed as data mining methods.  

  

Concerning making predictions about the final outcomes, in general, sports analytics can 

be categorized into three primary approaches (R. P. Bunker & Thabtah, 2017): 

1. Classification: These algorithms labels/assigned outcomes into different 

distinct categories based on the available historical data. In the context of 

sports predictions, classification is usually used to make predictions of two 

outcomes, the so-called binary classification, for instance like win or lose. 

Classification can also be used for more than two classes that mentioned 
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before, for example in win -tie-lose scenarios in match outcome predic-

tions.  

2. Regression: These algorithms model continuous variables and finally pre-

dict the outcome. The outcomes are continuous values in comparison to 

the distinct classes of classification. These methods can be used to forecast 

time gaps or position ranks. Generally, regression delivers detailed out-

come predictions. 

3. Clustering: In contrast with the two previous methods, clustering is an 

unsupervised method of modeling. Without being trained on labeled data, 

the algorithms try to find similarities. With clustering methods the sport 

analysts’ groups races, matches or athletes into groups based on similar 

performance metrics. This way the models aid the analysts in understand-

ing broader patterns. 

Concerning these three major categories of DM, which were analyzed in detail in previous 

sectors of the dissertation, are deemed on the more traditional statistical side, they thus 

rely mainly on historical data. Research indicates that models relying solely on historical 

data typically exhibit moderate predictive accuracy (Haghighat et al., 2013).  Neverthe-

less, early statistical methods, for example the famous regression analysis, have played a 

crucial role in uncovering patterns and identifying hidden knowledge.  

 

Their relatively poor performances lie in their inherent limitations. As statistical models, 

it is known that they provide just a simplified version of the hidden relationships. Conse-

quently, there is a risk of misleading results if assumptions are not correctly set (Matsui 

et al., 2021). However, their adaptability to different sports, keeps them still relevant (R. 

P. Bunker & Thabtah, 2017).  Another drawback is their sensitivity to minor dataset var-

iations. Due to the influence of data inconsistencies, the models can result in drastically 

different outcomes (R. P. Bunker & Thabtah, 2017).  

 

Nonetheless, the majority of the research on the statistical models already indicates the 

need to improve these models. In order for the improvement to happen, research empha-

sizes the importance of capturing suitable prediction models. These models should be 

capable of integrating both historical data and predetermined features to capture non-lin-

ear relationships and improve their accuracy (Haghighat et al., 2013). It is advocated that 
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the hybrid models that combine various methodologies can maximize the predictive po-

tential of diverse datasets. 

 

However, even when using just historical data, artificial neural networks (ANNs) have 

demonstrated improvements in accuracy. Because of their capacity to capture and repre-

sent complex nonlinear relationships, ANNs have been extensively used in predicting 

match results. In many cases, due to their nature, they outperform traditional models 

(Haghighat et al., 2013).  However, their primary drawback is their lack interpretability 

compared to other modelling approaches (R. Bunker & Susnjak, 2022).  

 

2.2.1 Relative Work – Model Examples 

 

In this section of the dissertation, the evolution of models, results and challenges of recent 

and older papers on predictive modelling are presented. It begins with the foundational 

DM methods and their evolution is explored in sports prediction, particularly motorsports 

like Formula 1. A comprehensive table, Table 1 (see page 33), is presented with the sum-

marization of the relative work for prediction. Additionally, there is the table for the fea-

tures important in making prediction in motorsport, Table 2 (see page 39). 

 

Making Predictions 

 

Research conducted by (Graves et al., 2003), one of the earliest found, uses a probability 

model, a Bayesian model, with a hierarchical framework. The model was used to predict 

outcomes in the finishing driver positions of a NASCAR race. Since it is a probabilistic 

model hypothesis testing took place. The null hypothesis was set as “random finish posi-

tions”. The model tested, concluded that there is strong evidence against the null hypoth-

esis making the alternative true, that there are not random final placements.  

 

In this research it was noted that both the past races and additionally the driver’s abilities, 

can assist in successfully predicting the outcome of future races, revealing that historical 

data can be leveraged. Additionally, these finding gives us information about features that 

can be used in Formula 1 predictions. Additionally, the study finds that the drivers have 
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different abilities in different tracks, extracting the “track specialists”, a point helpful in 

F1 too.  

 

Among the challenges faced in this research is trying to capture complex relationships, a 

challenge that can also be applied in Formula 1 as well as all the sports, since the data are 

usually both quantitative and qualitive. One other challenge faced here is the possible 

estimation biases that may occur when drivers participate in races with higher winning 

probabilities. Furthermore, the data scarcity challenge, which can limit the testing and 

thus the results is present, leading to limited generalization of the findings, a challenge 

encountered by many papers.  

 

Moving on to the next paper, even as early as early 2000s the famous Multi-Layer Per-

ceptron was used. This is not a traditional statistical model, but rather an artificial net-

work. The infamous MLP model is used in one of the earliest research projects on pre-

dicting sport outcomes. Kahn (Kahn, 2003) applied a MLP model with a 10-3-2 structure 

to classify home team win/loss outcomes using just five features. The model achieved an 

accuracy of 75%. 

 

Among the challenges of the study is again the data scarcity and quality problem. Addi-

tionally, this study came across other problems to, mainly with the nature of the MLP 

model.  The model’s complexity makes it prone to overfitting and the challenge in deter-

mining the optimal hidden layers as well as the choice of the correct hyperparameters. 

Lastly the computation cost and the training time it takes for the MLP was a challenge to 

the author.  

 

Another example of using MLP for predictions by McCabe and Trevathan (Mccabe & 

Trevathan, 2008)), who analysed data across football and rugby. An overall accuracy of 

67.5% was attained by McCabe and Trevathan, who used an MLP neural network. The 

model came with a 20-10-2 structure. The model showed transferability across sports. 

This was a substantial contribution to the field of sport analytics.  A major issue that the 

study brough to light however was a high level of dependency among features, compli-

cating the modelling process. 
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In the next study examined (Davoodi & Khanteymoori, 2010)  the authors employed a 

multilayer feed-forward neural network to predict finishing times of horse races. The 

prediction of finishing times leads to race standings. Davoodi & Khanteymoori (Davoodi 

& Khanteymoori, 2010) applied their ANN and achieved an average accuracy of 77%.   

The optimal model structure had eight input nodes, a hidden layer of 5-7 nodes, and a 

single output node and was trained with Backpropagation (BP). In their research they 

concluded that BP required longer training times and more parameter tuning, in contrast 

with the Levenberg-Marquardt (LM). Although the latter was the fastest in terms of train-

ing time it did not match BP's accuracy.  

 

Concerning the area of Formula 1 This study is especially relevant for, since similar fea-

tures, such as track conditions and race distances, play a significant role in the final race 

outcomes.  

 

Moving forward and in more recent years the research conducted by Hucaljuk & 

Rakipovic will be examined. (Hucaljuk & Rakipovic, 2011) tested models including 

ANN, Naïve Bayes, and LogitBoost, both traditional and the ANNs for Champions 

League football matches predictions. The researchers obtained a 60% accuracy, by utiliz-

ing domain-specific predictors. The best performing model to be the ANN, specifically 

trained with backpropagation. They used domain knowledge as a dimension reduction 

technique, however, they noted that was a challenge of their research, because using this 

method for dimension reduction could be time-consuming and too tailored to specific 

datasets.  

 

The next research examined is the one by (Blaikie et al., 2011). The paper, as part of 

conference proceeding investigates the effectiveness of artificial neural networks 

(ANNs) in predicting outcomes in two different leagues. The NFL and the college football 

games.  

Among the most important revelations of the study is that the model performed well for 

the NFL, however it did not yield similarly accurate predictions for college football. The 

dataset used consisted of over 200 games from both leagues. The implemented ANN 
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model achieved an average absolute error of 10–12 points per game for the NFL and 12–

14 points for NCAA Bowl Championship games. 

 

A "committee of committees" method was employed for the modelling part of the re-

search. By combining different predictions from multiple committees, the authors man-

aged to enhance accuracy. This way they contributed adding to the knowledge that the 

committees and the ensemble methods wield better results than training just one model.  

 

The study underlined that in order to model effectively, there is the need of reducing the 

number of statistics. This reduction can be achieved either by simplifying the dataset or 

by utilizing larger neural networks, that are in turn capable of identifying patterns in larger 

datasets. The researchers noted that using too many statistics can lead to data redundancy, 

with certain features making only a small contribution to predictions. Reducing the num-

ber of statistics to a manageable level while retaining critical information is another chal-

lenge that affects model accuracy.  

 

Finally, the models suggested in this research faced the risk of overfitting. The model 

seems to capture the noise in historical data rather than meaningful patterns, resulting in 

poor generalization to new data. 

 

The next study examined, was on javelin throwers by (Maszczyk et al., 2014). They found 

neural models to be significantly more accurate than their nonlinear regression models 

counterparts. The authors used data from 70 javelin throwers to predict throw distances. 

After identifying four significant predictive features using a correlation matrix and re-

gression analysis, then applied both a nonlinear regression model and a multi-layer 

perceptron (MLP) neural network with a 4-3-1 structure. The ANNs finally achieving 

an absolute error of 16.77 meters compared to 29.45 meters for regression.  

 

The results of this study, demonstrates the potential of ANNs in producing high-quality 

predictions. This way they contribute to optimizing sports-related decision-making, such 

as athlete recruitment and selection processes. Nonetheless, their comparison was in con-

trast to traditional nonlinear models. Given the inherent nature of sports data, with their 
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complex, nonlinear relationship, it should be assumed that the linear models should not 

be able to fully capture all the intricate relationships.  

 

The final research examined concerning making predictions is by (Papageorgiou et al., 

2024a). This research is about predicting the NBA’s player performance. Using data from 

seasons 2011-2021 the authors compared multiple models. Apart from high prediction 

accuracy on each players performance the research showed the optimal line up of the 

player contributing also to the evaluation of sports strategy area.  

 

In this research multiple models were trained on historical data of performance of the 

athletes and them compared with a comprehensive evaluation. This study concluded that 

the Voting Meta-Model was a robust choice, often ranking as the best or among the top 

performers, particularly due to its ability to combine the strengths of multiple models. 

Additionally, Random Forest also excelled in certain scenarios, particularly when han-

dling bigger datasets, which had complex interactions. These results also support the fact 

that ensemble methods are more effective.  

 

One of the challenges the authors faced was the NBA players’ performances, which can 

be deemed as highly volatile. This high volatility can be linked to several factors relevant 

to sports like player injuries, team dynamics, or even player fatigue. Moreover, another 

challenge was that despite the strengths of models like Gradient Boosting and Random 

Forests, they might overfitting in not properly tunes 

Table 1:  

Relative Work comparison table 

Authors Dataset Models Results Sport 

Graves et al 

(2003) 

91 races between 

1996-2000 

Tony Stewart 

 

 

Jeff Burton 

3.84 wins (pre-

dicted) vs 6 (ac-

tual)  

4.48 wins (pre-

dicted) vs 4 (ac-

tual) 

NASCAR 
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Kahn (2003) 208 games, 2003 

season 

MLP 75% accuracy NFL 

Davoodi & 

Khanteymoori 

(2010) 

100 races in Jan-

uary 2010 

ANNs 77% Horse Racing 

Hucaljuk & 

Rakipovic, 2011 

96 matches ANNs with BP 68% European 

Champions 

League. 

Blaikie et al 

(2011) 

Over 200 games ANNs Absolute Error 

of 10-12 points 

NFL 

Maszczyk et al. 

(2014) 

70 throwers Nonlinear re-

gression model 

 

MLP 

Absolute Error: 

29.45 meters 

 

Absolute Error: 

16.77 meters 

Javelin Throw-

ing 

Papageorgiou et 

all (2024) 

Seasons 2011-

2021 

Multiple models 

compared 

 NBA 

 

 

Evaluating strategies 

 

Moving on with the review of existing literature, another area of sports prediction is re-

viewed. This part is dedicated to the models for evaluating race strategies. Compared to 

the predicting outcomes, evaluation of strategies has more information on Formula 1. In 

recent years there were some important researched done to evaluate tire strategies for 

Formula 1 racing. However, due to lack of data concerning tire use and pit stops, tire 

strategy falls out of the scope of the dissertation, however the most interesting findings 

are listed below.  
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First, Heilmeier, Graf, et al’ research is reviewed. In this research (Heilmeier, Graf, et al., 

2020) the authors use Monte Carlo simulations to robustly evaluate the race strategies in 

Formula 1. This evaluation is conducted by accounting for probabilistic events such as 

accidents and full course yellow phases. Their model is used to identify the optimal strat-

egy. Moreover, the study identifies and models critical probabilistic factors, including 

starting performance, lap time variability, and pit stop durations. 

 

Another example of machine learning, specifically ANNs methods being used in sports 

predictions, are in the research by (Heilmeier, Thomaser, et al., 2020) . The research eval-

uates the strategy using the Virtual Strategy Engineer (VSE) and is specialized in Formula 

1. Among the most important findings of this paper are that the VSE, is able to make 

reasonable decisions and react to the particular race situation.  

 

The VSE method uses two ANNs to make the race strategy decisions, one for pitstops 

and the other for tire compound. The networks are trained on timing data from the six 

seasons from 2014 to 2019, with various filters applied to the data to remove irrelevant 

or noisy data. The VSE improves a race simulation's realism and can support a real strat-

egy engineer in his decisions (Heilmeier, Thomaser, et al., 2020). 

 

The most recent study found was by (Aguad & Thraves, 2024). In order to optimize the 

F1 pitstop strategy, they employed a model. Their model considers two drivers at a time 

competing in a race. Each driver deciding at each lap whether to continue on-track or to 

pit and switch tires. The tire option is one of the three available compounds. Their model 

allows for different features of uncertain event to be included for example yellow flags 

or randomness in lap times.  

 

The key findings of the study show that drivers' distinct objective functions conclude 

different race strategies. Players are more likely to take risks when they aim to maximize 

their chances of winning rather than the time difference with their opponent. Additionally, 

the study also finds that the probability of winning is increased by 15% when a strategic 

driver is up against an opponent who does not care about competition. Finally, yellow 

flags tend to increase the winning chances of the driver with the worst performance 
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2.2.2 Formula 1 Important Features 

 

Numerous studies stress the significance of feature selection in predictive modeling, es-

pecially when it comes to sports analytics. While not a standalone algorithm, feature se-

lection, selecting only a subset of the features, is used for improving model accuracy, its 

robustness and its generalization. (Blaikie et al., 2011). In predictive analysis there are 

significant variables/ features like teams and drive performance statistics, weather, or 

track data that often outweigh the sheer volume of the data (R. Bunker & Susnjak, 2022). 

To identify the critical factors influencing race outcomes in Formula 1, the following 

research where examined. The choice of researched were mainly researched concerning 

Motorsports.  

 

In the recent research from (Patil et al., 2023) several important determinants for points 

accumulation at the end of races were identified. To come to these results Patil et al. 

(2023) analysed data from the 2015–2019 seasons. Their work emphasizes how important 

is the need for detailed feature analysis when forecasting race outcomes. 

 

One clear indicator is the number of Laps Completed. This is a measure of race perfor-

mance and reliability of the driver and the car. Secondly, there is the feature of Laps 

Spent in Second and Third Positions. This feature indicates the consistency of compet-

itiveness during the race. A third important feature is the Average Pole Position, that 

reflects the starting grid advantage of the driver and its correlation with race results. 

Lastly, Tire Choices. This feature has made a more important impact especially when 

the intermediate tires under wet conditions were worn. This feature has been critical in 

strategy outcomes.  

 

The next study is by Pfitzner and Rishel (Pfitzner & Rishel, 2008). Several features were 

identified as important predictors of NASCAR race. Even though it is on NASCAR and 

not Formula 1, the findings of the papers are still relevant, thus mentioned here. Features 

like car speed, driver characteristics, team attributes, and performance in related races 

demonstrated strong relationships with the finishing ranking of the races. Specifically, 

factors including qualifying speed, pole position, practice times, points scored in the prior 

year, laps completed in the prior year, and the number of cars or drivers on a team were 
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positively correlated with race results. Simply put, the driver ranking, the performance 

streaks play this role into result prediction.  

 

The conclusions are indeed significant for Formula 1 too; however, their research was 

based on a small sample size (only 14 races), however the paper provides a robust frame-

work to analyse performance across different tracks.  

 

Silva and Silva (Silva & Silva, 2010) draw on the previous model by Pfitzner and Rishel 

and improved on it. They employed Spearman’s rank correlation coefficients and chi-

square tests to test the relationship of qualifying performance and previous race results 

with the final finishing positions. These tests were applied in F1 datasets and not in NAS-

CAR. The results showed that the driver qualifying position, and past race performance 

has a positive correlation with finishing position for the F1 data. Silva and Silva (2010) 

further highlighted that for F1, qualifying performance was the most reliable predictor, 

whereas NASCAR’s reliance on cumulative season performance  

 

The next study that was analysed presents an innovative ranking of Formula 1 drivers and 

teams to rank and to identify the best driver and find if their abilities affect the teams  

(Bell et al., 2016).  The model suggested here, really depicts how drivers perform against 

their teammates. The cross-classified multilevel model has potential to assess the im-

portance of a wide range of determinants and highlights that team effects were more sig-

nificant than driver effects, with this disparity increasing over time. Additionally, the im-

portance of team effects was reduced in wet weather and on street tracks. Comparing 

driver contributions to team contributions, they have concluded that the car is more im-

portant than the driver when it comes to race results. These results can be applied to this 

Formula 1 prediction models, keeping in mind that the features representing the driver 

are not important. 

 

Based on the model mentioned just before, by Bell et al., a Bayesian multilevel rank-

ordered logit regression model was constructed by (Van Kesteren & Bergkamp, 2023). 

Their research focused on the present F1 era, the hybrid era, with data from 2014-2021 

in contrast with the previous research, which focused on the whole the history of the sport 
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like (Bell et al., 2016). In their work they model individual race finishing positions, and 

the results were estimated using Hamiltonian Monte Carlo sampling with 8 chains of 1250 

samples each after 1000 burn-in iterations.  

 

According to this study the suggested model captures the data accurately, allowing for 

precise inferences about driver skill and constructor advantage. The results show that 

Hamilton and Verstappen are the best drivers in the hybrid era, and the top three teams 

(Mercedes, Ferrari, and Red Bull) clearly outperform other constructors before the 2021 

season (Van Kesteren & Bergkamp, 2023). Approximately 88% of the variance in race 

results was explained by the constructors 

 

Apart from the factors concerning the performance of the athletes and the teams, there 

are the external factors that the research notes as important. In this last part of the literature 

review finally, the impact of weather on the car’s performance has been reviewed.  

 

In the research conducted by Saleh Mousavi-Bafrouyi et al. ((Saleh Mousavi-Bafrouyi et 

al., 2021) it was highlighted that Air Temperature has the biggest impact on the wheel 

force distribution. In the research it is explained that with higher temperatures the front-

wheel force increases while the rear-wheel force decreases. This shift can lead to a shift 

in the balance of the car and alter its grip on the track. This fact is deemed extremely 

relevant for F1 predictions. Moreover, Humidity and Wind Direction influence the 

wheel performance, but their effect is to smaller extent. When looked at as a whole, these 

findings demonstrate the complex relationships between environmental conditions any 

cars performance (Saleh Mousavi-Bafrouyi et al., 2021). Motorsports and especially F1 

outcomes, as any car would get affected by these environmental issues too.   

 

In addition to the previous environmental characterises mentioned above, the temperature 

of the track plays an important role, especially when it comes to tire choices. According 

to the official Red Bull Racing website, the optimal conditions of the track for the tires 

are around 100°C. In hotter weather, tires functions well, however they might overheat 

fast and thus wear easily. On the other hand, in colder weather conditions, tires last longer 
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but provide less than the ideal track traction. In conclusion, Track Temperature is an-

other important environmental feature to consider.  

 

Finally, there is another ‘feature’ in sports that is nearly impossible to quantify. This fac-

tor is luck. The study by (Haque et al., 2022) signifies the presence of luck in competitive 

championship. This presence of luck highlights that the complex, nonlinear feature-based 

models outperform simpler ones in sports forecasting. The research introduces the skill 

coefficient phi φ. This statistical measure is a metric that quantifies the deviation between 

observed scores and those expected under luck, incorporating contextual variables, for 

instance home and away games. Using a Bayesian model with a Poisson distribution and 

random effects, the study tries to identify the balance between luck and skill. However 

interesting this research is luck is not taken into consideration here.  

 

Table 2:  

Relative Work important feature listing 

Research Sport Important Features 

Patil et al, 2023 F1 #laps completed 

#laps spend in 2nd and 3rd position 

Average pole position 

Tire choice 

Pfitzner & 

Rishel, 2008 

NASCAR qualifying speed 

pole position 

practice times 

points scored 

laps completed 

Silva & Silva, 

2010 

F1 qualifying position, 

past races performances (e.g. points and wins) 

Bell et al, 2016 F1 Teams affect more than drivers 

Van Kesteren & 

Bergkamp, 2023 

F1 Teams affect more than drivers 

88% of variance is explained by constructors 
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Saleh Mousavi-

Bafrouyi et al, 

2021 

Car Aero-

dynamics 

Air Temperature 

Humidity 

Wind Direction 

 

Haque et al., 

2022 

Various luck 

 

 

2.2.3 Research Gaps and Contributions  

 

In conclusion, both statistical models and ANNs are used in sports analytics. There are 

many papers examining sports strategies, many of which were not included in this re-

search since they fell out of the scope of this dissertation.  

 

Concerning making predictions there is an extended use of traditional statistical models, 

however ANNs and especially the famous MLP wield better results in most cases. How-

ever, in both cases the use of more complex data, for example to include weather, is noted, 

since sports prediction is not always about the skill of one player or the team.  

 

The first gap that was noticed in the research conducted was concerning Formula 1 and 

motorsports in general. First and foremost, there were not enough papers to review espe-

cially when it came to F1. There does not seem to be an area where sports analysis has 

been done extensively. There were quite a few concerning real-time data strategy predic-

tions, but the volume of papers on important features and predictions on performance was 

not enough. Most sport analytics focuses on team sports like basketball of football, with 

minimal attention given to motorsports and individual sports in general. 

 

Moreover, the prepares doing predictions, already noted the problem of the underutiliza-

tion of weather data. The existing studies rarely incorporate environmental factors despite 

their known influence. Lastly, there is significant limited application of predictive mo-

deming in formula 1. 
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3 Methodology  

In this chapter of the dissertation, first there is going to be a brief overview of the meth-

odology used. Next, there is going to be the data preprocessing part. At this subsection, 

the first part is going to be about the data cleaning. Handling missing values and removing 

possible outliers. Next there is the section of data integration. Merging the tables, resolv-

ing inconsistencies, and eliminating redundancies. Finaly there is the data transformation 

part. It includes normalization, encoding and aggregation. The last section of the meth-

odology is featuring engineering. It could be incorporated in the data transformation part, 

but since it is an important part of the dissertation, which features play an important role 

in formula 1 prediction, it was described separately.  

3.1 Methodology Overview  

 

As derived from the relative work review in previous sectors of the dissertation the out-

come of a Formula 1 race is influenced by a wide variety of factors. These factors include 

driver and team performance, as well as weather conditions. In addition to the factors just 

mentioned there are others that are not taking into account in this dissertation. For exam-

ple, there is the tire use, the team budget, luck and the athlete’s phycology or injuries. 

This dissertation follows the framework proposed by (Bunker & Thabtah, 2017).  

 

For this research, the data was sourced from the Ergast API, covering for the years 2014 

to 2024. The specific period was selected due to the significant changes in race regula-

tions and technology and to keep the car’s and teams’ regulation the same.  

 

This era is called ‘hybrid era’ and it starts with the introduction of the V6 hybrid engine 

in 2014. The previous years were the V8 era (2006–2008) and KERS period (2009–2013). 

Apart from the engine difference, 2014 came with major regulatory adjustments. For ex-

ample, there were important pit stop modifications (refuelling and safety measures), and 

an increase in the number of races per season that further influenced race dynamics. The 
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choice of the recent hybrid era was made for the research to be able to ensure data con-

sistency and captures the modern evolution of Formula 1 racing. 

3.2 Data Collection 

 

For this study, data was extracted from multiple sources, primarily the Ergast API and 

supplementary datasets from Kaggle. The analysis focuses on the years 2018 to 2023, as 

reliable historical weather data was only available for these years. Pit stop data, sourced 

from “racefans.net,” was available for 2018–2021, leading to two separate analyses: one 

incorporating pit stop information and one excluding it to evaluate feature importance. 

The datasets used include: 

• results.csv: Contains race results (driver, team, position, points). 

• circuits.csv: Includes details about race circuits (ID, name, country). 

• driver_standings.csv: Tracks driver standings across seasons. 

• constructor_standings.csv: Tracks constructors' standings across seasons. 

• qualifying.csv: Details qualifying session results (driver, grid position). 

• races.csv: Information on individual races (race ID, year, round). 

• drivers.csv: Information on drivers (ID, reference). 

• constructors.csv: Data on constructors (ID, reference). 

• status.csv: Status of race outcomes (e.g., finished, retired). 

 

Additionally, weather data for the season 2018-2023 was available and retrieved from 

Fast API. The data include:  

• Time: The timestamp for each observation. 

• AirTemp: The air temperature is in degrees Celsius. 

• Humidity: The relative humidity percentage. 

• Pressure: Atmospheric pressure in millibars. 

• Rainfall: A Boolean value indicating whether it was raining. 

• TrackTemp: The track surface temperature is degrees Celsius. 

• WindDirection: The compass direction of the wind. 

• WindSpeed: The wind speed in km/h or another appropriate unit. 

• Round Number: The corresponding race round in the F1 calendar. 
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• Year: The year of observation 

3.3 Data Preprocessing 

As mentioned before, preprocessing is a crucial step to get valuable results. In this dis-

sertation, the first step was to integrate from the existing tables. The data was already in 

a format, appropriate for use. Secondly, data cleaning took place, handling missing values 

and eliminating redundancies. Lastly, feature extraction was applied.  

3.3.1 Data Integration  

 

The first step on Data Integration was the construction of the results dataset. The results 

dataset was first turn from a csv file to a data frame. After keeping only the important 

information, features; thus columns, the final dataset consisted of 12 columns and 3,947 

for the 2014-2023 seasons. The columns were labelled as follows: ‘season’, ‘round’, ‘cir-

cuitRef’, ‘country’, ‘driverRef’, ‘grid’, ‘position’, ‘points’, ‘number_y’, ‘constructorRef’, 

‘status’, and ‘time’. The dataset contained both numerical and categorical data, as almost 

all the data frame used in this dissertation.  

 

To clarify the features, the suffix ‘Ref’ indicates a reference using a standardized abbre-

viation for names. For instance, ‘circuitRef’ provides an informal name for each circuit 

(e.g., ‘monza’ instead of the full name Autodromo Nazionale di Monza, or ‘baku’ instead 

of Baku City Circuit). Additionally, the feature ‘number_y’ represents the driver’s unique 

number assigned to each driver at the start of their career.  

 

Moving on, the circuits dataset was constructed and turned the information from a csv 

file to a data frame. The first addition to this dataset was the classification of circuits as 

either "permanent" or "street." This mapping was manually constructed and sourced from 

the official Formula 1 website. To be able to aid in this analysis, the classification was 

converted into numerical values, explained in the transformation part.  

 

The dataset consisted of 125 entries, for the data after 2018, and 204, for the data from 

2014 to 2023 season with the following columns: ‘season’ (numerical), ‘round’ 
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(numerical), ‘circuitRef’ (categorical), ‘circuitId’ (numerical), and ‘circuit_type’ (numer-

ical). This combination of numerical and categorical remains for all datasets.  

 

The next data frame analysed was the drivers dataset. This dataset consisted of 2,357 

entries for the seasons 2018-2023, while for the expanded 2014 to 2023 period there were 

4,131 entries. The dataset had the following columns: ‘season’ (numerical), ‘round’ (nu-

merical), ‘driver_name’ (categorical), ‘driverRef’ (categorical), ‘code’ (categorical), 

‘points_after_race’ (numerical), ‘pos_after_race’ (numerical), and ‘wins_after_race’ (nu-

merical). This combination of numerical and categorical features enabled a detailed ex-

amination of driver-related data. 

 

The next dataset analysed was the qualification data frame. This data frame had only 9 

columns and 9,815 entries in total. A preprocessing procedure step involved converting 

the Q1, Q2, and Q3 times from object format to numerical values. A custom function was 

deployed to convert the times of each driver into seconds. Then the best qualifying time 

for each driver was calculated and then selected to be added to a new column containing 

only the best times of the driver. This column was named "qualies_best_secs.". 

 

The final qualification dataset consisted of 2,297 entries for the 2018-2023 season, and 

3,931 for the 2014-2023 seasons. Both datasets consisted of the following columns: ‘sea-

son’ (numerical), ‘round’ (numerical), ‘driverRef’ (categorical), ‘quali_pos’ (numerical), 

and ‘qualies_best_secs’ (numerical). Here it important to note that it was observed that 

there was a slight difference in the entries of drivers and their corresponding best times. 

The handling of this difference is described on the following part. 

 

The constructor standings dataset was following. Minimal preprocessing was required 

for this dataset. It consisted of 1,150 entries for the 2018-2023 seasons and 1,979 for the 

2014-2023 season. It consists of the following 7 columns: ‘season’ (numerical), ‘round’ 

(numerical), ‘con_name’ (categorical), ‘constructorRef’ (categorical), ‘con_points_af-

ter_race’ (numerical), ‘con_pos_after_race’ (numerical), and ‘con_wins_after_race’ (nu-

merical). Again, there is the combination of both numerical and categorical data.  
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This dataset provided a straightforward structure for analysing the performance of con-

structors throughout the racing season, as the dataset contain information on the perfor-

mance of each constructor.  

Following up next is the races data frame. The final races data frame consists of 4 col-

umns and 125 entries for the 2018-2023 and 204 races for the season from 2014 to 2023. 

The entries’ summation number was double checked. The races from 2014 to 2023 were 

counted individually and then their sum was indeed verified to be 125 for the 2014-2023 

and 204 for the 2014 to 2023 season. The four columns were, raceId, circuitId, season 

and round. The verification was additionally checked from the official formula 1 site and 

additionally the sum of races for each season were calculated and then summarized to get 

to 125 races. The races for each season are as presented in the Table 3. 

Table 3:  

Races count per season

Season – year Races-rounds 

2014 19 

2015 19 

2016 21 

2017 20 

2018 21 

2019 21 

2020* covid season 17 

2021 22 

2022 22 

2023 22 

 

A comprehensive table with the all the features, columns, used in for the basic dataset is 

presented in Table 4. 

Table 4:  

Description of data variables 
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Variable  Description 

Season The year of the season  

Round The number of the round 

circuitRef_x The unique reference name of the circuit of the race 

Country The country that the race takes place 

draiverRef  The unique reference name of each driver 

Grid The starting position of the driver 

Position  The finishing position of the driver 

Points The points for won at each race 

Number_y The number of the driver on the car 

constructorRef The unique reference name of each constructor 

status  The finishing status of the race 

circuitId The unique ID number for each circuit 

Circuit_type The type (street or permanent) of each circuit 

Driver name The name (first name and surname) of each driver 

Code The three-letter code that each driver has 

Points_after_race The cumulative point of each driver after each race 

Pos_after_race The final position on the standings of each driver after the 

race 

Wins_after_race The cumulative number of wins for each driver after the race 

Quali_pos The position of each driver after qualification 

Qualies_best_secs The best time of the qualification for each driver in seconds 

Con_pos_after_race The constructors’ position on the standings for each construc-

tor 

Con_wins_after_race The cumulative wins for each constructor after the race 

 

Moving on with the data for the weather information were analysed. The weather data 

frame consisted of 11 columns. To be more specific, these columns were 'season', 'round', 

'Time', 'AirTemp', 'Humidity', 'Pressure', 'Rainfall', 'TrackTemp', 'WindDirection', 'Wind-

Speed', 'raceId’. This data frame contained 18,219 entries and included Formula 1-
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specific data, such as track temperature instead of the temperature in general. It was joined 

with other data frames using common keys like 'season' and 'round'. Additionally, there 

was the ‘Rainfall’ column which was a Boolean column. The issue is addressed later, on 

the transformation part of the dissertation.

The "Time" column, representing minute-by-minute race data, accounted for the large 

number of entries in this dataset. The table describing the feature of the weather dataset 

is presented in Table 5. 

 

Table 5:  

Description of weather data 

Variable  Description 

Time The minute-by-minute weather data for each race 

AirTemp  The air temperature on the race day 

Humidity The humidity on the race day 

Pressure The pressure of the atmosphere on the race day 

Rainfall The existence or not of rain on the race day 

TrackTemp The temperature of the track on the race day 

WindDirection The direction of the wind on the race day 

WindSpeed The speed of the wind on the race day 

 Round  The number of the round 

Season The year of the season 

raceId The unique ID of each race 

 

3.3.2 Data Cleansing 

 

For this part of preprocessing, the following decisions were made. Firstly, duplicate en-

tries for the "circuitRef" column were removed. After handling missing values in the "po-

sition" column (removing 321 non-finishers) and filling missing qualification times with 

0.0 (for the 23 missing values, approximately 1.16% of the dataset), the data frame was 

ready for further analysis. With regards to the qualification times, the column with the 
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best qualification time in seconds ‘qualies_bes_secs’, instead of 2297 rows it had only 

2268 rows. Approximately 1% of the data were missing. This was due to some drivers 

failing to complete their qualifying sessions, either because of, crash of mechanic failure, 

or due to penalties, or personal issues. Since there were a few missing values only and 

verifying that there were all due to not completing the lap, it was set 0.0. 

 

Concerning the weather dataset, when it was merged with the rest of the data, a small 

discrepancy of the data was noticed. It seemed that some rounds lacked weather data, and 

these missing entries (4.4% of the dataset) were excluded, since they could not be ran-

domly filled not with the average values since the weather conditions are unique. 

 

With regards to columns giving the same data and thus eliminating redundancies the col-

umns, ‘country.’ ‘driver_name’, ‘code’, ‘con_name', 'time’, ‘Time’ were eliminated. 

Since every circuit has a unique name and particularly its unique ID the column country 

was not useful.  Keeping the circuitRef give the same information. The driver_name and 

con_name were dropped since their ref names, driverRef and construcotrRef were kept. 

The ‘code’ column was also dropped for the same reason. Finally, the columns times were 

dropped since they do not give information to the predictive model but more to the data 

collection process.  

3.3.3 Data Transformation 

 

In this part, the data were transformed into a machine-useful way.  The first transfor-

mation that took place was in the circuits data frame. To use the knowledge whether a 

circuit is permanent or street it weas needed to transform them into numerical values. 

Since previous papers suggested that there tracks expertise, in this dissertation it was 

deemed wise to check whether the status of the circuit played a role. The permanent cir-

cuits were assigned the value 0, while street circuits were assigned the value 1. 

 

Next, on the drivers dataset, a new column, "driver_name," was created by combining the 

previously separate "forename" and "surname" columns. This provided a more compre-

hensive representation of each driver’s identity for analysis. 
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A K-means clustering algorithm was applied to classify track temperatures into cold, 

warm, or hot categories. The track temperature was selected since it was deemed more 

important than the atmosphere temperature. The ideal conditions were classified as 

"warm", as both cold and hot temperatures can negatively affect tire performance. These 

clusters were then labelled as follows: 2 for warm, 1 for cold, and 0 for hot. Following up 

there is the graph showcasing the three clusters that the track temperature was separated. 

It is clear from the figure that the ideal conditions were the smallest clusters, meanwhile 

the hot cluster seems to be the most populated and to have an extreme value too. The 

results are pictorially summarized in Figure 1. The clusters ere then named, 2 for the 

warm conditions, 1 for the cold and 0 for the hot conditions. 

 

Fig 1:  

Clustering Track Temperature 

 

 

K-means method was additionally employed in this dissertation to find the optimal num-

ber of timestamps to use for the weather information for each race. Th elbow method was 

used to determine the optimal number of time stamps. The depiction of the results is 

showed in Figure 2. 
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Fig 2:  

Elbow method to determine the optimal number of clusters. 

 

The number of timestamps used in each race for adding the weather is between 2 and 3. 

Adding more timestamps lead to redundancy.  Moving on there had come categorical 

columns that needed to be transformed into a more useful way. The columns 'circuit-

Ref_x', 'driverRef', 'constructorRef', 'status', were one hot encoded.  

3.3.4 Feature Engineering 

 

Before developing the models, in order to determine the feature that actually influenced 

the final position, the process of feature extraction was essential. This process helps to 

avoid overfitting and to improve accuracy of the model in forecasting the final rankings 

of F1 races. To determine the most important features, two methods were employed the 

correlation analysis and the mutual information analysis, to ensure that both linear and 

nonlinear dependencies will be revealed. The results of these two methods were compared 

to highlight the most important features. 

 

At this point it is deemed important to note that two different analyses were conducted. 

The first analysis, called modeling with basic dataset, was the one excluding the weather 

data. On the other had the enhanced dataset was used and the analysis included the 
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weather information. The choice of making two distinct analysis was made so the actual 

impact of these external factors needs to be highlighted.  

 

A correlation analysis was conducted first for the data without weather for the season 

2014-2023. The results of the analysis will be presented in a later part of the discussion. 

Concerning the methodology of implementing the method, the columns, 'country', 

'driver_name', 'code', 'con_name' to avoid redundancies. Additionally, the categorical col-

umns, 'circuitRef_x', 'driverRef', 'constructorRef', 'status' were encoded. The analysis was 

plotted using ‘matplotlib’ and ‘seaborn’ libraries. With the help of these libraries the re-

sults were visually prominent. The darker color highlighted the most important features. 

Specifically, the red color depicts the positive correlation while blue depicts the negative 

relationship between the two variables. The plots are presented in the Results Chapter. 

 

Moving forward with the analysis, the mutual information analysis took place. For this 

analysis the library ‘sklear’ was used. Specifically, the feature_selection part of it. The 

results of the relationship of each feature with the final points were sorted in descending 

order and then the top ten features were picked as the most influential features.  

 

Regarding the enhanced dataset, including weather and concerning seaosns 2018-2023, 

the same methods were followed. The columns to drop were the 'driver_name', 'code', 

'con_name', 'time', 'Time', 'TempLabel' to avoid redundancies, or using columns that are 

helpful only to the analysts. Then the same categorical columns were encoded and the 

same algorithms used. 

 

The only point to note is that there were some weather features, like Air Pressure and 

Temperature Cluster that were identified from the literature review but appeared less im-

pactful than expected. In general, the weather features appeared less impactful than ex-

pected, challenging some prior assumptions about the weight of weather data in race fore-

casting. 
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3.4 Models and Evaluation Metrics 

 

In this section of the methodology chapter of the dissertation, the models used for predic-

tions are outlined. Apart for the predictive models used the evaluation metrics are also 

briefly presented here. 

 

The selection of four models mentioned below was based on their abilities to handle the 

specific nonlinear characteristics of complex dataset, as well as the research goals in pre-

dicting racing position. Additionally, the research on the existing literature mentioned 

above as well as some additional reviews for the specific models. Each of the following 

model offers unique strengths Finally, the evaluation metrics that were chosen to ensure 

a whole assessment of each of the models' predictive performance and additionally aid in 

their comparison. 

3.4.1 Data Models 

 

First and foremost, it is crucial to remember that the problem at hand in this research is 

regarded as a regression problem. Predicting the final ranking of all 20 drivers at each 

rank is not a problem of assigning data into distinct groups, since there should be 20 

groups, each group having one driver at each race. 

 

Since the problem at hand is a regression problem, the Random Forest Regressor was 

the first choice. This model is an ensemble method, which combines multiple decision 

trees, offering a more robust performance for non-linear relationships (Smith et al., 2013), 

the relationships hidden in the data for F1 races. This power of capturing non-linear rela-

tionships, its accuracy, and interpretability were the main reasons for choosing this model, 

and it exists even without explicit feature engineering (Rodriguez-Galiano et al., 2015). 

Additionally, the model was encountered in many different papers for forecasting. More-

over, the RFR seems also to be able to outperform regression trees and support vector 

machine (Rodriguez-Galiano et al., 2015) 
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The next model chosen was the Ridge Regression model. The traditional-statistical re-

gression is the process of a function that has the least deviation between predicted and 

actual values for the data (Basak et al., 2007). Ridge Regression is used as a model that 

is a traditional linear, with the ridge regularization to prevent overfitting. It was chosen 

for its simplicity and ability to generalize well in unseen data. Moreover, Ridge Regres-

sion was chosen for a linear model comparison with the rest of the models. 

 

Moving on, the Gradient Boosting Machine (GBM) was chosen. This model is known 

for iteratively optimizing its performance by correcting the loss function from the previ-

ous iteration, making it a very effective modelling method (Natekin & Knoll, 2013). GBM 

was chosen for its wide range of advantages. Primarily, it is capable of handling complex 

relationships, needed in sports analysis, and additionally it is capable of handling features 

that are not as significant as others (Natekin & Knoll, 2013). Apart from these advantages, 

the GBM was chosen due to its effectiveness. It is an ensemble method; thus, it is robust 

and has high accuracy in the performed tasks (Konstantinov & Utkin, 2021).  

 

Lastly, Support Vector Regression (SVR) was chosen. One of the main characteristics 

of Support Vector Regression (SVR) is that instead of minimizing the error between ob-

served and actual values, SVR attempts to minimize the generalized error. These ma-

chines are ideal for small datasets, thus chosen for this problem. The SVR is meant to 

achieve good, generalized performance (Basak et al., 2007). Additionally, the Radial Ba-

sis Function (RBF) kernel is used. This kernel was chosen for leveraging and capturing 

nonlinear relationships. The RBF maps the inputs into higher dimensions and thus is able 

to capture those complex relationships (Kuo et al., 2014).  

 

3.4.2 Evaluation Metrics 

 

The evaluation of the models used in this dissertation will be made with three evaluation 

metrics. The 𝑅2 metrics the Mean Absolute Error and the Mean Squared Error. Each 

metric was chosen for a different reason all three providing a robust comparison and eval-

uation of the performance models. 
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𝑅2, as mentioned before is the coefficient of determination. This metric measures how 

well a statistical model predicts an outcome and how well it fits the data, in other word 

the 𝑅2 measures the goodness of fit. 𝑅2 will be used to evaluate whether the extracted 

knowledge from the models is useful and 

meaningful. The best possible score for 𝑅2is 1.0, when the model perfectly predicts the 

outcome and in contrast the 𝑅2 is valued at 0 when the model does not predict the out-

come. As it is understood the coefficient of determination normally ranges between 0 and 

1.  

 

Now, moving forward with the next two evaluation metric the Mean Absolute Error 

(MAE) and the Mean Squared Error (MSE). As it was explained previously both of these 

metrics measure the errors with MSE giving more value to the larger error, which are 

generally unwanted in any prediction task. However, it is sensitive to outliers and thus 

the MAE is used to balance this drawback. The latter was additionally chosen for its ease 

of interpretation and of course the straightforward depiction of the error.  

 

3.5 Software tools and libraries 

 

The following software’s and tools were utilized to meet the ends need of this dissertation, 

for the modelling and the preprocessing needed.   

• Python  

Python was selected as the primary programming language for this study. The choice of 

python was due to its versatility and its extensive system of libraries, tools and resources 

for data mining and machine learning. Additionally, it is valued for it easy use, and it is 

also the writers programming language preference.  

• Jupyter Notebooks 

Jupyter notebooks, was the author’s choice of the integrated development environment 

IDE. This IDE was used for implementation, testing and documenting the code. Jupyter 

notebooks provided a user-friendly interface that integrates code, easily outputs visuali-

zation. Moreover, it provides textual explanations in a single document. It was deemed 

particularly useful for data exploration- visualization and model evaluation. 
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 Concerning the libraries that was used: 

1. Pandas 

This library was used for the purpose of data manipulation and data analysis. Is makes 

handling and structuring e data, with tables, rows, and columns and easy task. It was also 

used for data cleaning, filtering, and merging.  

2. Numpy 

This library was used when numerical computations were needed. It provided effective 

operations on large data. Also, it includes mathematical functions such as statistics and 

linear algebra. This library was essential in working of implementing the models for quick 

computing and feature scaling and numerical transformation.  

3. Scikit-Learn 

The purpose of this library is for building, training, and evaluation predictive models. It 

incorporates a wide range of machine learning algorithms, including those used in this 

dissertation, for example the Random Forest Regressor, the Ridge Regression, the SVR 

and the Gradient Boosting Machine. It was additionally used for preprocessing, scaling, 

and encoding, model selection and performance evaluation, with ready functions.   

4. Matplotlib 

The purpose of this library is to provide comprehensive, detailed and customizable plots. 

These plots were used in this dissertation to effectively visualize the results for the readers 

and the author. Additionally, it provides control over the plot components. 

5. Seaborn 

This library’s purpose was for a quick statistical visualization for pandas data frames.  

 

 In summary the combination of the above tools and libraries provided a strong frame-

work for data analysis and machine learning. All the approached and choice were made 

in order for this dissertation to be reproducible and scalable.  

 

3.6 Data Workflow 
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In this section the work process of the dissertation will be explained step by step. Frist 

the process of successfully answering the Research Questions and model a predictive al-

gorithm begins with domain understanding. Understanding the key factors and dynamics 

influencing the problem area and Formula 1 race outcomes—are firstly identified. This 

step informs the subsequent stages by clarifying objectives and highlighting relevant var-

iables.  

 

Following this step, the data collection steps begin. This step involves gathering reliable 

data with good quality from verified sources, here this step was made from sources like 

the Ergast API and other supplementary websites.  

 

Once the data is collected, data analysis, the third step begins. This step is performed to 

explore existing patterns, or relationships, and anomalies, providing critical insights that 

guide the next steps. Then comes the fourth step, the data preparation. This step is men-

tioned in this dissertation as Data Prepossessing. In this phase the work focuses on clean-

ing and transforming the dataset, addressing missing values, encoding categorical varia-

bles, and selecting the most predictive features to ensure the data is ready for modeling. 

 

After the preprocessing step, the process moves to modeling and evaluation. At these last 

steps machine learning algorithms are applied, and metrics such as Mean Absolute Error 

and R-squared are used to assess the algorithms’ performance.  

 

Finally, the process often loops back to data analysis to refine the model further, iterating 

as needed to optimize accuracy and robustness. This iterative approach ensures a com-

prehensive and adaptive strategy for achieving predictive success. 

Fig 3:  

Data Workflow figure 
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3.6.1 Domain Understanding 

Formula 1 (F1) is a worldwide loved sport. It stands out in motorsports due to its unique 

structure. In these sports the teams independently design and develop their cars, following 

the FIA regulation. This unique feature of sport allows for significant variation in perfor-

mance among teams. For this reason, F1 is functioning both as an individual and as a 

team sport (Judde et al., 2013). Since it is individual and team sport, the competition 

consists of two championships: the Drivers' World Championship (WDC) for the drivers 

and the Constructors' World Championship (WCC) for the teams. These two champion-

ships corresponding to the dual nature of the sport.  

Since the start of the first F1 season in 1950, the championship has evolved into one of 

the most prestigious and widely followed global sports. The sport attracts millions of fans 

each season and thousands at each circuit at each race. F1 races typically last from Friday 

to Sunday and thus called race weekends. These weekends begin with practice sessions 

on Friday, followed by qualifying on Saturday, and finish with the main race on Sunday. 

The qualifying event is divided into three knockout rounds, with drivers battling for the 

best starting positions. The fastest of all gains the “pole position" the first position on the 

start grid of the race (Bell et al., 2016).  
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The F1 season spans from March to December, with two breaks, the summer and the 

winter break. Each season features a series of Grand Prix across the globe, ‘chasing’ the 

ideal weather conditions for racing.  

Teams and Historical Context 

Over 100 teams have participated in the F1 championship since 1950. However, only a 

select few constructors’ teams consistently achieved championship success in F1 history. 

These successful teams include Ferrari, Mercedes, Lotus, McLaren, Renault, Williams, 

and Red Bull.  

Car Evolution and Regulations 

According to the FIA's 2022 technical regulations, an F1 car is an open-wheel, single-

seater vehicle designed exclusively for high-speed circuit racing. The regulations have 

changed multiple times over the years with. The regulations have changed multiple times 

over the years with a major shift in 2014. This is the year of this dissertation analysis too. 

In 2014 F1 transitioned from V8 to V6-hybrid engines, marking the beginning of a new 

era(Bell et al., 2016). Another regulatory update is set for the 2025 season. From 2014 to 

2021 big changes were made with the exception of the 2020 season, disrupted by the 

COVID-19 pandemic, saw a reduction in the number of races, with only 17 Grand Prix 

events held instead of the typical 21. 

Circuits 

The circuits used in the F1 events, referred to as Grand Prix (GP), must be officially 

approved by the FIA and are specifically designed for F1 racing. These circuits usually 

start with a straight, with few exception and feature various corners and chicanes. The 

corners and chicanes are aimed in reducing speed and enhancing driver safety. Circuit 

lengths vary, and each race must cover a minimum of 305 km, with a typical race duration 

of around two hours. 

F1 circuits also differ in type; some are traditional, mapped as permanent race circuits. 

Meanwhile there are some circuits, like Monaco and Baku, where the circuits are street 

circuits. The street circuits mean that the track takes place on the city roads. The direction 

of circuits is mainly clockwise, with a few exceptions. Additionally, the races take place 
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at night, with few exceptions. The night racing was introduced in 2008, in Singapore. 

Then concept was adopted by other venues the Abu Dhabi and Bahrain. 

Point System 

The current points system was implemented in 2010. It gets 25 points for 1st place, 18 for 

2nd, and 15 for 3rd. The rest places, up to the 10th get points with a decreasing scale down 

to 1 point.  

Pit Stops 

Pit stops play crucial in Formula 1. The pit stops are important for the race strategy each 

team will choose. In general, in all circuit motorsport, teams aim to optimize pit stop 

timing to secure the best competitive advantage. Pit stop strategy may involve changing 

tires, refueling, or making car adjustments (Heilmeier, Thomaser, et al., 2020), however 

in F1 tire change and specific car fixes are only allowed. Mathematical optimization mod-

els can be used to calculate the optimal tire strategy when only tire degradation is consid-

ered (Heilmeier, Thomaser, et al., 2020). However, pit stops can also be influenced by 

external factors like weather conditions, and the competition from the other teams and 

drivers. An efficient pit stop strategy can significantly impact a team’s final position. 
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4 Experimentation 

In this chapter of the dissertation, the experimentation within the modelling phase is pre-

sented. For the models that were decided to be used and finally compared in the Results 

chapter, their implementation and tuning is presented here.  

4.1 Modelling with Basic Dataset 

 

The models were first evaluated using a dataset excluding weather-related features, that 

is the basic dataset. As mentioned on too many times, feature selection is a very important 

step in modelling. For every model, there was an implementation without feature selec-

tion, and then the post-feature selection. For all models the same features were used. The 

features used in modelling are the following:  

 

 ['points', 'pos_after_race', 'con_pos_after_race', 

            'grid', 'points_after_race', 'quali_pos', 'qualies_best_secs', 'number_y', 

            'circuit_type', 'con_wins_after_race'] 

 

Since the weather data is excluded the main features that are used are features represent-

ing the drivers performance and the constructors performance. These features were ex-

tracted with the process of the Correlation Analysis and Mutual Information. Addition-

ally, they are in harmony with the feature suggested by the existing literature that high-

lighted the performance of the athletes and the cars-teams performance as the most im-

portant factors when predicting race outcomes.  

4.1.1 Random Forest Regressor  
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The first model implemented was the Random Forest Regressor. During the implementa-

tion of the model, many hyperparameters were tested. The testing was done, apart from 

the need to achieve high accuracy for the avoidance of overfitting.  

 

The hyperparameters were chosen using the grid search method, the Cross-Validation 

grid search (GridSearchCV). The parameters set in the grid for the method to search in, 

were multiple and stated in the following. For the number of estimators, the model 

searched between 100, 200, 300, 500 and 1000. For the max depth the search was between 

2, 5, 8, 10, 20, 30 and 40. Finally the minimum samples split was search among 2, 5, 10, 

15, and 20. The optimal hyperparameters for the models pre and post feature selection is 

depicted in table 6.  

 

Table 6:  

Hyperparameters of Random Forest Regressor (RFR) 

Model max_depth Min_samples_split n_estimators 

RFR pre feature selection 10 2 300 

RFR post feature selection 5 10 300 

 

4.1.2 Ridge Regression 

 

During the implementation of this linear model, the hyperparameters were chosen using 

the Cross-Validation grid search (GridSearchCV). This method is a systematic method 

for tuning that search through specified set of hyperparameters combinations. The alpha 

parameter was set, after searching through 0.1, 1, 10 and 100. The optimal alpha is set to 

1. 

 

The final hyperparameters chosen for the Ridge regression model is presented in Table 7. 

The alpha parameter the only parameter that was tune in this model is the parameter that 

gives the regularization strength of the model and balances between the fit and the com-

plexity of the model.  
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Table 7:  

Hyperparameters of Ridge Regression (Ridge) 

Model alpha 

Ridge pre feature selection 1 

Ridge post feature selection  1 

 

4.1.3 Gradient Boosting 

 

Gradient Boosting was the next model of choice. It is an ensemble model, and this played 

a key role in picking it, since the literature work reviewed highlighted their efficiency and 

accuracy. It is expected that as an ensemble model it will generally wield better results in 

general.  

 

Again, the hyperparameters were set using the Cross-Validation grid search 

(GridSearchCV). The algorithm searched through multiple estimators. For the parameter 

of n_estimators, the number of estimators the method searched through 100, 200 and 300. 

For the learning rate the method searched among the values of 0.01, 0.1 and 0.2. Finally, 

the maximum depth was set after searching among the values of 3, 4, and 5. The optimal 

hyperparameters were set at. In Table 8, the hyperparameters chosen for the model pre- 

and post-feature selection are showcased. 

 

Table 8:   

Hyperparameters of Gradient Boosting Machine 

Model Learning Rate Max_depth n_estimators 

GBM pre feature selection 0.1 3 100 

GBM post feature selection 0.01 4 300 

 

4.1.4 Support Vector Regressor 
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For the Support Vector Regression (SVR) model, again the optimal hyperparameters were 

chosen using the Cross-Validation grid search (GridSearchCV). GridSearchCV searched 

through multiple estimators to conclude the optimal choices. The hyperparameters were 

tuned automatically and were set as shown in the Table 9 for the pre and post feature 

selection models.  

 

The search was for the values of C between 0.1, 1, 10 and 100. For the epsilon values the 

search was between 0.01, 0.1 and 0.2 and the kernel was set as ‘rbf’ since the data were 

complex hiding non-linear relationships.  

 

Table 9:  

Hyperparameters of Support Vector Regressor 

Model C epsilon kernel 

SVR pre feature selection 10 0.2 ‘rbf’ 

SVR post feature selection 100 0.3 ‘rbf’ 

 

The parameter C, is the one that controls the complexity of the model, improving it gen-

eralization. Higher values of C give emphasis on minimizing the error and potentially 

overfitting, while low values of C results in simpler models that aids generalization. The 

parameter epsilon defines the margin tolerance around the predicted values. A smaller 

epsilon makes the model more sensitive to small deviation, while a larger epsilon makes 

the model focus on larger patterns.  

4.2 Enhanced modelling with weather data 

 

On the next part of the dissertation the model trained using the same dataset, but it was 

enhanced using the weather information. The enhanced dataset including the weather in-

formation were concerning seasons the 2018-2023. For the season 2014 to 2018 the 

weather information was not publicly available. Even though the races conducted are 

fewer, for each race three timestamps were added with the weather at three points of the 

race, resulting in bigger dataset.  
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According to the papers reviewed already in previous chapters, adding weather data im-

proves the accuracy of the models; thus, an overall improvement is expected. But there is 

not a comparative study between same models, using the same data, added the weather 

information. This improvement is the result of the inclusion of weather data, that provides 

an additional dimension to the analysis. This fact allows for a deeper exploration of how 

environmental factors influence Formula 1 race outcomes. This section details the imple-

mentation and evaluation of various predictive models using the dataset with integrated 

weather data.  

 

The features chosen for the models using the weather data are set as follows: 

 

['points', 'pos_after_race', 'con_pos_after_race', 'con_points_after_race',  

'grid', 'points_after_race', 'quali_pos', 'qualies_best_secs', 'number_y', 

 'circuit_type', 'Pressure', 'TempCluster', and 'Humidity', ‘WindDirection’] 

 

These features were the result of the feature engineering process, using mutual infor-

mation and correlation analysis. In general, the weather feature was not deemed as im-

portant as expected, as analysed in the results chapter of the dissertation. Additionally, 

the literature review viewed the Air Direction as an important environmental factor af-

fecting the cars aerodynamics. Nonetheless it was not revealed as important in the feature 

extraction process, but was added either way, as an important factor for cars.  

4.2.1 Random Forest Regressor 

 

The first model implemented was the Random Forest Regressor. During the implementa-

tion of the model, many hyperparameters were tested. The testing was done, apart from 

the need to achieve high accuracy for the avoidance of overfitting.  

 

The hyperparameters were chosen using the grid search method, the Cross-Validation 

grid search (GridSearchCV). The parameters set in grid for the method to search in, were 

multiple. For the number of estimators, the model searched between 100, 200, 300, 500 

and 1000. For the max depth the search was between 2, 5, 8, 10, 20, 30 and 40. Finally 
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the minimum samples split was search among 2, 5, 10, 15, and 20. The optimal hyperpa-

rameters for the models pre and post feature selection is depicted in table 10. 

 

Table 10:  

Hyperparameters of enhanced Random Forest Regressor with enhanced dataset 

Model max_depth Min_sam-

ples_split 

n_estimators 

RFR pre feature selection 30 2 200 

RFR post feature selection 30 2 200 

 

4.2.2 Ridge Regression 

 

During the implementation of this linear model, the hyperparameters were chosen using 

the Cross-Validation grid search (GridSearchCV). This method is a systematic method 

for tuning that search through specified set of hyperparameters combinations. The alpha 

parameter was set, after searching through 0.1, 1, 10 and 100. The optimal alpha is set to 

1. The hyperparameter tuned are depicted for the models pre and post feature selection in 

Table 11.  

 

Table 11:   

Hyperparameters of Ridge Regression (Ridge) with enhanced dataset 

Model alpha 

Ridge pre feature selection 1 

Ridge post feature selection 1 

 

4.2.3 Gradient Boosting 

Gradient Boosting was the next model of choice. It is an ensemble model, and this played 

a key role in picking it, since the literature work reviewed highlighted their efficiency and 

accuracy. It is expected that as an ensemble model it will generally wield better results in 

general.  
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Again, the hyperparameters were set using the Cross-Validation grid search 

(GridSearchCV). The method was able to search through multiple estimators. For the 

parameter of n_estimators, the number of estimators the method searched through 100, 

200 and 300. For the learning rate the method searched among the values of 0.01, 0.1 and 

0.2. Finally, the maximum depth was set after searching among the values of 3, 4, and 5. 

The optimal hyperparameters were set at. In Table 12. The hyperparameters chosen for 

the model pre and post feature selection are showcased. 

 

Table 12:   

Hyperparameters of Gradient Boosting Machine with enhanced dataset 

Model Learning Rate Max_depth n_estimators 

GBM pre feature selection 0.2 5 300 

GBM post feature selection 0.2 5 300 

 

4.2.4 Support Vector Regressor  

 

For the Support Vector Regression (SVR) model, again the optimal hyperparameters were 

chosen using the Cross-Validation grid search (GridSearchCV). The algorithm of 

GridSearchCV searched through multiple estimators, in order to conclude the optimal 

choices. The hyperparameters were tuned automatically and were set as shown in the 

Table 13, for the pre and post feature selection models.  

 

Table 13:  

Hyperparameters of SVR 

Model C epsilon kernel 

SVR pre feature selection 100 0.01 ‘rbf’ 

SVR post feature selection 100 0.2 ‘rbf’ 

 

The parameter C, is the one that controls the complexity of the model, improving it gen-

eralization. Higher values of C give emphasis on minimizing the error and potentially 
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overfitting, while low values of C results in simpler models that aids generalization. The 

parameter epsilon defines the margin tolerance around the predicted values. A smaller 

epsilon makes the model more sensitive to small deviation, while a larger epsilon makes 

the model focus on larger patterns.  
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5 Results 

In this chapter of the dissertation, the results of the implementation of the models will be 

presented. As mentioned already, first the modelling with the basic dataset will be pre-

sented, the dataset without any weather information and then the modelling with the en-

hanced dataset. The enhanced dataset includes the weather information for each race. This 

way, the findings at the end can be compared to try and measure the effect of the weather 

on forecasting the ranking of positions on F1 races.  

 

Each section mentioned above, consists of two basic sections. The feature engineering 

part and the models’ performance part. On the feature engineering part, the results of the 

correlation analysis and the mutual information will be presented, concluding to which 

feature were selected and why. On the next part, the models’ performance, first the per-

formances of the models without feature engineering will be presented, followed by the 

models with their important features selected. The two processes are compared. In the 

end the best models from the basic and the enhanced dataset are compared.  

5.1 Modelling with Basic Dataset 

 

First the results of the models trained on the basic dataset will be presented. Concerning 

the feature selection part, first a correlation analysis took place to identify the most import 

features that linearly correlate to the target value, the ‘position’ and the mutual infor-

mation. The results, especially for correlation analysis are advised to be studied in colour 

by the author.  

After the feature engineering part, the analysis of the results of modelling on this data pre 

and post features selection will be presented. Finally, it is concluded on which modelling 

methods wielded better results based on the selected evaluation metrics.  

5.1.1 Feature Engineering 
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As mentioned in earlier parts of the dissertation, feature selection as a part of data pre-

processing plays an especially key role. The number of features before feature selection 

is 23 and the target value is one, the value ‘position’.  The need for feature selection stems 

for the possibility of some of these features creating redundancies, additionally they seem 

slightly a lot, compared to the dataset size. Thus, in this research feature selection could 

not be left out. Since this result analysis contains no weather information, from the liter-

ature review conducted before, it is expected that the main feature that affects the final 

ranking position is the metrics on the drivers and the team performance.  

 

Correlation analysis 

 

Correlation analysis as statistical technique measures the strength and the direction of the 

relationships between variables. It is primarily designed to identify linear relationships.  

The following graph depicts these relationships found by the analysis between the target 

value, position, and the rest of the features. Figure 4, presented below, depicts the corre-

lation analysis conducted without incorporating weather data, allowing a focused assess-

ment of performance-related variables. The bolder the colour the higher the relation. The 

high positive correlation corresponds to more red colours and the higher negative corre-

lation to blue. The non correlated feature is depicted with a colour close to grey. 

 

In Figure 4, the most important features are as those with the higher correlation, negative 

or positive. As mentioned before the more intense the colours, the higher the correlation. 

Additionally, in each square the value of the Correlation analysis between the two varia-

bles is displayed. A deep red colour with correlation set to 1 indicates the perfect rela-

tionships, typically when the variable is compared with itself. On the Table 14 the top 

scoring features and their values are depicted.  

 

Fig 4:  

Correlation Analysis without weather data 
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Table 14:  

Correlation Analysis most important features 

Feature  Value Description 

Points -0.876 The cumulative points gathered after the race 

for the driver 

Position after race 0.811 The final standing position of the driver 

Constructor’s Position after 

race 

0.788 The final standing position of the construc-

tors 

Qualifying Position 0.765 The position achieved in qualifications 

Grid Position 0.706 The starting position  

Points after the race -0.604 The pointes accumulated by the driver after 

the race 

Wins after the race -0.426 The total wins for the driver after the race 

Constructor wins after the 

race 

-0.457 The total wins for the teams after the race 
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As expected, the most important features are the ones that measures the performance of 

the athlete and the car, depicted by the final position after races, and the points gathered, 

as well as the qualification performance of the driver. The qualification performance was 

mentioned in the literature as an important factor and this dissertation’s findings aligns 

with it.  

 

Moving on with the results of the correlation analysis, there are some features with low 

positive or negative relationships worth mentioning. A weak correlation with the final 

position is noted with the features Best Qualifying Lap Time, with a value of 0.036 and 

additionally, with the Driver/Car Number valued at 0.020. However, the driver should 

influence the result, since the performance is based on the skill of the driver. One possible 

reason for the Driver number to not have high correlation is because this specific analysis 

struggles depicting complexities.  

 

Mutual Information 

 

Moving forward with the analysis, the mutual information (MI) analysis took place to 

identify any non-linear correlation missed in the correlation analysis, since this analysis 

manages to capture both both linear and non-linear dependencies, providing a more com-

prehensive understanding of feature relevance. This section explores the relationships be-

tween features and the final race position using mutual information analysis.  

 

The different scores each feature has in the MI analysis are presented in Figure 5 below. 

The plot highlights the MI scores and offers valuable and useful insights into their signif-

icance. The predictive importance of the top 10 most relevant features and their precise 

MI score and their description are presented in Table 15. Using Figure 5 and Table 15, 

the reader can fully understand the features that contribute the most to forecasting race 

outcomes. The MI analysis added to the Correlation highlighted the non-linear relation-

ships between variables and the final race position, complementing the findings from the 

previous correlation analysis.  

Fig 5:  

Mutual Information analysis without weather data 
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The features revealed with mutual information are not very different from the ones re-

vealed in correlation analysis. The most important feature that affect the final position of 

the drivers are as follows. The basic difference with the correlation analysis, is the extent 

to which the number_y , thus the driver, affect the results. Additionally, the status feature 

was added to the most important features. Both, of the mentioned feature depict more 

complex relationship, that probably why the relationship wasn’t captured with Correla-

tion Analysis.    

Table 15:  

Mutual Information top 10 features 

Feature Score Description 

Points 1.979 cumulative driver performance and over-

all competitiveness 

Position after Race 0.626 The standing position of the driver 

Qualifying Position 0.532 The final qualification position  

Constructor’s Position Af-

ter Race 

0.531 The final position of the constructors in 

the standings 
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Grid Position 0.492 The starting position of the driver 

Point After Race 0.363 The accumulated points of the driver af-

ter the race 

Constructor’s Point After 

Race 

0.363 The accumulated points of the teams af-

ter the race 

Driver/Car Number 0.340 The number of the driver 

Statues (finished) 0.261 The status of the driver finishing the race 

Constructor Wins after 

Race 

0.242 The cumulative wins of the teams after 

the race 

 

By combining these two analyses both linear and nonlinear dependencies were revealed. 

First and more most, the points are the most informative feature, as highlighted by their 

high MI score and correlation value. The points accumulated in the season is a strong 

indicator of the performance of each driver. As showed in the literature review the drivers 

and the team performance as very influential at the final positions.  

 

In addition to points, both drivers and the constructors, there other feature showcasing the 

skill of the drivers and the performance of the team were deemed and important and thus 

selected in the models. More specifically, a driver’s and constructors’ position after a race 

is highly predictive of their final or future positions. Moreover, the win counts are deemed 

as important feature. In contrast with the literature review showcasing that the teams af-

fect the result more than the driver in this analysis the team’s performance were calculated 

as important, but it has a less direct impact than individual driver performance.  

 

However, the race performance isn’t the only indicator. As anticipated from the literature 

review done, the performance in the qualifications influence the final positioning.  Qual-

ifying position has a strong influence on the final race result and additionally the grid, the 

starting position won at the qualification plays an important role. Usually, a driver starting 

at the front enjoys a competitive advantage. 

5.1.2 Basic Models’ Performance 
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In this part of the dissertation the performance of the modeling methods selected previ-

ously will be presented and compared. For each modeling method, first the results of the 

model’s pre-feature selection process will be presented and then the results post feature 

selection, comparing the performance and the generalization of the models tested in this 

dissertation.  

 

Pre-Feature Selection process 

 

The results of the performance of each model before selecting the most relevant features 

are shown in Table 16 Random Forest Regressor (RFR) appears as the highest performing 

model. This model with R²-score of 0.9424, was able to explain approximately 94.24% 

of the variance in the race position predictions. The high score of the R² indicates high 

accuracy of the model. The other two metrics used in this analysis showed also excep-

tionally result. The Mean Squared Error (MSE) were valued at 1.4847 and Mean Absolute 

Error (MAE) at 0.6499, both being low. These low errors suggest that the model produces 

predictions with minimal errors.  

 

Gradient Boosting (GBM) also performed exceptionally well. Having a high R² score of 

0.9416, and thus explain approximately 94.1% of the variance, it lies just slightly below 

the RFR model. The MSE of the GBM was calculated at 1.5057 and its MAE at 0.6958. 

Both metrics are only marginally higher than those of RFR. Having metric so close indi-

cates a comparable level of accuracy and robustness between the two said models. 

 

On the last two places came the Support Vector Regressor (SVR) and the Ridge Regres-

sion model (Ridge). Even though being ranked low the SVR model demonstrated moder-

ate performance, with an R² score of 0.9052, suggesting that it explains 90.52% of the 

variance in the predictions. In contrast to RFR and GBM it had a higher MSE (2.4421) 

and MAE (1.0200), highlighting larger prediction errors.  

 

Finally, out of all the models came the Ridge model, which exhibited the lowest perfor-

mance. With a value for the R² metric at 0.8752, the models explain 87.5% of the vari-

ance. The other two error metrics, MSE and MSE were valued at 3.2158 and 1.2862 
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respectively. These metrics show that Ridge’s accuracy and error rates are notably lower 

than the other models. However, it still provides reasonable predictions.  

 

Table 16:  

Comparison of evaluation metrics for dataset without weather data pre feature selection 

Model Mean Squared Er-

ror 

Mean Absolute Er-

ror 

R-squared 

Random Forest 1.484704              0.649863    0.942389 

Ridge 3.215776 1.286213    0.875218 

 

Gradient Boosting 1.505700              0.695839    0.941574 

SVR 2.442051              1.019976    0.905241 

 

The three chosen evaluation metrics are not the only measure to select the best performing 

model. Following up next, there is a graph comparing the actual values of each model and 

the residuals. Figure 6  shows the residuals the error for each prediction. It is now visually 

clear too that the two best performing model are the RFR and the GBM. The residuals at 

both cases grow more scatter after the tenth place. For the ridge regression and the SVR, 

the residuals plot highlights their bad performances and their bad fit to the data.  

 

Fig 6:  

Comparison of actual values and residuals of data without weather pre feature selection. 
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Adding to the visualization is Figure 7 plotting the actual versus the predicted values. 

Even though it is clear that the RFR is the best performing model, followed closely from 

GBM, there is a graph comparing the actual versus the predicted values for each value at 

figure 18. The red line is the actual values, and the predicted values scatter around in 

colourful dots. Again, it is visually inspectable that the two best performing models are 

predicting way worse after the 10th place. 

 

Fig 7:  

Comparison of actual values and predicted values of data without weather pre feature 

selection 
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In conclusion, the Random Forest Regressor emerged as the most accurate and reliable 

model, followed closely by Gradient Boosting. Both models significantly outperformed 

SVR and Ridge Regression, demonstrating their robustness and suitability for this analy-

sis. 

 

Post Feature Selection process 

 

Moving forward with the analysis, the results for each of the models, after feature selec-

tion process are presented in Table 17  with their relevant metrics. The results are not as 

different as one might expect. The highest performing model in this case is Gradient 

Boosting (GBM), with a high R² score of 0.9278. The high R² score indicated that the 

model explains approximately 92.78% of the variance in the final positioning while mak-

ing predictions. The two errors, the Mean Squared Error (MSE), and the Mean Absolute 

Error (MAE) are valued at 1.8606 and 0.8335. These low values suggest minimal errors 

in the predictions of the GBM, thus indicating a high level of accuracy. 

 

The Random Forest (RFR) model also performed relatively competitively. The RFR 

model achieved an also impressive R² score of 0.9245. This means it explains about 

92.45% of the variance in predictions. The difference with GBM came in errors. The 

MSE of the RFR was calculated at 1.9455 and the MAE at 0.9245. Despite these marginal 

differences, RFR had a strong predictive power, close to GBM’s performance. 
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In comparison, with the top two performing models, the Support Vector Regressor (SVR) 

model showed only a moderate performance. Its R² score was calculated at 0.8841, while 

the errors were at 2.9881 for the MSE, and 1.0626 for the MAE. These results indicate 

larger errors and lower explanatory power compared to the first two models. Meanwhile, 

Ridge Regression had the lowest performance among the models evaluated. It had an R² 

score of 0.8330, in addition to the highest errors of all four models.  

 

Table 17:   

Comparison of evaluation metrics for dataset without weather data post feature analysis 

Model Mean Squared Er-

ror 

Mean Absolute Er-

ror 

R-squared 

Random Forest 1.945487              0.759734    0.924509 

Ridge 4.304462 1.585733    0.832974 

Gradient Boosting 1.860585              0.833471    0.927804 

SVR 2.988149              1.062571    0.88405 

 

Moving forward with the analysis a visualization of the residuals, the error of each model 

is depicted in Figure 8. With this plot it is clear to the reader that the two best performing 

models are again very close and again making noticeable more mistakes after the 10 th 

place. 

 

Fig 8:  

Comparison of actual values and residuals of data without weather post feature selection. 



-82- 

 

 

Expanding on this fact, it is clear from Figure 8 the plotting of the residuals, that the RFR 

model and the GBM’s, residuals, cluster tightly around zero for positions 1 to 10, indi-

cating their strong predictive accuracy within this range. However, for positions beyond 

10, the residuals become more dispersed, suggesting reduced accuracy for lower-ranked 

positions. 

 

Moving forward with the results analysis the Figure 9 is presented for the comparison of 

actual values of each model, presented on the red versus the predicted ones, scattered 

around the red line in colourful dots. The results are like the pre-features selection analy-

sis. 

 

Fig 9:  

Comparison of actual values and predicted values of data without weather post feature 

selection. 
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The RF model and GBM produce predicted positions that fall closely with the diagonal 

red line of actual positions, representing perfect predictions, for positions 1 to 10, signi-

fying high accuracy in this range. However, for positions beyond 10, the predictions de-

viated significantly from the actual values. 

 

Ridge Regression and SVR’s predictions deviate for the actual values from the beginning. 

It is clear that after the 10th position these models struggle more too, however they strug-

gle for the first 10 more than the two best performing models. These indicates poor align-

ment for Ridge and SCR between predictions and actual values, suggesting that these two 

models might not be well-suited for this task. 

 

5.1.3 Comparison 

 

In conclusion, GBM and RFR performed very closely. Both models significantly outper-

formed SVR and Ridge Regression, emphasizing their robustness in both pre and post 

feature selection scenarios. The choice between the two seems impossible. To aid this 

process, the need for statistical comparison of the performance between them arose. The 

Analysis of Variance (ANOVA) test was conducted using 5-fold cross-validation using 

both the R-squared (R²) and Mean Squared Error (MSE) metrics to assess if there is any 

statistically significant difference.  
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Concerning the results for the R² measure. The results of the ANOVA test for R² indicated 

that there were no significant differences. More specifically, the F-statistic for R² was 

calculated at 0.2469, and the p-value at 0.6327. Both values are above the commonly used 

threshold of 0.05 for statistical significance.  

 

Similarly, when the ANOVA test was applied to the MSE, the results showed no signifi-

cant differences between the two models. The F-statistics for MSE was 0.2563, and the 

p-value was 0.6263, further confirming the lack of statistically significant performance 

differences between RFR and GBM.  

 

In conclusion, the ANOVA test revealed that the performance of the RFR and GBM mod-

els is no different and the choice between the two models, in terms of accuracy, is mini-

mal. The analysts can choose based on needs like computational costs, speed, and inter-

pretability. 

 

Concerning the choice of pre- and post-feature selection, the accuracy of all models was 

better in the dataset pre feature selection. Concerning RFR and GBM achieved better 

performance metrics in the pre-feature selection dataset, indicating that they benefited 

from the full set. Additionally, SVR and the Rdige model, models more sensitive to scal-

ing and the quality of the feature also performed better pre feature selection. The full 

dataset. enables higher predictive accuracy and smaller errors across all tested models, 

indicating that the full feature set provides critical information that enhances the models' 

performance. 

5.2 Modelling with Enhanced Dataset 

 

Moving forward with the result analysis, the section concerning modelling on a dataset 

including weather data is analysed. Concerning the feature selection part, first a correla-

tion analysis took place to identify the most import features that linearly correlate to the 

target value, the ‘position’ and then the mutual information. The results, especially for 

correlation analysis are advised to be studied in colour by the author.  
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After the feature engineering part, the analysis of the results of modelling on this data pre 

and post features selection will be presented. Finally, it is concluded on which modelling 

methods wielded better results based on the selected evaluation metrics.  

 

5.2.1 Feature Engineering 

 

Concerning the identification of the most important features, concerning the feature se-

lection part, first the results of the correlation analysis are presented to identify the most 

import features that linearly correlate to the target value, the ‘position’. It is advice to be 

studies in colour. Like the analysis done for the dataset without weather, it importance is 

crucial. Specifically, the dataset containing weather information consists of 38 columns 

(features). Since this result analysis contains weather information, from the literature re-

view conducted before, it is expected that the main features that affect the final ranking 

position are the metrics on the drivers and the team performance, as before and addition-

ally, some weather information like Humidity, Air temperature and Wind Direction.   

 

Correlation Analysis 

 

The following graph, Figure 10 depicts the relationship between the target value, position, 

and the rest of the features, depicts the correlation analysis. The bolder the colour the 

higher the relation. The high positive correlation corresponds to more red colours and the 

higher negative correlation to blue. The non correlated feature is depicted with a colour 

close to grey. In comparison with the same analysis but without weather data, there are 

some visually easy to spot changes when it comes to the features playing part.  

 

More specifically, Figure 10 presents the correlation analysis with weather data, provid-

ing insights into the relationship between various features and the final race position. 

From a visual inspection the top features correlated with the final position include posi-

tion after the race, qualifying position, and grid position, the same features encountered 

in the analysis without the weather data.  
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Fig 10: 

 Correlation analysis with weather data. 

 

In Table 18, the important features are presented in ranked order. The value of the Corre-

lation Analysis, indication the degree of the relationship between the two variables is 

presented clearly.  

 

Table 18:   

Correlation Analysis's most important features 

Feature  Value Description 

Points -0.879 The cumulative points gathered after the race 

for the driver 

Position after race 0.798 The final standing position of the driver 

Constructor’s Position after 

race 

0.768 The final standing position of the construc-

tors 
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Qualifying Position 0.754 The position achieved in qualifications 

Grid Position 0.670 The starting position  

Points after the race -0.595 The pointes accumulated by the driver after 

the race 

Constructors point after the 

race 

-0.576 The points accumulated by the constructors 

after the race 

Constructor wins after the 

race 

-0.460 The total wins for the tams after the race 

Wins after the race -0.412 The total number of wins for each driver 

 

Despite adding the weather data, the most influential features revealed with correlation 

analysis do not include any weather feature. Again, the driver’s and the team’s perfor-

mance are the key feature influencing the final positioning in F1 races.  

 

If the result’s list is widened, there are some other features included that were not deemed 

relevant in the analysis with the basic dataset. More specifically the raceId with a value 

of 0.037200 has a very weak positive correlation suggesting that the specific race does 

not significantly affect the final positioning. The same is true for features like season 

(0.036258, qualies_best_secs (0.034654) and Humidity (0.010995).  

 

Moreover, there are the features with weakly, negatively correlation with position, for 

example the feature of Pressure with a value of -0.011556, TempCluster, the feature 

corresponding the cluster the track temperature belongs having a value of -0.011995.  

 

Mutual Information 

 

Moving forward, the mutual information analysis will further delve into identifying non-

linear relationships among the features, offering a more comprehensive view of how these 

variables interact with the final race position. Moving forward with the analysis, the mu-

tual information took place to identify any non-linear correlation 
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The top 15 Features revealed by Mutual Information with the weather information are 

graphically depicted in Figure 11. The predictive importance of the top 15 most relevant 

features and their precise MI score and their description is presented in Table 19, exclud-

ing the last 3 features that were specific constructors, and their score was less than 0.01. 

Instead of top 10, these times the top 15 features were chosen, since the dataset gets more 

columns and probably needs more features to depict all the intrici relationships. Using the 

following plot and table the reader can fully understand the features that contribute the 

most in forecasting race outcomes. 

 

Fig 11:  

Mutual Information analysis with weather data 

 

The features revealed with mutual information are not very different from the ones re-

vealed in correlation analysis. The basic difference with the correlation analysis, is the 

extent to which the qualification position and the grid position affect the results. Addi-

tionally, the extend of the influence of the number_y , thus the driver, has greater signif-

icance in the MI analysis for the position forecasting. More specifically, compared to the 

correlation analysis in MI analysis the number_y is the 8th most important feature. 



  -89- 

Additionally, the qualies_best_secs feature was added to the most important features. 

Both, of the mentioned feature depict more complex relationship, that probably why the 

relationship wasn’t captured with Correlation Analysis.    

 

Table 19:   

Mutual Information top 10 features and scores 

Feature Score Description 

Points 1.988 cumulative driver performance and overall 

competitiveness 

Points After Race 0.710 The accumulated points of the driver after 

the race 

Position after race 0.635 The final standings position of the driver af-

ter the race 

Constructor’s Points After 

Race 

0.593 The accumulated points of the teams after 

the race 

Qualification Position 0.556 The position achieved after the qualification 

Grid Position 0.552 The starting position of the driver 

Constructor Position after the 

race 

0.521 The final standing position of the constructor 

after the race 

Driver/Car Number 0.461 The number of the driver 

Quailes best secs 0.296 The best qualifying lap time achieved 

Constructor Wins after Race 0.243 The cumulative wins of the teams after the 

race 

Statues (finished) 0.228 The status of the driver finishing the race 

Wins after the race 0.226 The total number of wins for the driver after 

the race 

 

Based on correlation and mutual information, the most impactful features for predic-

tive modelling are the features that indicate the performance of the driver first and then 

the performance of the team, as it was revealed in the basic dataset. Following the steps 
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of the basic dataset, the performance on the qualifications seems to affect the final rank-

ing.  

Concerning the addition of the weather, the most important weather feature seems to be, 

Humidity, Air Pressure, and the track temperature cluster and not the Air temperature and 

the wind direction suggested by the existing literature that affects the aerodynamic. How-

ever, the literature review done suggested that the weather improves accuracy, a point left 

to be examined.  

5.2.2 Enhanced Models’ Performance 

In this part of the dissertation the performance of the modeling methods selected previ-

ously will be presented and compared. For each modeling method, first the results of the 

model’s pre-feature selection process will be presented and then the results post feature 

selection, comparing the performance and the generalization of the models tested in this 

dissertation. It is important to note that here the data set is enhanced with extra weather 

information. 

 

Pre-Feature Selection process 

 

The results of the performances of each model, before selecting the most appropriate fea-

tures are shown in Table 20 . The Gradient Bosting machine achieves the highest R-

squared (R²) values. The model explains approximately 98.9% of the variance of the data. 

Additionally, it resulted in the lowest errors rates with MSE and MAE at the values of 

0.27 and 0.23 respectively making it the highest performing model. These low errors sug-

gest that the model produces predictions with minimal errors. 

 

Random Forest regressor doesn’t fall far behind. RFR offers competitive performance 

and strong predictive power. Its R² values reaches almost 0.98. The error metric falls 

marginally behind the GBM at the values of 0.34 and 0.27 for the MSE and the MAE 

respectively. This model also indicates robust predictions and is almost as good as the 

GBM. 

 

Like the results encountered in the models trained with the basic dataset, Ridge regression 

and SVR falls slightly behind.  SVR, in this dataset explains almost 0.98 % of the 



  -91- 

variance. Even though the R-squared measure is very high, an indicator of a good fit, the 

error fall short in comparison with the two models mentioned right above More specifi-

cally, the Mean Squared Error is calculated at 0.42 and the Mean Absolute Error at 0.39 

 

Lastly, the Ridge Regressor, as excepted from a linear model, fails to capture all the com-

plex relationships and this fact is depicted at it metrics. The R-squared is calculated at 

0.886 , a relative high value, but lower than the rest of the models. The errors have the 

highest values among the four models. The MSE is valued at 0.423 and the MAE at 0.298.  

 

Table 20:  

Comparison of evaluation metrics pre feature selection for data with weather. 

Model MSE R-squared MAE 

Random Forest 0.338785 0.986814 0.270925 

Ridge 2.919749 0.886361   1.287183  

Gradient Boosting 0.270314 0.989479 0.231240 

SVR 0.423436 0.983520 0.390843 

 

Like it is already mentioned the three metrics don does not provide the full picture to 

understand the performance of the models. Following up, at Figure 12 the residuals, the 

errors of each model are plotted against the actual positions of the drivers. With this plots 

it is visually clear to the reader that the GBM and then the RFR provide the most accurate 

predictions minimizing the error. The two weaker models, the SVR and especially the 

Ridge regression model show the greatest variance among the four models, with their 

residuals scattered more.  

Fig 12:  

Comparison of actual values and residuals of data with weather pre feature selection. 
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Adding to the visualization, Table 21 and the Figure 13 that together provide a clear pic-

ture of the predictions made by the models. Both from the table and more visually clear 

from the figure the reader can see that the two best performing model have significantly 

better predictions. This is especially true regarding the first ten places. 

Table 21:  

Actual values and the predictions of each model 

En-

try 

Actual 

Position 

Predicted RF Predicted 

Ridge 

Predicted 

GMB 

Predicted 

SVR 

4716  

 

4 4.000000 4.925572 4.017349 

 

4.044813 

 

4328  

 

15 14.256667 10.738822 

 

14.450962 

 

14.257764 

 

4954  

 

14 12.940000 11.290785 

 

12.450962 

 

12.428548 
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4484 

 

12 12.460000 11.560542 

 

12.435563 

 

11.854542 

 

4066  

 

7 7.000000 9.764231 

 

7.043180 

 

6.737210 

 

 

In Figure 13 it is clear that the prediction of the GBM and the RFR up until the tenth place 

is almost identical to the actual position. The colourful dots, depicting the predictions 

almost fall on the red line. The red line is the actual values of the points. Again, it is 

visually impeccable that the models do perform better in predicting the first ten places 

and fall short when making predictions for the places above the 10th.  

 

Fig 13:  

Comparison of actual values and predictions with weather pre feature selection. 

 

 

More specifically, for RFR and GBM, the actual versus predicted positions are highly 

aligned. There is minimal scatter, indicating a strong correlation between actual and pre-

dicted values, and little deviation from the actual positions.  

 

Meanwhile for the cases of cases of Ridge Regression and SVR the data points show 

more scatter around the red diagonal line compared to other two. This means that the 
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predictions of these two models are less precise, with noticeable deviations from the ac-

tual values 

 

Overall, Random Forest and Gradient Boosting both show excellent performance, with 

minimal scatter and strong alignment with the diagonal line. If computational efficiency 

is not a major concern, Gradient Boosting is preferred due to its ability to manage com-

plex relationships and overfitting better. However, if computational resources are a con-

sideration, Random Forest provides a strong alternative with similar performance. 

 

Post Feature Selection process 

 

Moving forward with the analysis the results after performing feature selection are pre-

sented.  The evaluation metrics for each model were calculated to assess their perfor-

mance in predicting outcomes based on the weather data and are shown in Table 22. Like 

it was mentioned feature selection is a crucial part of the modelling process, and addi-

tional can help counter overfitting a possible problem considering the small dataset.  

 

The performance of each model was measured using three key evaluation metrics, the 

same with the rest of the dissertation, the Mean Squared Error (MSE), R-squared (R²), 

and Mean Absolute Error (MAE). These metrics provide insights into how well the mod-

els fit the data, the proportion of variance explained, and the average magnitude of errors 

in their predictions and are shown in Table 22. 

 

Table 22:  

Evaluation metrics for each model with weather data post feature selection 

Model MSE R-squared MAE 

Random Forest 0.466286  0.981852 0.328840 

Ridge 4.614031 0.820418 1.693496 

Gradient Boosting 0.261956 0.989804 0.259894 

SVR 1.874507 0.827043 0.801347 
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From the table we can extract that the lowest MSE was found in Gradient Boosting 

(GBM). At the same time GMB achieved the highest R-squared value of 0.989. This high 

R-squared error suggests that the model explains 98.9% of the variance in the data, mak-

ing it a highly accurate and reliable model. Concerning the other two evaluation metrics, 

the GBM had MSE and MAE as low as 0.26 and 0.25 respectively. 

  

At the same time the RFR models doesn’t fall far behind. Its r-squared value reaches as 

high as 0.98, showcasing that the model explains approximately 98% of the variance in 

the data. RFR also has low error metrics. The Mean Absolute Error is calculated at 0.32 

8and the Mean Squared Error at 0.466. these metrics show that the model can make robust 

predictions, even if it comes second.  

 

Ridge Regression and the Support Vector Regression come at the last two places at the 

prediction race once more.  

 

Again, as mentioned in the previous sectors, the metrics aren’t enough to fully capture 

the capacities of the models. Figure 14 graphically represents the errors in each models 

prediction. The residuals of each model are depicted as colourful dots scatter around the 

actual values. This graph helps the reader to visually inspect the errors. The Ridge model 

and the SVR makes the most errors, since their residuals are scattered more around the 

line of the actual values.  

 

On the contrary, RFR and GBM have their residuals close to the fine black line. If a dot 

lies exactly on the line, it means that the error rate is 0, meaning that the prediction is 

exactly the actual value. It is interesting to note here, that the RFR makes closer prediction 

than the GBM, up until the 10th place. Then the residuals scatter more. On the other hand, 

GBM has it residual constantly close to the black like. GMB, like the RFR also makes 

larger error after the 10th place.  

 

Fig 14:   

Comparison of actual values and residuals of data with weather post feature selection. 
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However, the residuals are not the only measure that it can visualized to help in the better 

evaluation of the models. Figure 15 and table plot the actual values of versus the predicted 

values for each model.  

 

When looking at Table 23, the reader can compare the actual values to the predicted ones. 

The first columns are the data point, the second the actual position and each column is 

the prediction of each model. In this numerical comparison it is clear that all models can 

make good enough prediction. However, when looking at the Figure 15, the performance 

of the models is clearer.  

 

Table 23:  

Actual and Predicted values for all models with weather post feature selection. 

Entry Actual 

Posi-

tion 

Predicted RF Predicted Ridge Predicted GMB Predicted SVR 
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4716  

 

4 3.910 

 

5.523738 

 

4.121769 

 

3.724995 

 

4328  

 

15 14.230 

 

11.608470 

 

14.69659 

 

13.757339 

 

4954  

 

14 12.765 

 

12.469659 

 

12.988475 12.706861 

 

4484 

 

12 12.700 

 

12.779344 

 

12.730169 

 

14.152659 

 

4066  

 

7 7.000 9.938104 

 

7.1683306 

 

6.357057 

 

 

In Figure 15 the actual versus the predicted values of the models are compared. With this 

plot it is easily visualized the performance of each model. Taking a look, it is noticeable 

that the GBM and the RFR produce very accurate predictions concerning at least the 10 

first place, while both remaining strong with their performance. Ridge regression on the 

other hand and additionally SVR seem to no be able to predict racing outcomes accu-

rately. 

Fig 15:   

Comparison of actual values and their predicted of data with weather post feature selec-

tion. 
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Keeping in mind that the Rdige model tends to smooth over extreme values it makes sense 

that it leads to larger deviations in this scenario.  

 

 In conclusion the Gradient Boosting machine offers the best generalization ability among 

all the models. This is noticed since the model comes with the lowest MSE and the highest 

R-squared. Its predictions, as noticed in Figure 15 are consistently close to actual values, 

with only minor deviations in edge cases.  

 

5.2.3 Comparison 

 

In conclusion, the best model in the enhanced dataset, based on the performance metrics 

is the Gradient Boosting. The model achieved the lowest MSE and the highest R-squared, 

thus being the optimal choice. Random Forest falls not far behind. RFR provides a strong 

alternative. The choice between the two models is hard since they both perform extremely 

well. To aid in the decision of the analysis, the need of comparison of the two perfor-

mances for statistically important difference is risen. This comparison is made using the 

Analysis of Variance, the ANOVA test. This test was conducted using a 5-fold-cros-

vlaidation using both the R-squared (R²) and Mean Squared Error (MSE) metrics. 
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Concerning the results for the R² measure. The results of the ANOVA test for the R² 

indicated that there was no statistically significant difference between the two models. 

More specifically, the F-statistic for R-squared was calculated at 0.0135, and the associ-

ated p-value was 0.9104. The p-value is above the threshold of 0.05 of statistical signifi-

cance, while the F-statistic is very small. The F-statistic shows the variance between the 

models, which in this case in minimal. These results indicated that the models performed 

similarly in explaining the variance of the target variable. 

 

Additionally, to the R² test, the same ANOVA test with 5-fold validation was applied to 

the Mean Squared Error (MSE) values. This extra step was made to further compare the 

models' predictive performance. The test for MSE also showed no significant difference 

between the models.  The F-statistic was measured and had a value of 0.0024 while the 

p-value was calculated at 0.9625. These results suggest that, with respect to MSE, both 

models performed equivalently since the p-value remains significantly higher than the 

threshold of 0.05 and the variance of the models, the F-statistic remains minimal. 

 

In conclusion, the ANOVA test showed that two models are performing almost identi-

cally, and their differences are minimal. The choice between them falls on the preference 

of the analysts. The training time of RFR is faster than the GBM as well as the prediction 

time. Additionally, RFR is easier to implement and more robust. In general, it is cheaper 

to implement, so even though GBM yields numerically better results, since their differ-

ence is not significant, this author choice would probably be the RFR. 

 

Concerning the choice of pre- and post-feature selection process, the accuracy of all mod-

els was better on the dataset pre feature selection, if just the number of the evaluation 

metrics are taken into account. However, the process of feature selection is a process 

sacrificing a bit of accuracy to train models that are generalized better. Even though the 

accuracy of the models drops post feature selection, the models generalize better, thus it 

makes the choice of the post feature selection models the decision of the analysis. 

Among the advantages of picking the model post feature selection, giving ground to better 

generalizations, are the reduced complexity of the models and the lower dimensionality. 

These facts make the training and the prediction process cheaper and faster too.  
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6 Discussion 

In this part of the dissertation, the discussion of the results presented earlier takes place 

and the performance of the predictive models is evaluated. The models were analysed 

with and without weather data. In this section the key findings are highlighted, their align-

ment with prior research and the boarder implication for Formula 1 stakeholders. 

 

The findings of this study highlight the value of predictive analytics, particularly the sta-

tistical models of regression, in understanding Formula 1 race outcomes, with targeting 

the final position. Using historical data, qualitative and quantitative, as well as incorpo-

rating weather data, a part lacking in previous research, this research demonstrated the 

effectiveness of various methods in forecasting driver positions. Additionally, it is dis-

cussed where the importance of incorporating weather data affects the final predictions. 

 

In this study, four different regression models were trained and then evaluated in their 

accuracy of predicting race outcomes. These models were the Random Forest Regressor 

(RF), the Ridge Regression, the Gradient Boosting Machine (GBM) and Support Vector 

Regressor (SVR). Each model was evaluated using three distinct evaluation metrics. The 

metrics were Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared 

(R²) values.  

 

6.1 Model Performance  

 

To summarize the performance of these models, in both cases, Random Forest and Gra-

dient Boosting significantly outperformed the two others, Support Vector Regression and 

Ridge Regression. The two cases mentioned here, being in the data with data and without 

weather information. Their 𝑅2 values always exceeded 0.94. The models showed great 

capability in handling many non-linear relationships between the variables, making them 
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the best-suited models for the complex dynamics of Formula 1 and probably more sports, 

since the sports data hides nonlinear, complex relationships.  

 

Between the two superior models, Random Forest Regressor demonstrated impressive 

performance on accuracy with an R² higher than 0.94 in the preferred case of pre feature 

selection for the basic dataset indicating that approximately 94% of the variance in the 

target variable (race position) could be explained by the model. Additionally, the model 

performed well even after feature selection, with the R² score slightly decreasing to 

0.9245. When the dataset was enhanced with the weather information the model reached 

a R-squared metric of higher of 0.98 both pre and post feature selection.  

 

In comparison, Gradient Boosting Machine indicated a R squared of 0.94 and 0.92 when 

trained in the basic dataset pre and post feature selection respectively. These scores are 

almost identical to the RFR scores. Particularly in the case of weather data, GBM showed 

higher results than RFR with both times almost reaching a 0.99 R squared score.  

 

Support Vector Regression performed moderately good in all cases, while the Ridge 

model had a harder time making accurate predictions, but this was due to its linear nature. 

The choice of the model after all, was to verify the complex nature of sport prediction 

modelling.  

 

To conclude, the best models were GBM and RFR. These findings align with previous 

research, which highlights the robustness of ensemble methods in sports analytics 

(Haghighat et al., 2013), (Van Kesteren & Bergkamp, 2023).  Concerning the model per-

formance and which models, between the GBM of the RFR was better, the ANOVA test 

showed that there is not any significant difference between the two, so it is entirely based 

on the choice of the analysist. Additionally concerning the pre or post after feature selec-

tion, all models lost some of their accuracy only to gain in generalization, as expected 

from the process. 
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Lastly, one point to note on the performance of the models is that all four models in all 

cases had significantly better predictions in the first 10 places, and not so much on the 

last ten.  

 

6.2 Basic and Enhanced Dataset Comparison 

 

In this part we discuss whether the addition of the weather data had the expected effects. 

Witch the enhanced dataset included, the effect was an improvement in accuracy for all 

the models. The results of this addition showed that all the models examined significantly 

improved their accuracy when trained on the enhanced dataset with the weather data.  

 

This conclusion verifies the existing literature, confirming that the inclusion of weather 

improves accuracy, however the extent of its effect was not nearly as important as other 

features like the ones concerning the drivers and team performances. 

 

6.2.1 Key factors 

 

These facts, suggest that other factors such as the team and the driver’s performance play 

a more dominant role.  The top key predictors for the target value of ‘position’ were the 

features presenting the performance of the driver and the team, such as ‘points,’ ‘grid 

position,’ qualifying position,’ and ‘constructor points after the race. These features were 

identified through mutual information and correlation analysis. These results come in har-

mony findings of many researchers mentioned on the related work section (Patil et al., 

2023)(Bell et al., 2016; Van Kesteren & Bergkamp, 2023).  

 

More specifically on the most important factors, the first consideration is on the individual 

skill of the driver. Apart from the feature depicting the personal performance of the driver, 

like the ones mentioned in the previous paragraph, there is the specific feature number_y. 

This feature is the number of the driver, and its effect can measure the personal influence 

of each driver, thus their skill. This feature is not as nearly as important as other 
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performance measures. These finding comes to verify the findings of previous research 

that the team and the car plays an important role in F1 results (Bell et al., 2016; Van 

Kesteren & Bergkamp, 2023).  

 

Additionally, the final position is influenced by the qualification performance. This fea-

ture seems to play an important role. In accordance with previous research (Pfitzner & 

Rishel, 2008; Silva & Silva, 2010), claiming that the qualifying and previous races play 

an important role in F1 results, this dissertation’s feature analysis verifies it too. 

 

Moreover, this research interestingly found weather-related features, only moderately im-

pactful, thus revealing that features like air temperature, rainfall and humidity were iden-

tified as only moderately impactful variables when the Mutual Information and the cor-

relation analysis took place, supporting observations by (Heilmeier, Thomaser, et al., 

2020). Concerning the weather data, it was the Wind Direction was added to the feature 

even though it was not revealed in the correlation analysis nor the mutual information 

analysis, since it is a very important factor in the aerodynamics of the car and its grip on 

the track (Saleh Mousavi-Bafrouyi et al., 2021). 

 

6.2.2 Feature Engineering 

 

For feature engineering part, after the feature selection, simplifying the model and reduc-

ing its complexity, led to a slight trade-off in performance. The model's R² decreased 

slightly, and the MSE increased compared to the pre-feature selection version. However, 

the post-feature selection model demonstrated improved generalization, as evidenced by 

a lower variance between training and test performance. This reduction in variance indi-

cates that the model is less likely to overfit the training data, thus improving its ability to 

generalize to unseen data. 

 

The post-feature selection process slightly reduced performance for both Random Forest 

and Gradient Boosting, but the trade-off was minimal and led to better generalization. 

Thus, for predicting F1 race positions with weather data, Gradient Boosting stands as the 

most effective and optimal model, while Random Forest offers a strong alternative if 
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computational efficiency is prioritized. The feature selection played its role in generali-

zation, but not remarkably notable. Ridge Regression and SVR should be excluded due 

to their subpar predictive accuracy and higher error rates. 

 

The features that are deemed important emphasize the performance history of each driver, 

one might argue that it is their skill that plays an important role in the final position. 

However, the driver's performance is not the only factor playing an important role.  The 

constructor's performance seems to play as much an important role as the driver, possibly 

a more important role, highlighting that Formula 1 is not only about that driver, but also 

about the car, too. 

 

To conclude, the models seem to make more accurate predictions when trained with the 

enhanced dataset. However, there is a chance that the models developed grew too com-

plex and while gaining accuracy the models ended up losing in generalization.  

 

6.3 Implications for stakeholders 

 

The first group of stakeholders are the Formula 1 teams. The teams can allocate resources 

and optimize qualifying performance; thus, guiding team strategy over prioritizing 

weather data collection. Weather is deemed important for the use of tires, however a good 

team and a good driver will always be good, no matter if the small temperature changes 

and a good car will remain good no matter what the weather conditions are.  

 

The second group affected by these findings are those who care about its predictive ap-

plications, like investors. For this group this research provides a robust framework for an 

easy and understandable way the deployment of statistical models. The modelling of this 

research balances accuracy and generalizability, crucial for live race strategies and long-

term planning. 1. 

6.4 Assumptions, Limitations and Threats 
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In this study there were several assumptions made to ensure the quality, validity and ap-

plicability of the findings. The first one is that the study assumes that the data collected 

from Ergstat API and complementary resources like Kaggle are accurate and that they 

accurately represent the Formula 1 races from the season of 2014 to season 2023. This 

assumption is the most crucial as the quality of the data and the reliability depend on it.  

 

Secondly the analysis presumes that the selection of features during feature extraction 

was made correctly. It assumes that the selected features are significant determinants of 

each race and that the whole process was a success. These features are considered to 

represent the most influential variables in the final ranking of each race in Formula 1. 

Lastly, the predictive models employed are assumed to generalize effectively to new un-

seen data.  

 

Additionally, to the assumption, this dissertation comes with its limitation. First, the da-

tasets study is relatively small. Even though considering the fact that the dataset is larger 

than older studies, the data included in this study is deemed relatively small. The small 

dataset may influence the model’s performance leading to high accuracies and its lower 

its generalization. Moreover, there could be data imbalances not caught in the analysis. 

Specific conditions, such as the rain, might have been underrepresented. For example, the 

amount of rain could not be represented, thus potentially limiting robustness of the find-

ings regarding the weather impact.  

 

Another limitation lies in the reliance of correlation analysis and the mutual information 

for feature selection. Even though some of the features selected are confirmed by existing 

research, still they might have overlooked more complex relations.  
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7 Conclusions 

This dissertation aims to answer three questions. Considering the first research question, 

on revieing existing modeling in Formula 1. The comparison of traditional statistical 

models showed that sports prediction is not covered by linear models, such as the Ridge 

model.  The findings of the research showed that for Formula 1, like the rest of the sport 

analysis industry, the effectiveness of ensemble methods is undeniable. The effectiveness 

of the ensemble models is particularly true when considering complex datasets like those 

encountered in F1. The Random Forest Regressor consistently emerged as one of the best-

performing models alongside Gradient Boosting.  

 

Moving to the next research question on the importance of features and the effect of 

weather on the accuracy of the models. The importance of weather data was not assessed 

to be as important as initially thought. From this research, adding to the small research 

done on Formula 1 it seems that the performance metrics, both from the driver and the 

team (constructors) are significantly more important than the effect of the weather. 

Simply put, a good driver remains good no matter the weather, the same goes for the car.  

 

However, even though the weather was not as important as it was initially thought, its 

addition resulted in a noticeable improvement in model performance. All models saw 

increases in R² values and a reduction in their errors. These facts indicate that the weather 

features played a significant role in enhancing predictive accuracy.  

 

The implications of this study are significant for the use of predictive analytics in Formula 

1, an underexplored area. Given its popularity Formula 1 is yet to be explored in sports 

analytics. This research provided some basic insights for teams, which can use the 

knowledge to build on it, for better understanding team competitiveness and allocating 

their resources. Additionally, it can help investors and analysts to better forecast race 

outcomes and understand the sport. 
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7.1 Future Work 

 

In terms of recommendations and suggestions for future research, first, the research can 

address some of the already identified limitations. For example, it can incorporate larger 

and more diverse datasets. For example, in future work real-time telemetry data can be 

added or expanded weather variables measuring more features or quantifying feature like 

‘rain’.   

 

Furthermore, the exploration of advanced ML techniques is recommended. For instance, 

Recurrent Neural Networks could be deployed (RNNs) or Long-Short-Term Models 

(LSTMs) can be employed for deeper understanding of the complexities of the feature 

from the models. Models like the one mentioned above can have better results, since they 

have the ability to capture temporal dependencies. However, even a Multilayer Percep-

tron would be suggested to yield better results.  

 

Additionally, another suggestion is to include driver-specific metrics. For example, the 

driver’s psychology is a metric that can hardly be quantified but can affect performance 

or team dynamics. Apart from the driver’s psychology, one can aim to include features 

like driver’s injuries. Another promising feature to add to is the influence of social media 

on drivers and teams’ performance. Social media might affect performance in ways that 

have yet to be determined. These complex features are hard to quantify but can help train 

models and improve our understanding of the sport. 
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9 Appendix 

In the appendix the reader can find the source code, as well as a data sample 

9.1 Source code 

 

Circuits 

# Convert the "Street" and "Permanent" to numeric values 

numeric_circuit_types = {name: 1 if circuit_type == "Street" else 0 for name, circuit_type 

in circuit_types.items()} 

# Map the circuit names in `circuits_final` to the new numeric values 

df_circuits['circuit_type'] = df_circuits['name'].map(numeric_circuit_types) 

 

df_circuits.head()   

drivers 

df_drivers['driver_name'] = df_drivers['forename'] + ' ' + df_drivers['surname'] 

 

qualifications 

# Function to convert 'minutes:seconds.milliseconds' to total seconds (float) 

def convert_time_to_seconds(time_str): 

    if in instance(time_str, str) and ':' in time_str: 

        minutes, seconds = time_str.split(':') 

        total_seconds = int(minutes) * 60 + float(seconds) 

        return total_seconds 

    return pd.to_numeric(time_str, errors='coerce')  # Handles NaN  
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df_qualies['q1'] = df_qualies['q1'].apply(convert_time_to_seconds) 

df_qualies['q2'] = df_qualies['q2'].apply(convert_time_to_seconds) 

df_qualies['q3'] = df_qualies['q3'].apply(convert_time_to_seconds) 

 

# Check result 

df_qualies.info() 

df_qualies['qualies_best'] = df_qualies[['q1', 'q2', 'q3']].min(axis=1) 

 

weather 

temperatures classification 

# k_means for temp classification 

from sklearn.cluster import KMeans 

import numpy as np 

track_temps = weather_df[['TrackTemp']].values 

 

kmeans = KMeans(n_clusters=3, random_state=42) # 3 clusters - cold, warm, hot 

weather_df['TempCluster'] = kmeans.fit_predict(track_temps) 

 

# Label clusters based on temperature 

cluster_means = weather_df.groupby('TempCluster')['TrackTemp'].mean().sort_values() 

 

# Map cluster labels to "cold", "warm", "hot" 

cluster_label_mapping = {cluster: label for cluster, label in zip(cluster_means.index, 

['cold', 'warm', 'hot'])} 

weather_df['TempLabel'] = weather_df['TempCluster'].map(cluster_label_mapping) 

weather_df[['season', 'round', 'TrackTemp', 'TempLabel', 'TempCluster']].head() 

Rainfall 

weather_df['Rainfall'] = weather_df['Rainfall'].astype(bool) 

 

# Define the rain status for each round and season 
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round_rain_status = weather_df.groupby(['season', 'round'])['Rainfall'].apply( 

    lambda x: 2 if x.nunique() > 1 else (1 if x.any() else 0) 

).reset_index(name='rain') 

 

round_rain_status 

# 125 races = correct 

Optimal Timestamps  

weather_df['Time'] = weather_df['Time'].astype(str) 

# Remove 'days' prefix  

weather_df['Time'] = pd.to_timedelta(weather_df['Time'].str.split(' ').str[-1]) 

# Calculate seconds since start 

weather_df['SecondsSinceStart'] = weather_df['Time'].dt.total_seconds() 

weather_df.head(10) 

from sklearn.cluster import KMeans 

import matplotlib.pyplot as plt 

 

# use elbow method to decide optimal number 

X = weather_df[['SecondsSinceStart']] 

 

inertia = [] #stores the squared distances 

for n in range(1, 21):  # Try different numbers of clusters (1 to 20) 

    kmeans = KMeans(n_clusters=n, random_state=42) 

    kmeans.fit(X) 

    inertia.append(kmeans.inertia_) 

 

# Plot to observe the elbow point 

plt.plot(range(1, 21), inertia, marker='o') 

plt.xlabel('Number of Clusters') 

plt.ylabel('Inertia') 
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plt.title('Elbow Method for Optimal K') 

plt.show() 

 

optimal_clusters = 3 #elbow around! 

# Kmeans again 

X = weather_df[['SecondsSinceStart']] 

kmeans = KMeans(n_clusters=optimal_clusters, random_state=42) 

weather_df['Cluster'] = kmeans.fit_predict(X) 

# cluster centers 

cluster_centers = kmeans.cluster_centers_.flatten() 

# select the closest row to each cluster center 

def get_closest_rows(group, cluster_centers): 

    #  distance of each timestamp to the cluster centers 

    distances = np.abs(group['SecondsSinceStart'].values[:, None] - cluster_centers) 

     

    # get the closest timestamp 

    closest_rows = [] 

    for center in cluster_centers: 

        closest_idx = np.argmin(np.abs(group['SecondsSinceStart'].values - center)) 

        closest_row = group.iloc[closest_idx] 

        # closest_rows.append(group.iloc[closest_idx]) 

         

        # avoid duplicates, bcs there was 

        if closest_row['SecondsSinceStart'] not in [row['SecondsSinceStart'] for row in clos-

est_rows]: 

            closest_rows.append(closest_row) 

     

    return pd.DataFrame(closest_rows) 

# Group by 'season' and 'round', and apply the function 
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final_weather_df = weather_df.groupby(['season', 'round']).apply(get_closest_rows, clus-

ter_centers=cluster_centers).reset_index(drop=True) 

final_weather_df.head(15) 

 

Models 

columns_to_drop = ['country', 'driver_name', 'code', 'con_name', 'time', 'Time', 'TempLa-

bel'] 

 

df = df_final_data.copy() 

df = df.drop(columns=columns_to_drop) 

df.info() 

 user manual, data samples, etc. 

All features 

target = 'position' 

 

# Include all columns except the target 'position' 

features = [col for col in df.columns if col != target] 

 

# Separate the features and target 

X = df[features] 

y = df[target] 

 

# Identify numerical and categorical features 

numerical_features = X.select_dtypes(include=['float64', 'int64']).columns.tolist() 

categorical_features = X.select_dtypes(include=['object']).columns.tolist() 

 

# Print the identified features 

print("Numerical features:", numerical_features) 

print("Categorical features:", categorical_features) 

Feature selection without weather 
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target = 'position' 

features = ['points', 'pos_after_race', 'con_pos_after_race', 'grid', 'points_after_race',  

            'quali_pos', 'qualies_best_secs', 'number_y', 'circuit_type', 'con_wins_after_race'] 

 

# Separate the features and target 

X = df[features] 

y = df[target] 

 

numerical_features = X.select_dtypes(include=['float64', 'int64']).columns.tolist() 

categorical_features = X.select_dtypes(include=['object']).columns.tolist() 

 

print("Numerical features:", numerical_features) 

print("Categorical features:", categorical_features) 

 

Feature selection with weather 

target = 'position' 

features = ['points', 'pos_after_race', 'con_pos_after_race', 'con_points_after_race', 

            'grid', 'points_after_race', 'quali_pos', 'qualies_best_secs', 'number_y', 

            'circuit_type', 'Pressure', 'TempCluster', 'Humidity', 'AirTemp' ] 

# add air pressure 

 

# Separate the features and target 

X = df[features] 

y = df[target] 

 

numerical_features = X.select_dtypes(include=['float64', 'int64']).columns.tolist() 

categorical_features = X.select_dtypes(include=['object']).columns.tolist() 

 

print("Numerical features:", numerical_features) 
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print("Categorical features:", categorical_features) 

 

Random Forest Regressor 

best_pipeline = Pipeline(steps=[ 

    ('preprocessor', preprocessor), 

    ('regressor', RandomForestRegressor(n_estimators=200, max_depth=30, min_sam-

ples_split=2, random_state=42)) 

]) 

 

# Fit the pipeline on the training data 

best_pipeline.fit(X_train, y_train) 

# Make predictions on the test set 

y_pred_rf = best_pipeline.predict(X_test) 

# Compare the predicted positions with the actual positions 

comparison_df = pd.DataFrame({ 

    'Actual Position': y_test, 

    'Predicted Position_RF': y_pred_rf 

}) 

# Display the first few rows of the comparison 

print(comparison_df.head()) 

 

# Evaluate the model's performance  

mae = mean_absolute_error(y_test, y_pred_rf) 

mse = mean_squared_error(y_test, y_pred_rf) 

r2 = r2_score(y_test, y_pred_rf) 

print(f'Mean Absolute Error: {mae}') 

print(f"Mean Squared Error (MSE): {mse}") 

print(f"R-squared: {r2}") 

 

Ridge 
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from sklearn.linear_model import Ridge 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import mean_squared_error, r2_score 

 

ridge_model = Ridge() 

 

 

param_grid_ridge = { 

    'alpha': [0.1, 1, 10, 100]  # Regularization strength, larger values mean more regulari-

zation 

} 

# GridSearchCV with Ridge Regression 

grid_search_ridge = GridSearchCV(ridge_model, param_grid_ridge, cv=5, n_jobs=-1, 

scoring='neg_mean_squared_error') 

# Create the pipeline with preprocessor and Ridge model 

pipeline_ridge = Pipeline(steps=[ 

    ('preprocessor', preprocessor), 

    ('regressor', grid_search_ridge) 

]) 

# Fit the grid search to the data 

pipeline_ridge.fit(X_train, y_train) 

# Get the best model from grid search 

best_ridge_model = pipeline_ridge.named_steps['regressor'].best_estimator_ 

y_pred_ridge = pipeline_ridge.predict(X_test) 

 

# Evaluate the model 

mse_ridge = mean_squared_error(y_test, y_pred_ridge) 

mae_ridge = mean_absolute_error(y_test, y_pred_ridge) 

r2_ridge = r2_score(y_test, y_pred_ridge) 

print(f"Best Hyperparameters for Ridge: {grid_search_ridge.best_params_}") 
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print(f"Mean Squared Error (MSE) for Ridge: {mse_ridge}") 

print(f"Mean Absolute Error (MAE) for Ridge: {mae_ridge}") 

print(f"R-squared for Ridge: {r2_ridge}") 

 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import mean_squared_error, r2_score 

 

Gradient Boosting 

# Define the Gradient Boosting model 

gbm_model = GradientBoostingRegressor() 

 

# Define the hyperparameters to tune 

param_grid_gbm = { 

    'n_estimators': [100, 200, 300],  # Number of boosting stages (trees) 

    'learning_rate': [0.01, 0.1, 0.2],  # Learning rate 

    'max_depth': [3, 4, 5],  # Max depth of each tree 

} 

 

# GridSearchCV with Gradient Boosting 

grid_search_gbm = GridSearchCV(gbm_model, param_grid_gbm, cv=5, n_jobs=-1, 

scoring='neg_mean_squared_error') 

# Fit the grid search to the data 

grid_search_gbm.fit(X_train, y_train) 

# Get the best model from grid search 

best_gbm_model = grid_search_gbm.best_estimator_ 

# Make predictions with the best model 

y_pred_gbm = best_gbm_model.predict(X_test) 

 

# Evaluate the model 
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mse_gbm = mean_squared_error(y_test, y_pred_gbm) 

mae_gbm = mean_absolute_error(y_test, y_pred_gbm) 

r2_gbm = r2_score(y_test, y_pred_gbm) 

print(f"Best Hyperparameters for GBM: {grid_search_gbm.best_params_}") 

print(f"Mean Squared Error (MSE) for GBM: {mse_gbm}") 

print(f"Mean Absolute Error (MAE) for GBM: {mae_gbm}") 

print(f"R-squared for GBM: {r2_gbm}") 

 

Support Vector Regression 

from sklearn.svm import SVR 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import mean_squared_error, r2_score 

 

# Define the SVR model with RBF kernel 

svr_model = SVR(kernel='rbf') 

 

# Define the hyperparameters to tune 

param_grid_svr = { 

    'C': [0.1, 1, 10, 100],         # Regularization parameter 

    'epsilon': [0.01, 0.1, 0.2],    # Margin of tolerance for the regression 

    'kernel': ['rbf'],              # Using the Radial Basis Function kernel 

} 

 

# GridSearchCV with SVM 

grid_search_svr = GridSearchCV(svr_model, param_grid_svr, cv=5, n_jobs=-1, scor-

ing='neg_mean_squared_error') 

 

# Fit the grid search to the data 

grid_search_svr.fit(X_train, y_train) 
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# Get the best model from grid search 

best_svr_model = grid_search_svr.best_estimator_ 

 

# Make predictions with the best model 

y_pred_svr = best_svr_model.predict(X_test) 

# Evaluate the model 

mse_svr = mean_squared_error(y_test, y_pred_svr) 

r2_svr = r2_score(y_test, y_pred_svr) 

mae_svr = mean_absolute_error(y_test, y_pred_svr) 

print(f"Best Hyperparameters for SVR: {grid_search_svr.best_params_}") 

print(f"Mean Squared Error (MSE) for SVR: {mse_svr}") 

print(f"R-squared for SVR: {r2_svr}") 

print(f"Mean Absolute Error (MAE) for SVR: {mae_svr}") 

 

Anova Testing 

from sklearn.model_selection import cross_val_score 

from scipy import stats 

import numpy as np 

# Perform 5-fold cross-validation and collect MSE  

gbr_mse_scores = cross_val_score(gbm_model, X, y, cv=5, scor-

ing='neg_mean_squared_error') 

rfr_mse_scores = cross_val_score(best_model, X, y, cv=5, scor-

ing='neg_mean_squared_error') 

 

#  scoring is 'neg_mean_squared_error', convert it to positive MSE 

gbr_mse_scores = -gbr_mse_scores  # Convert negative MSE to positive 

rfr_mse_scores = -rfr_mse_scores  # Convert negative MSE to positive 

 

# Display the MSE scores for each fold 

print("Random Forest MSE scores for each fold:", rfr_mse_scores) 
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print("Gradient Boosting MSE scores for each fold:", gbr_mse_scores) 

 

# Calculate the mean MSE for each model 

mean_rfr_mse = np.mean(rfr_mse_scores) 

mean_gbr_mse = np.mean(gbr_mse_scores) 

print(f"Random Forest Mean MSE: {mean_rfr_mse}") 

print(f"Gradient Boosting Mean MSE: {mean_gbr_mse}") 

 

# Perform the ANOVA test on the MSE scores of both models 

f_stat_mse, p_value_mse = stats.f_oneway(rfr_mse_scores, gbr_mse_scores) 

# Output the results of the ANOVA test 

print(f"MSE - F-Statistic: {f_stat_mse}") 

print(f"MSE - P-Value: {p_value_mse}") 

if p_value_mse < 0.05: 

    print("There are significant differences between the models' performances in terms of 

MSE.") 

else: 

    print("No significant differences found in terms of MSE.") 

 

9.2 Data Samples 

In this subsection of the dissertation a sample of the dataset used is presented. First the 

sample of the data without weather information is presented and then the dataset without 

the weather information in presented.  
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9.2.1 Without Weather 

 

 

 

 

 

 

 

9.2.2 With weather 
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