

I

No portion of the work referred to in the dissertation has been submitted in support of

an application for another degree or qualification of this or any other university or other

institution of learning.

Yiannis Kanellopoulos

September 2003

II

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the help of many people.

I am grateful to my family and Maria the Best, for the continuous support of all

kinds they have provided me throughout this year.

I would also like to thank all my friends here in Manchester Imran, Angelos,

Helen, Matina and Georgia for their help either in my academic or in my personal life.

I owe special thanks to my supervisor, Christos Tjortjis, whose guidance and

speciality have been crucial for the completion of this project.

III

Abstract

This project investigates the application of data mining techniques such as

clustering, in order to facilitate the understanding of programs. Program

understanding is a very crucial step of the maintenance of a software system. This

report examines the theory of Program Understanding and Knowledge Discovery in

Databases, while some previous approaches on this problem are reviewed. The next

step is the presentation of the Preprocessing Application, which consists of three

parts: the Model of the Input Data, which is the specification of the program entities

and their attributes, the Front End (G.U.I.) and the Back-End (Algorithm) that parses

the source code and stores the data in the database. This presentation covers the

Requirements gathering, Design and Implementation phases. What follows is the

testing of the Preprocessing Application and the evaluation of its outcome. Two

applications, CAccessReport and CompDB, are used as samples. Their actual

structure is compared with the outcome of the clustering analysis of their respective

input models. IBM’s Intelligent Miner, is used for this purpose.

IV

Table of Contents

ACKNOWLEDGEMENTS .. II

ABSTRACT .. III

TABLE OF CONTENTS .. IV

TABLE OF FIGURES .. VII

LIST OF ABBREVIATIONS ... X

1. INTRODUCTION .. 1

1.1 PROBLEM DOMAIN DESCRIPTION .. 1

1.2 DISSERTATION OBJECTIVES .. 2

1.3 DISSERTATION STRUCTURE ... 3

2. BACKGROUND CHAPTER ... 5

2.1 SOFTWARE MAINTENANCE ... 5

2.1.1 Categories of software maintenance changes .. 6

2.2 PROGRAM UNDERSTANDING .. 7

2.2.1 Program understanding models ... 9

2.2.2 Mental Models .. 10

2.3 PROGRAM UNDERSTANDING STRATEGIES ... 11

2.3.1 Top down model ... 11

2.3.2 Bottom up model ... 13

2.3.3 Opportunistic model ... 14

2.4 KNOWLEDGE DISCOVERY IN DATABASES ... 16

2.5 KDD AND DATA MINING .. 17

2.5.1 Steps of the KDD process ... 18

2.6 DATA MINING TASKS .. 19

2.6.1 Classification .. 20

2.6.2 Regression .. 20

2.6.3 Clustering ... 20

2.7 KDD PROCESS AND PROGRAM UNDERSTANDING: PREVIOUS SOLUTIONS 22

2.7.1 USING DATA MINING TO ASSESS SOFTWARE RELIABILITY .. 22

2.7.2 A METHOD FOR LEGACY SYSTEMS MAINTENANCE BY MINING DATA EXTRACTED FROM

SOURCE CODE. ... 24

2.7.3 USING AUTOMATIC CLUSTERING TO PRODUCE HIGH-LEVEL SYSTEM ORGANISATIONS OF

SOURCE CODE .. 26

2.7.4 A SOFTWARE EVALUATION MODEL USING COMPONENT ASSOCIATION VIEWS 29

3. REQUIREMENTS CHAPTER ... 31

V

3.1 INTRODUCTION ... 31

3.2 MODEL OF THE INPUT DATA ... 32

3.2.1 Requirements of the Model of the Input Data ... 32

3.3 PREPROCESSING APPLICATION .. 33

3.3.1 Requirements of the Front-End Part (G.U.I.)... 33

3.3.2 Requirements of the Back-End Part (Algorithm) .. 35

3.4 REQUIREMENTS OF THE DATA MINING TOOL .. 35

4. DESIGN CHAPTER ... 36

4.1 INTRODUCTION ... 36

4.2 DESIGN OF THE MODEL OF INPUT DATA ... 37

4.3 DESIGN OF THE PREPROCESSING APPLICATION ... 41

4.3.1 Functionalities of the Front-End (G.U.I.) .. 41

4.3.2 Description of the Back-End (Algorithm) ... 42

4.3.3 Functionalities of the Back-End (Algorithm) ... 44

5. IMPLEMENTATION CHAPTER .. 49

5.1 IMPLEMENTATION PHASE AND TOOLS ... 49

5.2 IMPLEMENTATION OF THE MODEL OF DATA ... 50

5.3 IMPLEMENTATION OF THE PREPROCESSING APPLICATION ... 52

5.3.1 Front-End (G.U.I.) ... 52

5.3.2 Back-End (Algorithm) .. 55

6. TESTING CHAPTER .. 59

6.1 INTRODUCTION ... 59

6.2 TESTING OF THE PREPROCESSING APPLICATION.. 59

6.2.1 Step 1: Preprocessing the “_Form.h” .. 59

6.2.2 Step 2: Insertion of data in Classes table ... 61

6.2.3 Step 3: Insertion of data in Member_Functions table .. 61

6.2.4 Step 4: Insertion of data in Function_Parameters table .. 62

7. RESULTS – EVALUATION CHAPTER ... 64

7.1 INTRODUCTION ... 64

7.2 EVALUATION OF THE PREPROCESSING APPLICATION .. 65

7.2.1 Description and General Characteristics of the CAccessReport system 65

7.2.1.1 CAccessReport: Classes Analysis .. 65

7.2.1.2 CAccessReport: Member Functions Analysis .. 68

7.2.1.3 CAccessReport: Analysis of the parameters of member functions... 74

7.2.1.4 CAccessReport: Conclusions ... 78

7.2.2 Description and General Characteristics of the CompDB system 79

7.2.2.1 CompDB: Classes Analysis ... 80

7.2.2.2 CompDB: Member Data Analysis ... 84

VI

7.2.2.3 CompDB: Member Functions Analysis ... 89

7.2.2.4 CompDB: Analysis of thr Parameters of Member Functions ... 94

7.2.2.5 CompDB: Conclusions .. 97

8. CONCLUSIONS – FUTURE WORK CHAPTER .. 99

8.1 INTRODUCTION ... 99

8.2 OVERVIEW .. 99

8.3 LESSONS LEARNED .. 100

8.4 CONCLUSIONS ... 101

8.4.1 Conclusions for the methodology ... 101

8.4.2 Conclusions for the Preprocessing Application ... 101

8.5 FUTURE WORK .. 103

REFERENCES.. 105

PAPERS ... 105

BOOKS .. 106

URLS .. 106

APPENDIX .. 108

SCREENSHOTS FROM THE ANALYSIS OF COMPDB APPLICATION .. 108

CompDB: Screenshots from Classes Analysis ... 108

CompDB: Screenshots from Member Data Analysis ... 111

CompDB: Screenshots from Member Functions Analysis ... 114

CompDB: Screenshots from Parameters of Member Functions Analysis 117

VII

Table of Figures

FIGURE 2-1: WATERFALL MODEL OF A SOFTWARE SYSTEM LIFE CYCLE [TAKANG, GRUPP 1996] 6

FIGURE 2-3: BOTTOM-UP COMPREHENSION PROCESS [TAKANG, GRUPP 1996] 13

FIGURE 2-5: A SIMPLE CLUSTERING OF A LOAN SET INTO 3 CLUSTERS [FAYYAD ET AL. 1996] 21

FIGURE 2-6: AUTOMATIC SOFTWARE MODULARISATION TECHNIQUE (ENVIRONMENT) [MANCORIDIS ET

AL. 1998] ... 27

FIGURE 4-1: BASIC IDEA OF THE DATABASE STORE OF THE MODEL OF THE INPUT DATA 37

FIGURE 4-2: OPEN FILE FUNCTION .. 42

FIGURE 4-3: PROVIDE FEEDBACK TO THE USER FUNCTION ... 42

FIGURE 4-4: PREPROCESSING ALGORITHM .. 43

FIGURE 4-5: CLASS DIAGRAM OF THE BACK-END (ALGORITHM) OF THE PREPROCESSING APPLICATION44

FIGURE 4-6: FILE CHOOSER OF THE PREPROCESSING APPLICATION WITH THE C++ FILES FILTER

IMPLEMENTED.. 48

FIGURE 5-1: STRUCTURE OF THE SYSTEM .. 49

FIGURE 5-2: PREPROCESSINGDB DATABASE SCHEMA ... 50

FIGURE 5-3: “C++ SOURCE CODE PREPROCESSING APPLICATION” WINDOW .. 53

FIGURE 5-4: “FILE PREPROCESSING” FORM ... 54

FIGURE5-5: SUCCESSFUL EXECUTION OF THE EXTRACTCLASSDATA FUNCTION 56

FIGURE5-6: SUCCESSFUL EXECUTION OF THE FUNCTIONS EXTRACTMEMBERDATA AND

MEMBERDATACATEGORY. ... 57

FIGURE5-7: SUCCESSFUL EXECUTION OF THE FUNCTIONS EXTRACTMEMBERFUNCTIONSDATA AND

MEMBERFUNCTIONCATEGORY. .. 58

FIGURE6-1: FEEDBACK PROVIDED TO THE USER ABOUT THE PREPROCESSING OF THE _FORM.H FILE 60

FIGURE6-2: INSERTION OF DATA IN THE CLASSES TABLE .. 61

FIGURE6-3: INSERTION OF DATA IN THE MEMBER_FUNCTIONS TABLE (IN THE RED CIRCLE THERE IS THE

NUMBER OF THE NEW RECORDS) .. 62

FIGURE6-4: INSERTION OF DATA IN THE FUNCTION_PARAMETERS TABLE (IN THE RED CIRCLE THERE IS THE

NUMBER OF THE NEW RECORDS) .. 63

FIGURE7-1: CACCESSREPORT: FIRST CLUSTER OF THE CLASSES TABLE (SMALL SIZE CLASSES). 66

FIGURE7-2: CACCESSREPORT: SECOND CLUSTER OF THE CLASSES TABLE (MEDIUM SIZE CLASSES). 67

FIGURE7-3: CACCESSREPORT: THIRD CLUSTER OF THE CLASSES TABLE (LARGE SIZE CLASSES). 67

FIGURE7-4: CACCESSREPORT: FIRST CLUSTER OF THE MEMBER_FUNCTIONS TABLE. PUBLIC FUNCTIONS

WITH PARAMETERS .. 68

FIGURE7-5: CACCESSREPORT: FIRST CLUSTER OF THE MEMBER_FUNCTIONS TABLE. PUBLIC FUNCTIONS

THAT RETURN VOID OR NULL ... 69

FIGURE7-6: CACCESSREPORT: SECOND CLUSTER OF THE MEMBER_FUNCTIONS TABLE. PUBLIC FUNCTIONS

WITH NO PARAMETERS ... 70

FIGURE7-7: CACCESSREPORT: SECOND CLUSTER OF THE MEMBER_FUNCTIONS TABLE. PUBLIC FUNCTIONS

THAT RETURN CSTRING ... 71

VIII

FIGURE7-8: CACCESSREPORT: THIRD CLUSTER OF THE MEMBER_FUNCTIONS TABLE. PUBLIC FUNCTIONS

WITH PARAMETERS AND NO PARAMETERS ... 72

FIGURE7-9: CACCESSREPORT: THIRD CLUSTER OF THE MEMBER_FUNCTIONS TABLE. PUBLIC FUNCTIONS

THAT RETURN VARIANT AND LPDISPATCH ... 73

FIGURE7-10: CACCESSREPORT: FIRST CLUSTER OF THE FUNCTION_PARAMETERS TABLE. PARAMETERS BY

VALUE.. 74

FIGURE7-11: CACCESSREPORT: FIRST CLUSTER OF THE FUNCTION_PARAMETERS TABLE. PARAMETERS OF

TYPE LPCSTR, LPDISPATCH AND VARIANT ... 75

FIGURE7-12: CACCESSREPORT: SECOND CLUSTER OF THE FUNCTION_PARAMETERS TABLE. PARAMETERS

BY VALUE .. 76

FIGURE7-13: CACCESSREPORT: SECOND CLUSTER OF THE FUNCTION_PARAMETERS TABLE.

PARAMETERS OF TYPE BOOL, SHORT AND LONG .. 76

FIGURE7-14: CACCESSREPORT: THIRD CLUSTER OF THE FUNCTION_PARAMETERS TABLE. PARAMETERS

BY REFERENCE ... 77

FIGURE7-15: CACCESSREPORT: SECOND CLUSTER OF THE FUNCTION_PARAMETERS TABLE. PARAMETERS

OF TYPE VARIANT ... 78

FIGURE7-16: COMPDB: FIRST CLUSTER CLASSES TABLE. INFORMATION ABOUT THE SUPER CLASSES 81

FIGURE7-17: COMPDB: SECOND CLUSTER OF CLASSES TABLE. INFORMATION ABOUT THE SUPER

CLASSES ... 82

FIGURE7-18: COMPDB: THIRD CLUSTER OF CLASSES TABLE. INFORMATION THAT DESCRIBES THE SUPER

CLASSES ... 83

FIGURE7-19: COMPDB: FIRST CLUSTER OF MEMBER_DATA TABLE. DISTRIBUTION OF THE MEMBER DATA

AMONG THE CLASSES OF THE COMPDB APPLICATION .. 85

FIGURE7-20: COMPDB: FIRST CLUSTER OF MEMBE_DATA TABLE. TYPES OF MEMBER DATA 85

FIGURE7-21: DISTRIBUTION OF THE MEMBER DATA OF THE SECOND CLUSTER AMONG THE CLASSES OF

THE COMPDB APPLICATION ... 86

FIGURE7-22: COMPDB: SECOND CLUSTER OF MEMBER_DATA TABLE. TYPES OF MEMBER DATA 87

FIGURE7-23: COMPDB: THIRD CLUSTER OF MEMBER_DATA. DISTRIBUTION OF THE MEMBER DATA

AMONG THE CLASSES OF THE COMPDB APPLICATION .. 88

FIGURE7-24: COMPDB: THIRD CLUSTER OF MEMBER_DATA TABLE. TYPES OF MEMBER DATA 89

FIGURE7-25: COMPDB: FIRST CLUSTER OF MEMBER_FUNCTIONS TABLE. RETURN TYPES OF THE MEMBER

FUNCTIONS .. 90

FIGURE7-26: COMPDB: FIRST CLUSTER OF MEMBER_FUNCTIONS TABLE. DISTRIBUTION OF THE MEMBER

FUNCTIONS AMONG THE CLASSES OF THE COMPDB APPLICATION ... 91

FIGURE7-27: COMPDB: SECOND CLUSTER OF MEMBER_FUNCTIONS TABLE. RETURN TYPES OF THE

MEMBER FUNCTIONS .. 92

FIGURE7-28: DISTRIBUTION OF THE MEMBER FUNCTIONS OF THE FIRST CLUSTER AMONG THEIR CLASSES

 .. 92

FIGURE7-29: COMPDB: THIRD CLUSTER OF MEMBER_FUNCTIONS TABLE. RETURN TYPES OF THE MEMBER

FUNCTIONS .. 93

IX

FIGURE7-30 COMPDB: THIRD CLUSTER OF MEMBER_FUNCTIONS TABLE. DISTRIBUTION OF THE MEMBER

FUNCTIONS AMONG THEIR CLASSES ... 94

FIGURE7-31: COMPDB: FIRST CLUSTER OF FUNCTION_PARAMETERS TABLE TYPES OF PARAMETERS. 95

FIGURE7-32: COMPDB: SECOND CLUSTER OF FUNCTION_PARAMETERS TABLE TYPES OF PARAMETERS .. 96

FIGURE7-33 COMPDB: THIRD CLUSTER OF FUNCTION_PARAMETERS TABLE. TYPES OF PARAMETERS 97

FIGUREA-1: COMPDB: FIRST CLUSTER CLASSES TABLE. DISTRIBUTION OF THE VALUES THAT REPRESENT

THE NUMBER OF THE PUBLIC FUNCTIONS .. 108

FIGUREA-2: COMPDB: FIRST CLUSTER CLASSES TABLE. DISTRIBUTION OF THE VALUES THAT REPRESENT

THE NUMBER OF THE PROTECTED FUNCTIONS ... 109

FIGUREA-3: COMPDB: SECOND CLUSTER OF CLASSES TABLE. DISTRIBUTION OF THE VALUES THAT

REPRESENT THE NUMBER OF THE PUBLIC FUNCTIONS .. 109

FIGUREA-4: COMPDB: SECOND CLUSTER OF CLASSES TABLE. DISTRIBUTION OF THE VALUES THAT

REPRESENT THE NUMBER OF THE PROTECTED FUNCTIONS ... 110

FIGUREA-5: COMPDB: THIRD CLUSTER OF CLASSES TABLE. DISTRIBUTION OF THE VALUES THAT

REPRESENT THE NUMBER OF THE PUBLIC FUNCTIONS .. 110

FIGUREA-6: COMPDB: THIRD CLUSTER OF CLASSES TABLE. DISTRIBUTION OF THE VALUES THAT

REPRESENT THE NUMBER OF THE PROTECTED FUNCTIONS ... 111

FIGUREA-7: COMPDB: FIRST CLUSTER OF MEMBER_DATA TABLE. CATEGORY OF MEMBER DATA 111

FIGUREA-8: COMPDB: FIRST CLUSTER OF MEMBER_DATA TABLE. INFORMATION THAT DESCRIBES IF THE

MEMBER DATA ARE POINTERS OR NOT ... 112

FIGUREA-9: COMPDB: SECOND CLUSTER OF MEMBER_DATA TABLE. CATEGORY OF MEMBER DATA 112

FIGUREA-10: COMPDB: SECOND CLUSTER OF MEMBER_DATA TABLE. INFORMATION THAT DESCRIBES IF

THE MEMBER DATA ARE POINTERS OR NOT .. 113

FIGUREA-11: COMPDB: THIRD CLUSTER OF MEMBER_DATA TABLE CATEGORIES OF MEMBER DATA 113

FIGUREA-12: COMPDB: THIRD CLUSTER OF MEMBER_DATA TABLE. INFORMATION THAT DESCRIBES IF THE

MEMBER DATA ARE POINTERS OR NOT ... 114

FIGUREA-13: COMPDB: FIRST CLUSTER OF MEMBER_FUNCTIONS TABLE. CATEGORIES OF THE MEMBER

FUNCTIONS .. 114

FIGUREA-14: COMPDB: FIRST CLUSTER OF MEMBER_FUNCTIONS TABLE. NUMBER OF PARAMETERS OF THE

MEMBER FUNCTIONS .. 115

FIGUREA-15: COMPDB: SECOND CLUSTER OF MEMBER_FUNCTIONS TABLE. CATEGORIES OF THE MEMBER

FUNCTIONS .. 115

FIGUREA-16: COMPDB: SECOND CLUSTER OF MEMBER_FUNCTIONS TABLE. NUMBER OF PARAMETERS OF

THE MEMBER FUNCTIONS ... 116

FIGUREA-17: COMPDB: THIRD CLUSTER OF MEMBER_FUNCTIONS TABLE. CATEGORIES OF THE MEMBER

FUNCTIONS .. 116

FIGUREA-18 COMPDB: THIRD CLUSTER OF MEMBER_FUNCTIONS TABLE. NUMBER OF PARAMETERS OF THE

MEMBER FUNCTIONS .. 117

FIGUREA-19: COMPDB: FIRST CLUSTER OF FUNCTION_PARAMETERS TABLE. USE OF PARAMETERS 117

FIGUREA-20 COMPDB: SECOND CLUSTER OF FUNCTION_PARAMETERS TABLE USE OF PARAMETERS ... 118

X

FIGUREA-21 COMPDB: THIRD CLUSTER OF FUNCTION_PARAMETERS TABLE USE OF PARAMETERS 118

List of Abbreviations

1. G.U.I.: Graphical User Interface

2. D.B.M.S.: Database Management System

Introduction

1

1. Introduction

1.1 Problem Domain Description

One of the most distinctive things of modern society is the use of software systems

in almost every aspect of social and economical life during the last few decades.

Manufacturing industries, financial institutions, information services and construction

industries are examples of the use of software systems and the increasing reliance on

them. In order to be useful and have added value, these systems should meet certain

criteria. They have to operate correctly, be flexible, functional and always available.

In order to meet these criteria software systems may be subject to changes during their

lifetime.

Management and control of these changes are of vital importance, as great amounts

of time and effort are required in order to keep software systems operational after

release. Several studies, which investigated the costs of changes carried out on a

system after delivery, have shown that expenditures on these changes are estimated at

about 40%-70% of the entire life cycle of the system [Lientz et al. 1978].

The discipline that is concerned with changes related to a software system after

delivery is known as software maintenance. When trying to comprehend a legacy

software system, a major problem that software maintainers encounter is that

documentation may not be up – to - date or there may be lack of experienced software

maintainers. Several techniques and methods have been applied in order to facilitate

this time and money consuming activity. This work explores and analyses the use and

application of Knowledge Discovery in Databases for maintenance of software

systems. In particular, it aspires to elaborate how a data mining technique such as

clustering, can help a potential maintainer to understand a software system in order to

maintain it.

Introduction

2

1.2 Dissertation Objectives

The aim of this research work is to investigate how program understanding and

software maintenance can be facilitated with the help of data mining techniques like

clustering. The main objectives are:

• Specification of the Model of the Input Data to be preprocessed and stored

in a database. This concerns the definition of the program entities and their

attributes.

• Design and implementation of the database schema in which the retrieved

data is stored. Its design should facilitate the use of clustering analysis.

• Design and implementation of the Preprocessing Application. Here, it has

to be stated that the term preprocessing in this work indicates the extraction

of data from C++ source code and the insertion of it in a database. The

application consists of the following two parts:

o The Front-End, which is the interface of the application that the user

interacts with (G.U.I.); and

o The Back-End that extracts the data from the source code and store

it in a database (Algorithm)

• Use of the Preprocessing Application in order to preprocess C++ source

code data.

• Choice and use of the Data Mining Tool, which is going to be the basis of

the evaluation of the Preprocessing Application’s outcome.

• Evaluation of the feasibility of the Preprocessing Application’s outcome in

order to produce patterns which are valid, useful and novel to the potential

maintainer.

At this point it has to be emphasised that this project is concerned with the

development of a Preprocessing system for a semi automated approach to program

understanding. This means that it is likely that the user has no expert knowledge of

the program which is analysed. For this reason, the Model of the Input Data, which is

provided to the Preprocessing Application, is based on the header files of a C++

application.

Introduction

3

1.3 Dissertation Structure

The first chapter, Introduction, illustrates the principal issues that this dissertation

is concerned with.

The second chapter, Background, presents the areas of software maintenance and

Knowledge Discovery in Databases. A definition of software maintenance and the

categories of change that can be implemented in a software system will be also

outlined. What is more, an analysis of program understanding and different strategies

that are followed will be given. What follows, is an analysis of the field of Knowledge

Discovery and Data Mining. The Background chapter’s final section is concerned

with the investigation and critical analysis of previous solutions in the domain of

program understanding. Such solutions make use of the Knowledge Discovery

process, and more specifically Data Mining techniques such as clustering, in order to

facilitate the understanding of a program.

The third chapter, Requirements, outlines the detailed requirements that must be

satisfied when developing the system that is going to preprocess the C++ source code

data. There are presented the requirements of the Model of Input Data, the

Preprocessing Application’s G.U.I. and Algorithm. Finally the requirements of the

Data Mining Tool are also indicated. This chapter provides the framework for the

remainder of this dissertation as subsequent chapters follow the outlined

requirements.

The fourth chapter, Design, portrays the detailed design of the system that

preprocesses C++ source code data. This system consists of the Model of Input Data,

the Front-End and the Preprocessing Application’s Back-End.

The fifth chapter, Implementation, explains the main features of the Model of Input

Data, the GUI of the Preprocessing Application, and its Algorithm. There is a

discussion of their structure, main functionalities and the implementation of the

relevant theory.

The sixth chapter, Testing, presents the testing of the Preprocessing Application.

The testing of the Preprocessing Application consists of the preprocessing of a header

file and the behaviour of the G.U.I. and the Algorithm.

In the seventh chapter, Results - Evaluation, an examination of the accuracy of the

output of the Preprocessing Application, is undertaken. Two applications,

CAccessReport and CompDB, are used as samples. Their actual structure is

Introduction

4

compared with the outcome of the clustering analysis (IBM’s Intelligent Miner) of

their respective Models of Input Data. The results of this comparison are analysed and

the derived conclusions are outlined.

The last chapter, Conclusion – Future work, describes the challenges encountered,

the implemented solutions and their outcome. In addition, it suggests how to further

develop this approach in order to improve the understanding of C++ Source Code.

Background

5

2. Background Chapter

2.1 Software Maintenance

According to IEEE software maintenance is the modification of a software product

after delivery, in order to correct faults, to improve performance or other attributes,

or to adapt the product to a modified environment [IEEE Software Maintenance

Standards 1998].

There are several reasons that motivate the maintenance of a software system.

Some of them are:

• Providing continuity of service. This includes fixing bugs (Y2K is a well-

known example), recovering from failures and accommodating changes in

the operating system and hardware.

• Supporting mandatory upgrades: Some examples of a mandatory upgrade

are a government regulation like the one that the banks’ and businesses’

information systems should be Euro compliant, or an attempt to maintain

an advantage over competitors.

• Supporting user requests for improvements: Enhancement of functionality,

better performance and customisation to local working patterns are some

examples that can lead to the maintenance of a software system.

• Facilitating future maintenance work: This usually involves code and

database restructuring, and updating documentation.

As it can be seen from the following figure, software maintenance is a continuation

of the development of a software system.

Background

6

Figure 2-1: Waterfall Model of a software system life cycle [Takang, Grupp 1996]

However, there is a basic difference between the development of a software system

and its maintenance. The main reason of that difference is the restrictions that the

existing system imposes on its maintenance activities. In order to design an

enhancement, the maintainer has to investigate the current system to abstract the

architectural and the low-level design. The information retrieved can be used in order

to:

• Investigate how the change can be implemented.

• Predict the possible ripple effect of the change.

• Decide what are the skills and the knowledge required in order to perform

the changes [Takang, Grupp 1996].

2.1.1 Categories of software maintenance changes

In order for a system to work properly, several kinds of changes are necessary.

According to IEEE the categories of changes are the following:

• Adaptive change, which is the modification of a software system

performed after delivery, in order to keep a computer program usable in a

changed or changing environment.

• Corrective change, which is the reactive modification of a software

product, performed after delivery to correct discovered faults.

Requirements

analysis and

specification

Design

and

specification

Coding and

module testing

Integration and

system testing

Installation and

maintenance

Background

7

• Perfective change, which is the modification of a software system

performed after delivery, in order to improve performance or

maintainability [IEEE Software Maintenance Standards 1998].

• Preventive change, which is the undertaken modification of a software

system, in order to prevent malfunctions.

2.2 Program understanding

Prior to implement any kind of change in a software system it is essential for the

maintainer to understand it both as a whole and as the programs affected particularly

by the change. This activity involves:

• Gaining a general knowledge of what the software system does and how it

relates to its environment.

• Identifying where in the system changes are to performed and

• Gaining an in-depth knowledge of how the parts that are going to be

corrected or modified, work [Takang, Grupp 1996].

Program understanding is hectic in terms of maintenance effort and resources. At

Hewlett Packard, comprehension of source code costs $200 million per year [Padula

1993]. Reports from industry and other sources also indicate that approximately half

of the total effort expended on effecting change is allocated to understand the

software system. This expenditure tends to increase especially if the maintainer tries

to change code written by someone else, the documentation either does not exist or is

not up-to-date, or the program structure has been deteriorated due to several years of

ad hoc quick fixes. These are common problems, which the maintainers have to deal

with in order to ensure that the systems stay operational and useful.

The main purpose of program reading and understanding is to be capable to

implement successfully the requested changes. For this reason, the maintainer has to

gain knowledge about the following aspects of the software system:

• Problem domain: This term describes environments like health care

sector, telecommunications and finance. In large software systems,

problems in these areas are usually broken down into sub-problems or

smaller elements, each of which is handled by a different program unit

such as a module, a procedure or function. In order to effect change or

Background

8

simply to estimate the resources required for a maintenance task,

knowledge of the problem domain in general and the sub-problems in

particular is essential to direct maintenance personnel in the choice of

suitable methodologies, algorithms and tools.

• Execution effect: This notion means the behaviour of the system during

the execution. At a high level of abstraction, the maintainer needs to know

or predict the results produced by the program for a given input without

having knowledge of which program units contributed to the overall result

or how the result was accomplished. On the other hand, on a low level of

abstraction, maintainers need to know only the outcome of the execution of

the individual program units. Knowledge of data flow, control flow and

algorithmic patterns can make easier the accomplishment of these goals.

• Cause – effect relation: This term describes the causal relation between an

effect and those parts of the program that caused it. Knowledge of this

relation is important, especially in large and complex systems. That is

because it allows maintainers to make conclusions about how components

of a software program interact during execution. It also helps because it

makes it easier for the maintainer to predict the scope of a change and any

‘knock – on’ effect that may arise from the change. Another reason that

makes the cause – effect relation so useful is that it can be used to trace the

flow of the information through the program. An unusual interruption of

the flow in a point in a program may signal the source of a bug.

• Product-environment relation: That term describes the relation between a

software system and elements of its environment. As environment, it can

be considered the sum of all conditions and influences which act from

outside upon the software system. Examples of these conditions are

business rules, government regulations, work patterns, software and

hardware operating platforms. Knowledge of this relation is vital for

maintainers because it can be used to predict how changes in the elements

of the environment will affect the software system in general, and the

underlying programs in particular.

Background

9

• Decision-support features: These are the attributes of the software system

that guide maintainers in technical and managerial decision making

processes such as option analysis, decision-making, budgeting and

resource allocation. Two very good examples of these attributes are

maintainability and complexity. By measuring the complexity of a system,

the components of the system that require more resources for testing can

be determined. Maintainability of a system on the other hand may be used

as an indicator of its quality.

2.2.1 Program understanding models

Programmers and maintainers may differ in ways of thinking, solving problems

and choosing techniques and tools. In general, reading about the program, about its

source code and running it are the three actions involved in the process of

understanding a program. These actions can be seen in the following figure.

At the first stage (read about the program) the maintainer browses, and uses

different sources of information about the system, such as system documentation, in

Read about the

program

Read the

source code

Run the

program

EXAMPLE ACTION

Read Data Flow Diagrams

Read implementation

and definition modules

Get trace data

Dynamic analysis

Figure 2-2: A program understanding process model [Takang, Grupp 1996]

Background

10

order to develop an overview or an overall understanding of the system. This phase

can be omitted if the system documentation is inaccurate, out of date or non-existent.

At the second stage (read the source code) the maintainer obtains the global and

the local view of the system. The global view is used to gain a top-level understanding

of the system and also to determine the scope of any knock-on effect that the change

might have on other parts of the system. On the other hand the local view allows

programmers to focus their attention on a specific part of the system. With this view,

information about the system’s structure, data types and algorithmic patterns is

obtained. Bearing in mind that the system documentation may not be reliable, reading

program source code is usually the principal way of obtaining information about a

software product.

The third stage (run the program) aims to help the maintainer to study the dynamic

behaviour of the program ‘in action’. The benefit of it is that it can reveal some

characteristics of the system which are difficult to obtain by just reading the source

code.

2.2.2 Mental Models

The ability of a user to understand a phenomenon depends to some extent on how

he/she can form a mental representation, which serves as a ‘working model’ of the

phenomenon that has to be understood.

The phenomenon (for example, how a television set works, the behaviour of

liquids, an algorithm) is known as the target system and its mental representation is

called a mental model. For instance if a person understands how a television works

then he has a mental model which represents this and, based on that model, he can

predict the behaviour of the television set when it is turned on or when a different

channel is selected. By using the model he can also explain certain observations such

as the occurrence of a distorted image. How complete and accurate the model will be

depends on a large extend, on the user’s information need. In the case of a television

set, a user who uses it solely for entertainment does not have to understand its internal

composition such as the cathode ray tube and circuits and how they work, in order to

be able to use it. On the other hand, a technician, who services the set in the event of a

breakdown needs a deeper understanding of how the set works and thus requires a

more elaborate and accurate model [Takang, Grupp 1996].

Background

11

The content and formation of mental models hinges on cognitive structures and

cognitive processes. Cognitive structures represent the way in which knowledge is

stored in human memory. On the other hand cognitive processes describe how the

knowledge is manipulated during the formation and use of mental models.

Observation, inference or interaction with the target system, are the major factors

that help the formation of the mental model which changes continuously as more

information about the target system is acquired. The completeness and the correctness

of a mental model can be influenced by factors like the user’s previous experience

with similar systems and technical background. In this point it has to be underlined

that the mental model may contain insufficient, contradictory or unnecessary

information about the target system. But, it is not necessary for it to be complete; it

just has to convey key information about the target system. For instance, if a user

models a piece of software, it should at least embody the functionality of the software

[Takang, Grupp 1996].

2.3 Program Understanding Strategies

A program understanding strategy is a technique used to form a mental model of

the target program. As it is mentioned before, the mental model is constructed by

combining information contained in the source code and by documentation with the

assistance of the expertise and domain knowledge that the maintainer brings to the

task. In this point it has to be emphasised that in a lot of cases the documentation of a

target system is not updated or simply doesn’t exist and therefore the level of the

expertise of the maintainer greatly influences how easily the code can be understood.

Several techniques and descriptive models have been proposed in order to help

maintainers to understand programs [Takang, Grupp 1996]. In the following chapters

three of them are going to be presented with the common characteristic the fact that

are not based on the documentation but mainly on the source code.

2.3.1 Top down model

In this model the maintainer starts by comprehending the top-level details of a

program (what it does), and gradually works towards understanding the low-level

Background

12

details like data types, control and data flows and algorithmic patterns in a top-down

way [Takang, Grupp 1996].

The cognitive structure and cognitive process of a mental model that result from a

top-down strategy can be explained in terms of a design metaphor. Software

development in its entirety can be considered to be a design task which consists of

two fundamental processes; composition that represents the production of a design,

and comprehension that is the understanding of that design. In composition, the

maintainer maps what the program does, in the problem domain, into a collection of

computer instructions of how it works, in the programming domain, using a

programming language.

On the other hand, comprehension is the reverse of composition. It is a

transformation from the programming domain to the problem domain and involves

the reconstruction of knowledge about these domains (including any intermediate

domains) and the relationship between them. This reconstruction of knowledge is

concerned with the creation, confirmation and successive refinement of hypotheses. It

starts with the interception of a vague and general hypothesis, known as the primary

hypothesis. This is then confirmed and further refined by acquiring more information

about the system, primarily from the program text and other sources like the system

documentation [Takang, Grupp 1996].

Usually, the primary hypothesis is generated as soon as the maintainer encounters

information concerning any aspect of the program, for example a module name. That

is why; the mental model of the program takes form at the outset, even before the

maintainer becomes aware of low-level semantic and syntactic details of the program

[Takang, Grupp 1996].

The information required for hypothesis generation and refinement is manifested in

key features –internal and external to the program- known as beacons, which serve as

typical indicators of the presence of a particular structure or operation [Brooks 1983].

The top down model is reminiscent of skimming a piece of text to obtain a general,

high-level understanding, and then reading the text again in detail in order to get a

deeper understanding [Takang, Grupp 1996].

Background

13

2.3.2 Bottom up model

The bottom up model can be used when the maintainer lacks hypotheses, or when

hypotheses fail, or for close scrutiny of the relevant code [Clements et al. 1996].

Using this model, the maintainer successively recognises patterns in the program.

These are iteratively grouped into high-level, semantically more meaningful

structures. The process of putting together small units of information like program

statements for instance, into larger units like procedures, is called chunking [Takang,

Grupp 1996]. Each of these information units consists of a chunk. The high-level

structures are then chunked into even bigger structures in a repetitive bottom-up

fashion until the program is understood. In the following figure, a diagrammatic

representation of the bottom-up model can be seen.

Figure 2-3: Bottom-Up comprehension process [Takang, Grupp 1996]

High-order chunks

High-level semantic structures (such as

procedures, functions, modules)

low-level semantic

structures (such as

statements)

Low-order chunks

D
ir

ec
ti

o
n
 o

f
C

o
m

p
re

h
en

si
o
n

Background

14

The chunking process tends to be faster for more experienced programmers than

beginners as they recognise patterns more quickly. For instance, the following

program statements:

MaxValue := Table[1];

FOR Index := 2 TO 100 DO

IF Table[Index] > MaxValue THEN
MaxValue := Table[Index];

END;
END;

would be grouped, by an experienced programmer into a chunk called ‘find

maximum element in array’.

In that point here, it has to be emphasised that the process of understanding a

program, rarely takes place in such a well-defined fashion as these models portray.

Usually, maintainers tend to take advantage of any clues they come across in an

opportunistic way.

2.3.3 Opportunistic model

By using this model, the maintainer makes use of both bottom-up and top-down

strategies, but not simultaneously. As Letovsky suggests, ‘the program

comprehension can best be viewed as an opportunistic application of bottom-up and

top-down strategies [Clements et al. 1996]. According to this model, comprehension

hinges on the following three and complementary features:

• A knowledge base, that represents the expertise and the background

knowledge that the maintainer brings to the understanding task.

• A mental model, which expresses the maintainer’s current understanding

of the target program.

• An assimilation process that describes the procedure used to obtain

information from various sources such as source code and system

documentation.

When maintainers need to understand a piece of program, the assimilation process

enables them to obtain information for the system. This information then triggers the

invocation of appropriate plans from the knowledge base in order to enable

maintainers to form a mental model of the program that needs to be understood. The

Background

15

more information is obtained, the more often the mental model changes [Takang,

Grupp 1996].

Background

16

2.4 Knowledge Discovery in Databases

According to Fayyad et al. Knowledge Discovery in Databases is the non-trivial

process of identifying valid, novel, potentially useful, and ultimately understandable

patterns of data [Fayyad et al. 1996].

Before going further, it would be useful to analyse these terms in more detail. At

first, data is a set of facts F (for example cases in a database). The expression E that

describes facts in a language L in a subset FE of F is called pattern. For example the

expression “If income < $t, then person has defaulted on the loan” is a pattern for an

appropriate choice of t.

In KDD the term process means a process consisting multiple steps such as data

preparation, search for patterns, knowledge evaluation and refinement involving

iteration after modification. The process is assumed to have some degree of search

autonomy that is why it is called non-trivial. For instance, computing the mean

income of persons in the loan example, while producing a useful result, does not

qualify as discovery.

The patterns discovered should be valid on new data with some degree of certainty.

A measure of that certainty is a function C mapping expressions in L to a partially or

totally ordered measurement space MC An expression E in L about a subset FE F can

be assigned a certainty measure c = C(E, F).

The patterns discovered should also be novel. Novelty can be measured

respectively to changes in data (by comparing current values to previous or expected

values) or knowledge (how a new finding is related to old ones). It can be assumed

that this can be measured by a function N (E, F), which can be a Boolean function or a

measure of degree of novelty or unexpectedness.

Patterns should also potentially lead to some useful actions, as measured by some

utility function. Such a function U maps expressions in L to a partially or totally

ordered measure space MU, therefore u = U (E, F).

KDD has to make patterns understandable to humans in order to facilitate a better

understanding of the underlying data. Although this is difficult to measure precisely, a

substitute for it is the simplicity measure. There are several kinds of simplicity, which

range from the purely syntactic, for example the size of a pattern in bits, to the

semantic (e.g. easy for humans to comprehend in some setting). This can be

Background

17

measured, if possible by a function S mapping expressions E in L to a partially or

totally ordered measure space MS, therefore s = S (E, F)

In order now to measure altogether the pattern value, combining validity, novelty,

usefulness and simplicity, another important notion called interestingness can be used.

Some KDD systems have an explicit interestingness function i = I (E, F, C, N, U, S)

which maps expressions in L to a measure space MI. Other systems define

interestingness indirectly by using an ordering of the discovered patterns.

The definition of what knowledge is can be given as an outcome of all these

definitions. The purpose of that definition is to specify what an algorithm used in a

KDD process may consider knowledge. Therefore a pattern E e L is called knowledge

if for some user-specified threshold i MI, I(E, F, C, N, U, S) > i [Fayyad et al. 1996].

2.5 KDD and Data Mining

According to Fayyad et al. Data Mining is just a step in the KDD process

consisting of particular data mining algorithms that, under some acceptable

computational efficiency limitations produce a particular enumeration of patterns Ej

over F [Fayyad et al. 1996].

It is important here to emphasise that the space of patterns is often not finite, and

the enumeration of patterns requires some form of search in this space. The

computational efficiency constraints place severe limits on the subspace that can be

explored by the algorithm.

From the above-mentioned definition of Data Mining it can be derived that KDD is

using data mining methods in order to extract (identify) what is knowledge according

to the specifications of measures and thresholds using the database F along with any

required preprocessing, sub-sampling, and transformations of F.

From these definitions, it can be seen that there is a difference between Knowledge

Discovery in Databases and Data Mining. The main goal of KDD is extracting

knowledge from data in the context of large databases. It involves the evaluation and

possibly the interpretation of the patterns to make the decision of what constitutes

knowledge and what does not. It also includes the choice of encoding schemes,

preprocessing, sampling, and projections of the data prior to the data-mining step.

On the other hand, Data Mining is mainly concerned with means by which patterns

are extracted and enumerated from the data.

Background

18

2.5.1 Steps of the KDD process

KDD process is iterative and interactive as it involves many steps with many

decisions being made by the user. In the following figure, an overview of the steps

comprising the KDD process can be seen:

At first, there has to be developed an understanding of the application domain, the

relevant prior knowledge, and the goals of the end user.

Secondly, a target data set has to be created. In other words, a data set has to be

selected, or a subset of variables or data samples has to be on focus, on which

discovery is to be performed.

After that, data have to be cleaned and preprocessed. That step includes basic

operations such as the removal of noise or outliers if appropriate, the collection of the

necessary information to model or account for noise, to make a decision on strategies

for handling missing data fields, and finally to account for time sequence information

and known changes.

The next step is to reduce and project data. It means that useful features to

represent the data depending on the goal of the task have to be found. Dimensionality

reduction or transformation methods can be used in order to reduce the effective

Data

Target Data

Preprocessed

Data

Transformed

Data

Patterns

Knowledge Selection

Preprocessing

Transformation

Data Mining

Interpretation

/ Evaluation

Figure 2-4: An overview of the steps comprising the KDD process [Fayyad et al. 1996]

Background

19

number of variables under consideration or to find invariant representations for the

data.

After that, the data-mining task has to be selected. In other words, there has to be a

decision on whether the goal of the KDD process is classification, regression,

clustering etc.

The choice of the data-mining algorithm is the next step of the KDD process. Here,

the method or methods used for searching for patterns in the data have to be selected.

This includes deciding which models and parameters may be appropriate and

matching a particular data mining method with the overall criteria of the KDD

process.

In order to continue to the next step of the KDD process a search for patterns of

interest, in a particular representational form or a set of such representations, has to be

contacted. In other words, the chosen data-mining task (such as classification, rules of

decision trees, regression, clustering) should be executed.

After performing, the data-mining task the user can interpret mined patterns, with

possible return to any of the proceeding steps for further iteration.

The final step is to consolidate the discovered knowledge. This knowledge should

be incorporated into the performance system, or simply be documented it and reported

to interested parties. This also includes checking for and resolving potential conflicts

with previously believed (or extracted knowledge).

It has to be underlined here, that the KDD process can involve significant iteration

and may contain loops between any two steps. In figure 2-1, the basic flow of steps is

illustrated. Most of the focus of that process is on the data-mining step. However, the

other steps are of considerable importance for the successful application of KDD in

practice.

2.6 Data Mining Tasks

Practically, the two highest primary goals of data mining tend to be prediction and

description [Fayyad et al. 1996]. The first term (prediction) involves the use of some

variables or fields in the database in order to predict unknown or future values of

other variables of interest. On the other hand, description focuses on finding human-

interpretable patterns describing the data. The importance of prediction and

description is relative for particular data mining applications and can vary

Background

20

considerably. However, in the context of Knowledge Discovery in Databases,

description tends to be more important than prediction. This is in contrast to pattern

recognition and machine learning applications like speech recognition where

prediction is often the primary goal.

The above-mentioned goals of prediction and description can be achieved by using

the following primary data mining tasks.

2.6.1 Classification

Classification is learning a function to map (classify) a data item into one of

several predefined classes [Fayyad et al. 1996]. Examples of classification methods

used as part of knowledge discovery applications include classifying trends in

financial markets and automated identification of objects of interest in large image

databases.

2.6.2 Regression

Regression is learning a function to map a data item to a real-valued prediction

variable [Fayyad et al. 1996]. Examples of regression applications are predicting the

amount of biomass present in a forest given remotely-sensed microwave

measurements, estimating the probability that a patient will die given the results of a

set of diagnostic tests, predicting consumer demand for a new product as a function of

advertising expenditure, and predicting time-series where the input variables can be

time-lagged versions of the prediction variable.

2.6.3 Clustering

Clustering is a common descriptive task where the user seeks to identify a finite set

of categories or clusters in order to describe the data. The categories may be mutually

exclusive and exhaustive, or consist of a richer representation like hierarchical or

overlapping categories. Examples of a clustering application in a knowledge

discovery context include discovering homogeneous sub-populations for consumers in

Background

21

marketing databases and identification of sub-categories of spectra from infrared sky

measurements. In figure 2-5, a possible clustering of a loan data set into three clusters

is presented:

Figure 2-5: A simple clustering of a loan set into 3 clusters [Fayyad et al. 1996]

It can be seen that the clusters overlap allowing data points to belong to more than

one cluster. Very close to clustering, is the task of probability density estimation that

consists of techniques for estimating from data the joint multi-variant probability

density function of all of the variables/fields in the databases.

Debt

Income

Cluster 3

Cluster 2

Cluster 1
+ + + +

+ + + + + + + + + + +

 + + + +

+ + + + + + + + + + + +

 + + + + + + + + + +

+ + + + + + + + +

+

 + + + + +

+ + + + + + + + + + + + +

+ + + + + + + +

Background

22

2.7 KDD Process and Program Understanding: Previous

Solutions

In this section, previous solutions to the domain of program understanding are

going to be presented. These solutions make use of the Knowledge Discovery process

and more specifically Data Mining techniques such as clustering, classification and

association rules in order to facilitate the understanding a program.

2.7.1 Using Data Mining to Assess Software Reliability

In this solution, the use of data mining techniques in the assessment and

maintenance of software reliability and testability is investigated [Tjortjis and Layzell

2001]. Testability is used in order to measure the structural complexity of a program.

The higher the testability the more efficient the validation process is. This also

improves the maintenance and the comprehension of the program.

The complexity of a program can be influenced by the coupling and the cohesion

of the classes or functions. The systems that are composed by highly coupled classes

are more fault-prone and hard to comprehend and maintain. A way to predict fault-

prone modules is the use of data mining techniques in order to exploit metrics. Data

mining techniques considered suitable in order to support software support reliability

assessment, as they achieve results for large collections of data even when limited

background knowledge is available [Tjortjis and Layzell 2001].

In order to facilitate the software reliability maintenance, assessment and

comprehension, a methodology comprised by three steps is proposed.

In the first step, the input models are defined by selecting parts of the source code,

such as functions, routines and variables in order to populate a database suitable for

data mining. More specifically, the programs that are to be comprehended have to be

represented as a number of entities each of them consisting of several attributes. In

this solution, two models were used in order to extract data from code and populate a

database [Tjortjis and Layzell 2001]. One model for C/C++ where entities are

functions, that their attributes are defined according to the use and types of parameters

and variables, and the types of returned values. There is also a model for COBOL

source code that caters for a medium level, involving paragraphs as entities, and a low

Background

23

level understanding where entities are lines of code. In both levels, attributes are

binary depending on the presence of user-defined and language-defined identifiers.

In the second step, clustering is applied to identify sub-sets of source code that are

grouped together according to custom-made similarity metrics [Tjortjis and Layzell

2001]. This approach is taken in order to group C/C++ functions, based on their

similarity, into clusters, which represent subsystems. Clustering produces system’s

overviews, which aid comprehension. The grouping of program components into

subsystems facilitates maintenance as it reduces the perceived complexity. This can

be detected by the identification of subsystems, which consist of comparatively large

number of functions. Large, complex and strongly interrelated subsystems are likely

to be fault-prone.

Clustering can also improve systems cohesion and coherence by increasing

modularity. This can improve reliability and can be done in two ways. At first, by

relocating functions into modules and secondly by adjusting the processing performed

within functions to reflect better the functionality designed to be encapsulated within

[Tjortjis and Layzell 2001].

The last step is the application of association rules in order to establish inter-group

and intra-group relationships. This data mining technique is suitable for binary

attributes derived from COBOL programs. It has the potential to identify groups of

variables and/or reserved words that have the tendency to appear in the same module,

implying in that way that they are interrelated. This technique also identifies

programming styles, by exposing patterns related to the presence of variables and

reserved words in paragraphs.

Though this solution seems very interesting, is not directly related to program

understanding. It has to do more with another step of software maintenance process,

the software reliability assessment. However, the framework of this solution, the use

of data mining techniques in software maintenance, can be applied to the domain of

program understanding. The next solution that is going to be examined is related with

the application of data mining techniques in order to facilitate the process of program

understanding.

Background

24

2.7.2 A method for Legacy Systems Maintenance by

Mining Data extracted from Source Code.

This solution proposes a method for understanding and maintaining legacy

software systems [Chen et al. 2002]. It is based on the use of data mining techniques

for extracting interrelationships, patterns and groupings of code elements that range

from variables up to modules. This solution aims to address systems both at high and

at low level. It is based on the model of data mining in more conventional domains

that requires data preprocessing prior to the application of algorithms. This solution

was used in COBOL systems because the majority of legacy systems are still in this

platform.

The first stage of this method is the systematic data preparation for extracting a

number of data models and the relevant databases before applying any data mining

technique. More specifically the main aim of this stage is the extraction of both high

and low level information from source code and the production of a ‘mineable’ data

representation. It comprises in two activities: one is finding and assembling the data

set and the other is to manipulate the data in order to enhance its utility for mining. It

is required to understand the objective of data mining process in advance and

anticipate its likely results. The suitability of several algorithms should be known also

in advance and should be reflected on the preparation data in some degree. The data

preparation stage should focus on use of semantic and syntactic knowledge in order to

include only the necessary data and produce a database of the appropriate size [Chen

et al. 2002].

The goal of data preparation in COBOL is to extract information from source code

by taking into account the grammar and the syntax of the language, setting up

different tables for different data mining algorithms, and evaluating their quality and

iteratively improving it. A successful data preparation in COBOL should achieve the

following:

• Extract the variables of COBOL programs.

• Generate a clear view of the hierarchy of variables that will facilitate the

understanding of programs and their structures.

• Design a database by capturing code structure and variables [Chen et al.

2002].

Background

25

The second stage of this solution is the application of data mining techniques in the

preprocessed data. For example, clustering is the most widely applied technique,

focusing on high level modules of source code. Proximity among modules depends on

number of accessing, and variables’ transfer or ‘call’ among them. The data tables

mainly store the module’s relations descriptions. Their contents can be binary

showing whether a relationship between modules exists or not, or integer that shows

the number of times a relationship occurred. This number can represent the module

distance.

Examples of modules relationships can include variable transfer, accessing the

same file and using the same sub-modules. Different kinds of relationships may be

treated as either the same or having weights according to their kind. For instance,

accessing the same file can be more important than transferring a variable when

determining module relationship, as file access always involves more than one

variable [Chen et al. 2002].

After the use of data mining techniques, there are two types of results that are

anticipated. At first there are results that represent the syntactic and semantic content

of the source code. Relationships among variables and blocks of code should be

identified. For this reason, it is useful to represent code by means of models or graphs,

like variable relationship model (similar to an Entity-Relationship model), a variable-

block relationship model (similar to the Object-Oriented model) or even models that

convey a meaning similar to Data Flow Diagrams and flow charts.

The second type of results represents variables or block relationships acquired by

mining association rules. For instance, a rule of the form: ‘if PRICE exists in

paragraph P, then SALES exists in paragraph P’ with confidence x% and support y%.

Each rule is characterised by its confidence, which is the percentage of times the rule

is true and its support which is the percentage of the task relevant tuples for which the

pattern is true [Han, Kamber 2001].

This solution seems also very interesting as is focused in the program

understanding domain. But it is designed specific for source code that is written in

COBOL. This model also has been tested using a small amount of data. Therefore it

can be said that a solution that would be tested using large scale data and designed for

different programming languages is needed.

Background

26

2.7.3 Using Automatic Clustering to Produce High-Level

System Organisations of Source Code

This solution proposes a collection of algorithms that were developed and

implemented in order to facilitate the automatic recovery of the modular structure of a

software system from its source code [Mancoridis et al. 1998]. A very common

problem of software maintenance is the existence of out of date system documentation

and the lack of the original system designer. Therefore the software maintainer is

forced to make modifications on the source code without a thorough understanding of

its organisation. This can lead to a situation that the source code organisation is so

chaotic that it needs to be radically overhauled or abandoned, especially if the

software system is heavily used and its requirements tend to change over time.

According to [Mancoridis et al. 1998] clustering (grouping) of related procedures

and their associated data into modules (or classes) is a way for software maintainers to

cope with the increasing structure complexity of a software system. In a software

system, identifiable clusters of modules called subsystems, which collaborate in order

to achieve higher-level system behaviour, can be found. The main problem is that this

subsystem structure is not obvious from the source code structure. This solution

provides an automatic technique that creates a hierarchical view of the organisation of

the system based mainly on the components and the relationships that exist in the

source code.

The first step of this technique is the representation of the system modules and the

module-level relationships as a module-dependency graph [Mancoridis et al. 1998].

Next step is the application of algorithms in order to partition the graph in a way that

the high-level subsystem structure can be derived from the component level

relationships that are extracted from the source code.

In the following figure the architecture of the proposed automatic modularisation

technique (environment) is illustrated. The first step of the process is the extraction of

the module-level dependencies from the source code and the insertion of the resultant

information in a database. The AT&T’s CIA tool (for C) and Acacia (for C++) were

used for this purpose. After all of the module-level dependencies have been stored in

a database; the next step is the execution of an AWK script in order to query the

database, to filter the query results and to produce a textual representation of the

module dependency graph. Then a custom - made clustering tool called Bunch is used

Background

27

in order to apply the designed clustering algorithms to the module dependency graph

and emit a text-based description of the high-level structure of the systems

organisation. The last step is the use of AT&T’s Dotty visualisation tool to read the

output file from Bunch and produce a visualisation of the results.

Figure 2-6: Automatic Software Modularisation Technique (Environment) [Mancoridis et al. 1998]

The basic goal [Mancoridis et al. 1998] of this modularisation technique is to

automatically partition the components of a system into clusters (subsystems) so that

the resultant organisation concurrently minimises inter-connectivity (that is,

connections between the components of two distinct clusters) while maximising intra-

connectivity (connections between the components of the same cluster). According to

[Mancoridis et al. 1998] clustering here can be seen as an optimisation problem that

its goal is to maximise an objective function based on a trade off between inter and

intra-connectivity. The basic assumption that underlies this approach is that a well-

designed software system is organised in to cohesive clusters that are loosely

interconnected. Based on the concepts of cohesion and coherence [Mancoridis et al.

1998] introduce in this solution three parameters:

• Intra-Connectivity: It is a measure of connectivity between the components

that are grouped in the same cluster. A high degree of intra-connectivity

indicates a good subsystems partitioning as the modules grouped within a

Source

Code

Source Code

Analyser

(e.g.CIA)

Source

Code

Database

Query

Scriptr

(e.g.AWK)

Clustered

Graph

Graph

Visualisation

Tool (e.g dotty)

Output

File

Clustering

Tool

(e.g.Bunch)

Module

Dependency

Graph

Background

28

common subsystem share many software-level components. On the other

hand, a low level of intra-connectivity indicates poor subsystems

partitioning because the modules assigned to a particular subsystem share

few software-level components. By maximising the intra-connectivity

measurement, the likelihood that, changes made to a module are localised

to the subsystem that contains the module, is increasing.

• Inter-Connectivity: It is a measure of connectivity between two distinct

clusters. A high degree of inter-connectivity indicates a poor subsystem

partitioning. A great number of inter-dependencies make software more

complicated because changes to a module may affect many other parts of

the system due to the subsystems interrelationships. A low degree of inter-

connectivity indicates that the individual clusters of the system are to a

large extent, independent.

• Modularisation Quality: It is defined as a measurement of the quality of the

modularisation in a particular software system. Moreover, it can be said

that Modularisation Utility (MQ) is the subtraction between the average

intra-connectivity and the average inter-connectivity. It is bounded between

-1 (no cohesion between subsystems) and 1 (no coupling between

subsystems).

The clustering algorithms that are used on this modularisation technique are the

Optimal Clustering Algorithm and the Sub-Optimal Clustering Algorithm. The first

one evaluates the MQ for each partition and selects the one with the largest MQ as the

optimal solution. The Optimal Algorithm can be successfully applied to systems of up

to 15 modules. The second one, the Sub-Optimal Algorithm, generates a random

partitioning and then tries to find the neighbouring partitions with the highest MQ as

the sub-optimal solution.

This fully automated technique can help the programmers who lack familiarity

with a system, and system architects who want to compare documented

modularisations with the automatically derived ones or to improve the design of the

system by learning from the differences between the modularisations. But the main

problem of this solution is that as the number of the produced files exceeded the 20,

calculation time was greatly increased.

Background

29

2.7.4 A Software Evaluation Model Using Component

Association Views

This solution proposes a model for the evaluation of the architectural design of a

system based on the association between the components of the system. This

association is defined as a measure of the overall dependency among high-level

system components such as files, modules or subsystems, with regard to a collection

of criteria [Sartipi 2001], and is a generalisation of cohesion and coupling metrics.

According to [Sartipi 2001], a component is defined as a named group of system

entities. Coupling is a measure of the relative interdependence among the modules of

a system and is measured based on the complexity of the interface between the

modules [Sartipi 2001]. The cohesion is the measure of the relative functional

strength of a module and is usually measured by techniques based on program slicing

[Sartipi 2001]. These properties (measures) can be obtained by measuring among

components, their inter- and intra-components associations.

This proposed solution allows the measurement of the modularity of the system, as

an indication of the quality of the system design and its decomposition into

subsystems. For this reason the following three association views are of a system are

generated:

• Control passing: It represents the correlation among the system

components based on function invocation [Sartipi 2001].

• Data exchange: It epitomises the correlation among the system

components based on aggregate data types that are either passed as

parameters between two functions or are referenced by a function. This

view excludes any parameter passing with simple data types such as

integer, real, boolean and string since they fail to show enough evidence of

correlation between the functions [Sartipi 2001].

• Data sharing view: It signifies the correlation among the system

components based on sharing the global variables by the functions [Sartipi

2001].

By using these techniques, the following three design properties of a system based

on sharing, passing, or encapsulating the state of the system regardless of the system’s

adopted design methodology and architectural style are proposed:

Background

30

• State sharing: In this design property, the components (such as file,

module, or subsystem) perform the desired operation of the system through

accessing and modifying of a number of global variables. In systems that

have this property, common coupling is the dominant association between

the components. System sharing is manifested by a large number of

references from different system functions to these global variables, while

the other design properties are less visible [Sartipi 2001].

• State passing: In this design property, the state of the system is kept in data

structures and the system operation is performed by changing and passing

these data structures among different modules. In such systems, the

coupling between components is mostly of the form stamp and data

coupling [Sartipi 2001].

• State encapsulating: In this design property, the state of the system is

encapsulated in the modules and the system task is performed by invoking

different services to be performed by the modules using their own states. It

is known to be the best from the understandability and maintainability

perspective. In such systems the dominant couplings are control passing

and stamp passing [Sartipi 2001].

In this approach the software system is modelled as an attributed relational graph

with system entities as nodes and data-control-dependencies as edges. In this point,

the application of data mining techniques, like clustering and association rules (more

specifically the application of A priori algorithm) helps the decomposing of the graph

into domains of entities based on the association property. The next step is to populate

a database of these domains [Sartipi 2001].

Requirements

31

3. Requirements Chapter

3.1 Introduction

The aim of this project is to explore how a data mining technique like clustering

facilitates the understanding of a software system which is under maintenance. A

major problem that software maintainers face when trying to comprehend a legacy

software system is the lack of an up – to - date documentation and of experienced

software maintainers. By using data mining techniques, such as clustering, this

investigation work tries to contribute to this stage of the lifecycle of a software

system.

The system designed consists of the following parts:

• The Model of the Input Data, which is the specification of the program

entities and their attributes.

• The Preprocessing Application, which consists of the following two parts:

o The Front-End, which is the interface of the application that the user

interacts with (G.U.I.)

o The Back-End that extracts the data from the source code and

stores them in the database (Algorithm)

• The Data Mining Tool that is the backbone of the evaluation of the

Preprocessing Application’s outcome.

This chapter outlines the characteristics and requirements of the system performing

the preprocessing and the clustering analysis of the C++ source code data. From the

above brief description of the system’s parts, emerge the following categories of

requirements:

• Requirements of the Model of Input Data, which are described in the

§3.2.1.

• Requirements of the Preprocessing Application, which are going to be

explained in the §3.3.

o Requirements of the Front-End (GUI), which are depicted in the

§3.3.1.

o Requirements of the Back-End (Preprocessing Algorithm), which

are described in the §3.3.2.

Requirements

32

• Requirements of the Data Mining tool, which are illustrated in the §3.4.

3.2 Model of the Input Data

The Model of the Input Data has to be defined, which means that the program

entities and their attributes ought to be specified. This is a very important step because

the selected model is going to be the basis for the clustering analysis of the data.

Therefore, the Model of the Input Data has to facilitate the application of this data

mining technique.

3.2.1 Requirements of the Model of the Input Data

The Model of the Input Data provided to the data mining tool, which performs

clustering, is of vital importance and has to be carefully considered. There is a wide

range of alternatives considering the exact phase of the Input Model’s design, as

several possibilities have to be taken under consideration before developing such a

model. However, in addition to the model’s design there are also some requirements

concerning the selection of the program entities that will be analysed in §4. These

requirements are the following:

1) The number of an entity’s attributes should not be small as in such a case

can lead to a poor description of the entity. Attributes provide a means of

comparison and informative description for an entity. Therefore, a

sufficient number of them have to be outlined, in order to avoid misleading

comparisons.

2) The chosen entities must be described by a common set of attributes in

order to achieve homogeneity. This allows the comparison of the entities on

the basis of their attributes, which is the main principle of cluster analysis.

3) The entities must be applicable to all programs. That means that they have

to be clearly named in a program. For instance, functions and classes can be

defined as entities as they exist in every program of a software system.

4) The entities must also be associated with an appropriate proportion of the

source code when the program is modelled as a collection of them. This

ensures that most of the program is covered by the analysis.

Requirements

33

5) The set of attributes describing a program’s entities must be clearly

defined. Both binary and qualitative attributes can be identified, as they are

predominant in a source code application domain.

3.3 Preprocessing Application

The next step is the design of the application that preprocesses the C++ source

code. The application consists of two parts. The Front – End, which is the interface

that the user interacts with (G.U.I.) and the Back-End (Algorithm), which is the part

that is related with the extraction of the data from the source code and their insertion

in the database. At this point, it has to be clarified that the term preprocessing refers to

the parsing of the C++ source code, the extraction and storing of the retrieved data to

a database.

3.3.1 Requirements of the Front-End Part (G.U.I.)

The requirements of the front-end part of the preprocessing application are:

1) The application should have a user friendly interface, in order to be easier

to interact with. The term friendly implies that the interface must be:

i) Understandable: It should not require any previous knowledge

from the user and it has to be as simple as it can be

[http://developer.kde.org/]. Possible users of the system can be

considered as software maintainers and in general anyone who is

related to the area of program comprehension.

ii) Task-suitable: It must not present an excessive degree of

functionality which could confuse the user or harm functionality

itself [http://developer.kde.org/].

iii) Tolerant of mistakes: It has to allow users to make mistakes

without any harmful consequences (error trapping).

iv) Feedback-rich: It should always give immediate feedback to the

user regarding the actions that are being taken

[http://developer.kde.org/]. All results in different stages of

Requirements

34

processing must be displayed to the user in order to enable him to

observe them and restart the process from an early stage in case that

something goes wrong.

Requirements

35

3.3.2 Requirements of the Back-End Part (Algorithm)

The requirements of the Front-End part that preprocesses source code are:

1) The data that is retrieved from the source code must be stored in a mode

that facilitates the application of cluster analysis. This is further analysed in

the following chapter (§4).

2) The application should process a large scale of data and respond to each

task performed in a reasonable amount of time. There should be a large

scale of data as it likely that the derived results can be more reliable and

have a better quality.

3.4 Requirements of the Data Mining Tool

The data mining tool used in the evaluation of the outcome of the Preprocessing

Application has to satisfy the following requirements:

1) It has to be reliable and deliver measurable results.

2) It has to be easy to learn and use.

3) The results have to be easy to understand and store.

Design

36

4. Design Chapter

4.1 Introduction

The design phase of the project consists of the following three parts (listed

according to their importance):

• The definition and the design of the Model of the Input Data: This is the

most important part, because according to it, the schema of the database is

designed and the functions of the application are defined.

• The design of the database schema: In this case, the database schema in

which the retrieved data is stored has to be designed. This is another vital

part because the more flexible and well designed the database schema is,

the easier the application of any data mining technique will be.

• The design of the preprocessing application: The application consists of

two parts: The G.U.I., which is the interface of the application that the user

interacts with; and the Algorithm that extracts the data from the source

code and stores it in the database: It is an important step because during this

phase, data is retrieved from the source code and inserted to the database.

However, the successful function of this application is strongly related to

the right design of the Model of the Input Data and the schema of the

database.

• The choice of the Data Mining Tool: This is the final step of the design

phase of the project. It is important as it is the basis of the evaluation of the

Preprocessing Application’s outcome.

Design

37

4.2 Design of the Model of Input Data

 The basic idea for the Model of the Input Data is indicated in the following figure:

Figure 4-1: Basic Idea of the Database Store of the Model of the Input data

The above relational schema consists of the following four entities:

• Classes

• Member Functions

• Parameters

• Member Data

Each entity is described by certain attributes that are stored in respective tables of

a database. In order to understand in depth the Model of the Input Data a

description of the entities and their respective attributes is undertaken:

1) Classes: It is a representation of a conceptual grouping of similar terms,

which combines data and functions in order to describe an individual entity

[http://www-ksl-svc.stanford.edu:5915]. This entity can be chosen in order

Design

38

to achieve a high level of detail as it can serve as a plan or a template

[Lafore 1999]. The following entity class attributes can be identified in:

i) The name of the class (Class_Name)

ii) The property of inheritance (Inherits): It is a binary attribute,

which implicitly defines whether a class is a subclass or not.

iii) The name of the super class, if there is one (InheritsFrom). This

is a qualitative attribute.

iv) The number of the protected member data (ProtMembers), where

in this case it is a quantitative attribute. Member data in general is

the data items within a class [Lafore 1999]. There can be any

number of data members in a class.

v) The number of the protected member functions

(ProtFunctions). This is a quantitative attribute. Member

functions in general, are the functions that are included in a class

[Lafore 1999]. They are also called methods.

vi) The number of the private member data (PrivateMembers). This

is a quantitative attribute.

vii) The number of the private member functions

(PrivateFunctions), which is a quantitative attribute.

viii) The number of the public member data (PublicMembers),

which is a quantitative attribute as well.

ix) The number of the public member functions (PublicFunctions)

that is a quantitative attribute.

2) Member Functions: It groups a number of program statements into a unit.

This entity can be chosen in order to achieve a medium level of detail as it

contributes to the conceptual organisation of a program. The following

attributes of the entity function can be defined as:

i) The name of the function (Function_Handle).

ii) The information describing whether the function has parameters or

not (HasParam). This is a qualitative attribute.

iii) The number of the parameters (ParamNum). This is a quantitative

attribute and describes the number of the parameters that a function

has.

Design

39

iv) The type of the returned value of the function (ReturnType),

which is also a qualitative attribute. It can be found before the

function name in both the declaration and definition parts. Every

return value of a function has a specified data type such as char,

short, int, long, float, double and long double.

If the function does not return any value, then the return type is

void.

v) The category of the member function (Category). This is also a

qualitative attribute. Member functions can be either private (they

can only be accessed from inside the class) or public (they can only

be accessed from outside the class) or protected (they can only be

accessed by member functions in its own class or in any class

derived from the particular class). Usually member functions are

public. In this point, there has to be emphasised that the first idea of

the design of the Model of the Input Data was to have three binary

fields (IsPublic, IsPrivate, IsProtected) in order to define the

category of the member function. However, something like that

would cause unnecessary increment of the similarity of the records

of the Member Functions entity.

3) Function parameters (Parameters): A parameter is a piece of data passed

from a program to the function [Lafore 1999]. There can be different types

of parameters like constants, variables of several data types (such as char,

int, long), or even entire structures. The data types of variables and

constants, which are used as parameters, must match those specified in the

function’s declaration and definition. The following attributes are

describing the characteristics of this entity:

i) The name of the parameter (ParamName): This is a qualitative

attribute.

ii) The type of the parameter (arguments) (ParamType), which is also

a qualitative attribute.

iii) The use of parameter (ParamUse), which is qualitative still. It

describes how the parameters are passing to the function. There are

two ways of doing that: passing by value and passing by reference.

In the first one, the function creates copies of the arguments passed

Design

40

to it. On the other hand, the mode of passing arguments by

reference makes use of a different mechanism. Instead of passing a

value to the function, a reference to the original variable in the

calling program is passed. More specifically, it is the memory

address of the variable that is passed [Lafore 1999].

4) Member Data: This this the data items within a class. There can be any

number of member data in a class [Lafore 1999]. The following attributes

of the entity member data are defined as:

a. The type of the member data (Member_Data_Type), which is a

qualitative argument. This refers to the different data types that a data

member can be assigned to, such as char, short, int, long,

float, double, long double, and bool.

b. The name of the data member, which is also a qualitative attribute.

c. The category of the member data (Category) is a qualitative

attribute as well. Member data can be either private (they can only be

accessed from inside the class) or public (they can only be accessed

from outside the class) or protected (they can only be accessed by

member functions in its own class or in any class derived from this

particular class). Usually member data is private. In this point, there

has to be stated that the first idea of the design of the Model of the

Input Data was to have three binary fields (IsPublic, IsPrivate,

IsProtected) in order to define the category of the data member.

However, something like that would cause unnecessary increment of

the similarity of the records of the Member Data entity.

d. The information which describes whether a data member is static

(IsStatic) or not. This is a binary attribute. If a data item in a class is

declared as static, then only one such item is created for the entire

class, no matter how many objects there are. Static data items are

useful when all objects of the same class must share a common item of

information. They are visible only within the class, but their lifetime is

the entire program. They continue to exist even if there are no items of

the class [Lafore 1999].

e. The information that describes whether a data member is a pointer

(IsPointer) or not. This is a binary attribute as well. A pointer is a

Design

41

variable that holds an address value [Lafore 1999]. It is one of the most

basic characteristics of C++ and its use is essential in order to best

profit from the language.

f. The information which describes if a data member is user-defined

(IsUserDefined) or not. This is also a binary attribute. Enumeration

is an example of a user-defined type. It functions when the

programmer desires to know in advance a finite (usually short) list of

values that a data type can take on [Lafore 1999]. An enumeration

example is the following:

Enum days_of_week {Sun, Mon, Tue, Wed, Thu, Fri,

Sat}

4.3 Design of the Preprocessing Application

The particular application consists of two parts: The Front-End, which is the

interface of the application that the user interacts with (G.U.I.); and the Back-End that

extracts the data from the source code and stores it in the database (Preprocessing

Algorithm). This is an important step because during this step the data is retrieved

from the source code and inserted to the database. However, the successful function

of this step is strongly related to the right design of the Model of the Input Data and

the schema of the database. In this phase it has to be defined that the term

preprocessing means the parsing of the C++ source code, the extraction and the

storing of the retrieved data to a database. The following paragraphs will describe the

main functionalities of both the Front-End and Back-End parts of the application.

4.3.1 Functionalities of the Front-End (G.U.I.)

The Front-End of the application is simple and easy for the user to understand it.

The functions of it are:

• Start Preprocessing, which is depicted in the following diagram:

Design

42

User
OpenFileForPreprocessing

Figure 4-2: Open File Function

In this function the user has the ability to choose a header file (files of type “*.h”)

and open it in order to start the preprocessing of it. In particular, this functionality

starts the execution of the Preprocessing Algorithm.

• Provide Feedback to the User for the progress of the preprocessing, which is

presented in the following diagram:

PreprocessingOfHeaderFile
User

ProvidesFeedback via Error Messages and

 Progress Bars

Figure 4-3: Provide Feedback to the User Function

As long as the preprocessing of the header files progresses, the user is provided

with feedback. This feedback can be:

a. Error messages, in order to ensure that the user will be able to observe the

progress of the preprocessing process and restart it from an early stage in

case that something goes wrong

b. Progress Bar, which depicts the progress of the extraction and the

insertion of the data in the database

c. Suitable messages in text labels that will inform the user about the stage

of the Preprocessing Algorithm

4.3.2 Description of the Back-End (Algorithm)

The Back-End (Preprocessing Algorithm) of the Preprocessing Application is the

core of it, as it is responsible for the extraction of the data from the source code and

their storing in the database. In other words, the Back-End is the part, which performs

the actual preprocessing and sends feedback to the Front-End.

Design

43

The steps of the Preprocessing Algorithm are illustrated in the following diagram:

Figure 4-4: Preprocessing Algorithm

According to the above diagram, this Algorithm is based on the top-down model of

program understanding. It starts by preprocessing the information that concerns the

top-level details of the program (such as information about the class), and gradually

works towards understanding lower-level details such member functions and their

parameters, and member data in a top-down way.

More specifically the Preprocessing Algorithm will start by preprocessing the

information that describes the Class entity. It extracts the handle of the class, the name

of its super-class (if exists) and the number of the member data and functions. If the

first step is successful then the algorithm continues into the next stage.

The second step of the Preprocessing Algorithm is the preprocessing of the

information that describes the member data of the class. The name of the variable, its

type and category (public, protected, private) are extracted, and information

describing whether the variable is static, pointer or user-defined is also derived. As

soon as this step finishes successfully, the algorithm moves on to the third step.

This step of the Preprocessing Algorithm is the preprocessing of the information

that is related to the member functions of the class. More specifically the name of the

function, its return type and category (public, protected, private), as well as the

number of its parameters (if it has any) are extracted and inserted into the database.

Preprocess Class

Information

Preprocess Member Data

Information

Preprocess Member

Functions Information

Preprocess Functions’

Parameters Information

Design

44

When this step is accomplished with success, the algorithm continues onto the last

step.

The last step of the algorithm is related to the preprocessing of the information that

is related with the parameters of the member functions of the class. The name of the

parameter, its type and use (by value, by reference) are extracted and inserted into the

database.

4.3.3 Functionalities of the Back-End (Algorithm)

The structure of the Back-End (Algorithm) of the Preprocessing Application is

presented in the diagram 4-5:

Figure 4-5: Class Diagram of the Back-End (Algorithm) of the Preprocessing Application

As illustrated above, the Back-End consists of the PreprocessApp package that

includes the following classes:

1) CreateGUI: It is the class that creates the basic elements of the Front-

End (G.U.I.) of the Preprocessing Application. In particular, it creates the

desktop pane, which has the menu of the functions of the Preprocessing

Application. CreateGUI has the following operations (Member

Functions):

i) CreateGui, which is the constructor of the class.

Design

45

2) MyExtractionJPanel: It is the most significant class, as it implements

the Back-End (Algorithm) of the Preprocessing Application. It consists of

the following Member Functions:

i) ExtractDataFromFile: It is the function which implements the

Algorithm as depicted in the diagram 4-4. It opens the file that is

chosen by the OpenSourceFile, and calls ExtractClassData

first. After the successful completion of ExtractClassData, it

calls the ExtractMemberData and if this call is also successful

then continues with ExtractMemberFunctionsData.

ii) openSourceFile: It is the function implementing the filtering of

the files. The user can not choose any type of file he desires. There

is a filter defined by the creation of an object of type of the class

SourceCodeFilter that allows the opening of only header (*.h),

and the C++ source code files (*.cpp).

iii) ExtractClassData: It is the function that implements the

preprocessing of the data describing a class. It reads the header file

line by line and extracts the handle of the class, information about

inheritance (if the class inherits and the name of the superclass), the

number of the protected member data and functions, the number of

private member data and functions and finally takes out the number

of the public member data and functions.

iv) ExtractMemberData: It is used in order to implement the

preprocessing of the information that describes the member data of

the class. It extracts the class ID where the member data belongs to

and reads the header file line by line in order to extract the category

(private, protected, public) of the member data. This is defined

according to which section the line of the header file resides on. If

the line resides on the private section then the category is private, if

on public then the category is public and so on. As soon as the class

ID and the category of the function are extracted the function

MemberDataCategory is invoked in order to continue with the

preprocessing of the rest of the information describing the member

data.

Design

46

v) MemberDataCategory: It is the function which implements the

preprocessing of the information describing the member data of the

class (except of the category and the class ID). It takes as

parameters the Category of the data (protected, private, and public)

and the class ID that belongs to. It extracts the name of the variable,

its type; and the information that defines whether it is static, pointer

and user defined.

vi) ExtractMemberFunctionsData: It is used in order to

implement the preprocessing of the information that concerns the

member functions of the class. It extracts the class ID where the

member function belongs, and reads the header file line by line in

order to extract the category (protected, private, and public) of the

member function. This is defined according to which section resides

the line of the header file. If the line resides in the private section

then the category is private, if in public then the category is public

and so on. As soon as the class ID and the category of the function

are extracted, the function MemberFunctionCategory is called to

continue with the preprocessing of the rest of the information

describing the member function.

vii) MemberFunctionCategory: It is the function implementing the

preprocessing of two types of information: The first one describes

the member functions of the class and the second describes their

respective parameters (if they have any). It takes as parameters the

Category of the function (protected, private, and public), and the ID

of the class where it belongs. It extracts the name of the function, its

return type, and the information that defines whether it has

parameters and if any it extracts their number. Following that and in

case that the member function has parameters, the

MemberFunctionCategory continues by preprocessing the

information that describing the member function’s parameters. It

extracts the name of the parameter, its type and its use (by value or

by reference). However, if the member function does not have any

parameters then the MemberFunctionCategory ends and returns

the control to the ExtractMemberFunctionsData.

Design

47

viii) addComponent: It is used to add the components of the “File

Preprocessing” form and has four parameters: The row and the

column that define where the component will be placed, as well as

its width and height defining its size.

ix) MyExtractionJPanel: As its name suggests it is the constructor

of the MyExtractionJPanel class. According to [Deitel & Deitel

1999] a constructor is a method with the same name as the class. It

is invoked automatically each time an object of that class is

instantiated and it cannot specify return types or return values.

3) SourceCodeFilter: It is the class that implements the filter that is used

in the opening of the C++ header and source code files. It consists of the

following functions:

i) accept: It defines whether the given file is accepted by the filter

or not. This is done by creating an object of type of the class Utils

and by using its getExtension method in order to get the

extension from the given file and compare it with the approved

ones.

ii) getDescription: It provides the description of the file. In the

file chooser of the Preprocessing Application, for example, the

description is “Only C++ Files”. The following picture (4-6)

presents the outcome of the use of the filter that is implemented by

the SourceCodeFilter class:

Design

48

Figure 4-6: File Chooser of the Preprocessing Application with the C++ Files Filter implemented

As presented in the above picture, the user can only see the C++ type of files

(header files or source code files).

4) Utils: It is the class which objects are used by SourceCodeFilter in

order to provide the extension of the file. This extension is used to define

whether the file is approved or not. The particular class has the following

function:

i) getExtension: It gets the extension of the file.

Implementation

49

5. Implementation Chapter

5.1 Implementation phase and tools

As the previous chapter suggested, the system will include the Preprocessing

Application that parses the C++ source code and a database management system

where the data is stored in a mode capable for performing cluster analysis. The

DBMS (Database Management System) used is the SQL Server 2000, which can

scale up easily and can handle great amounts of data. The following figure (5-1)

highlights the structure of the system:

Figure 5-1: Structure of the system

The programming language that is used in order to implement the Preprocessing

Application is Java. It is a widely used object oriented language that enables the quick

development of a great range of applications. Gaining knowledge and experience on

such a language, functions as a further motivation for using it. The chosen data

mining tool for the analysis of the preprocessed data is the IBM’s Intelligent Miner. It

is easy to use and it presents the results in a format easy to store and understand.

Moreover, another advantage of the Intelligent Miner is that it is widely used in the

market and uses proven algorithms.

Front-End

Part

Database

C++

Source

Code

Data mining

Tool

Analysis

Results

Back-End

Part

Preprocessing

Application

System

OLEDB

Implementation

50

5.2 Implementation of the Model of Data

The schema of the PreprocessingDB database, which implements the Model of the

Input Data is portrayed in the following picture (5-2):

Figure 5-2: PreprocessingDB Database Schema

The above picture depicts that the database contains the following tables:

1) Classes, which has the following fields:

i) ClassId: This is the ID of the class, and it is generated

automatically from the database.

ii) Class Handle: It is the name of the class

iii) Inherits: It defines whether the class inherits from a base class.

In other words it defines if the class has a super-class or not.

iv) InheritsFrom: In case the class inherits this field defines the

base class.

v) ProtMembers: It identifies the number of the Protected data

members.

Implementation

51

vi) ProtFunctions: It outlines the number of the Protected Member

Functions.

vii) PrivateMembers: It defines the number of the Private data

members.

viii) PrivateFunctions: It describes the number of the Private

Member Functions.

ix) PublicMembers: It defines the number of the Public data

members.

x) PublicFunctions: It stores information concerning the number

of the Public Member Functions.

2) Member_Data, which further consists of the following fields:

i) Member_Data_Id: It is the ID of the Member_Data, and is

generated automatically from the database.

ii) Class_Id: It is a foreign key to this table, as it is the ID of the

class that the Member Data belongs to.

iii) Member_Data_Type: It is the type of the Member_Data, (for

example int, char, and float).

iv) Member_Data_Name: It is the name of the Member Data.

v) Category: It defines the category that the Data Member belongs

(private, protected, and public). It is a qualitative characteristic.

vi) IsStatic: It defines whether the Data Member is Static or not. It

is a qualitative characteristic.

vii) IsUserDefined: It defines whether the Data Member is User

Defined (such as an object).

viii) IsPointer: It defines whether the Data Member is a Pointer

or not.

3) Member_Functions, that includes the following fields:

i) Function_Id: It is the ID of the function, and is generated

automatically from the database.

ii) Function_Handle: It is the name of the function.

iii) Class_Id: It is a foreign key to this table, as it defines the ID of

the class that the Member Function belongs to.

Implementation

52

iv) HasParam: It defines whether the Member Function has

Parameters.

v) ParamNum: It is the number of the Parameters that the Member

Function may have.

vi) ReturnType: It is the type of the returning value of the Member

Function.

vii) Category: It defines the category that the Member Function

belongs to (private, protected, and public). It is a qualitative

characteristic.

4) Function_Parameters, that contains the following fields:

i) ParamId: It is the ID of the parameter, and is generated

automatically from the database.

ii) FunctionId: It is a foreign key to this table, as it is the ID of the

Member Function where the parameter belongs.

iii) ParamName: It is the name of the parameter.

iv) ParamType: It is the type of parameter (such as int, char, float etc.)

v) ParamUse: It defines the kind of the parameter’s use (by value or

by reference).

5.3 Implementation of the Preprocessing Application

5.3.1 Front-End (G.U.I.)

The Front-End of the Preprocessing Application uses a multiple document

interface (MDI), which is a main window (often called the parent window) containing

other windows (often called child windows) in order to manage several open

documents that can be processed in parallel. It consists of the following parts:

1) The “C++ Source Code Preprocessing Application” window, which is the

parent window and has the menu with the functionalities of the

Preprocessing Application. According to picture 5-3 the form contains the

following components:

i) A menu bar that includes the menu of the Preprocessing

Application

Implementation

53

ii) A menu called “Preprocess”, which is an element included as a

member of the menu bar. Menus in general display a list of member

menu items, when clicked. Selecting the menu item usually results

in some action performed by the application [Piroumian 1999].

More specifically, in the case of Preprocessing Application, when

clicking the “Preprocess” menu, the “File…” menu item appears.

When the user selects it, the “File Preprocessing” form appears.

Figure 5-3: “C++ Source Code Preprocessing Application” window

2) The “File Preprocessing” form: It is the child window and it is presented

in the picture 5-4:

Implementation

54

Figure 5-4: “File Preprocessing” form

As illustrated the form contains the following components:

i) The “Open” command button, which is used in order to open the

file that is going to be preprocessed. When clicking it, the user calls

a JFileChooser, from which he/she can choose the file that is going

to be opened in order to be preprocessed.

ii) A label used in order to provide some information to the user. In

particular, as the user opens the file, the label displays the path and

the name of it.

iii) A text area that is provided to the user in order to help him

understand which stage of the Preprocessing Algorithm the

application performs.

iv) A progress bar that provides indication to the user concerning the

preprocessing of source code that takes place, and the amount of

work that has been accomplished.

v) The “Preprocess”command button, which is used in order to trigger

the execution of the Preprocessing Algorithm. When clicking it, the

user calls the ExtractDataFromFile that will be described in the

§5.3.2.

Implementation

55

vi) The “Cancel” command button, which is used in order to cancel the

execution of the Preprocessing Algorithm.

5.3.2 Back-End (Algorithm)

The Back-End (Preprocessing Algorithm) of the Preprocessing Application is

responsible for the extraction of the data from the source code and its storing in the

database. In other words, the Back-End is the one that performs the actual

preprocessing and sends feedback to the Front-End.

The execution of the Algorithm starts when the user clicks the “Preprocess” button

in the “File Preprocessing” form. Following this action, the function

ExtractDataFromFile, which is the core of the Algorithm, is invoked. Its

purpose is to invoke all functions that preprocess information concerning the class, its

member data and its functions with their respective parameters.

It initiates the value of the Progress Bar and calls the ExtractClassData in

order to retrieve the information that describes the classes. When the execution of this

function starts, the message “Start Preprocessing of Class Data!” is displayed in the

text area, informing the user that the preprocessing of the information of the class has

started. As soon as the information is inserted in the PreprocessingDB’s

Classes table, the message “Finish Preprocessing of Class Data!” is displayed in the

text area, the value of the progress bar increases and the value 1000 is returned to the

ExtractDataFromFile. The particular value indicates that the function completed

its execution without any errors. If an error occurs, the value 999 is returned, and the

execution of the ExtractDataFromFile stops. The following picture (5-5)

illustrates the successful preprocessing of the information describing a class in a

header file:

Implementation

56

Figure5-5: Successful execution of the ExtractClassData function

If the ExtractClassData returns 1000, then the ExtractDataFromFile

continues by invoking the ExtractMemberData. When the execution of this

function starts, the message “Start Preprocessing of Member Data Information!” is

displayed in the text area. Then the function MemberDataCategory is called in

order to complete the preprocessing of the information describing the member data.

As soon as all this information is extracted, it is inserted in the PreprocessingDB’s

Member_Data table. When the execution of the MemberDataCategory is

completed successfully, the control is returned to the ExtractMemberData function,

which returns the value 2000 to the ExtractDataFromFile. This particular value

indicates that the function completed its execution without any errors. If an error

occurs, then the value 1999 is returned, and the execution of the

ExtractDataFromFile stops. The message “Finish Preprocessing of Member Data

Information!” is displayed in the text area and the value of the progress bar increases.

The following picture (5-6) depicts a successful preprocessing of the information

describing the member data of the class:

Implementation

57

Figure5-6: Successful execution of the functions ExtractMemberData and

MemberDataCategory.

If the ExtractMemberData returns 2000, then the ExtractDataFromFile

continues by invoking the ExtractMemberFunctionsData. When the execution

of this function starts, the message “Start Preprocessing of Member Function

Information” is displayed in the text area. Then the function

MemberFunctionCategory is called in order to complete the preprocessing of the

information describing the member functions. As soon as all the information is

completed, it is inserted in the PreprocessingDB’s Member_Functions table.

Next, if the member function has parameters, the MemberFunctionCategory

continues by preprocessing the information that describes the member function’s

parameters. When all this information is extracted, it is inserted in the

PreprocessingDB (Parameters table) and the control is returned to the

ExtractMemberFunctionsData. On the other hand, if the member function does

not have any parameters, then the MemberFunctionCategory ends and returns the

control to the ExtractMemberFunctionsData. The message “Finish

Preprocessing of Member Function Information!” is displayed in the text area and the

value of the progress bar increases. The following picture (5-7) is an example of the

Implementation

58

successful preprocessing of the information describing the member functions of a

class.

Figure5-7: Successful execution of the functions ExtractMemberFunctionsData and

MemberFunctionCategory.

Testing

59

6. Testing Chapter

6.1 Introduction

This chapter will present the testing of the Preprocessing Application. This testing

consists of the preprocessing of a header file and the behaviour of the Front-End

(G.U.I.) and the Back-End (Algorithm). Moreover, the size of the input data required

(header file), the total time and effort needed to extract the information from the

source code in order to insert it in the database, are factors that should also have to be

tested.

6.2 Testing of the Preprocessing Application

A testing script is followed in order to examine whether the Preprocessing

Application meets the requirements that were imposed during the design phase, and

are described in the design chapter of this report. According to this script, a header

file has to be opened and preprocessed. The desired result is the successful insertion

of the extracted information in the respective tables of the PreprocessingDB

database and the right feedback from the G.U.I of the Preprocessing Application.

The header file that will be used for the testing of the Preprocessing Application is

the “_Form.h”. Its size is 8 KB which makes it the biggest file in the

CAccessReport system. It consists of 239 member functions and has no member

data.

6.2.1 Step 1: Preprocessing the “_Form.h”

This step will test whether the second requirement of the section §3.3.2 and the

requirement of the section §3.3.1 are satisfied. More specifically, the ability of the

Preprocessing Application processing a reasonable amount of data, responding to

each task performed in a satisfying amount of time; and reflecting the “user-

friendliness” of it, will be tested.

The expected results are:

1) The path and the name of the “_Form.h” file should be displayed in the

label of the “File Preprocessing” form.

Testing

60

2) The information indicating the stage of the “_Form.h”’s preprocessing

should be written in the text area of the “File Preprocessing” form. More

specifically the following six sentences should be displayed, informing the

user that the preprocessing of the header file was successful:

i) “Start Preprocessing of Class Data!”

ii) “Finish Preprocessing of Class Data!”

iii) “Start Preprocessing of Member Data Information!”

iv) “Finish Preprocessing of Member Data Information!”

v) “Start Preprocessing of Member Function Information!”

vi) “Finish Preprocessing of Member Function Information!”

3) The progress bar should depict the progress of the extraction and the

insertion of the data in the database.

4) The time needed for the preprocessing of the “_Form.h” should be less

than ten seconds.

The preprocessing of the “_Form.h” file lasted 8 seconds and 79 nsec. The

following picture (6-1) indicates that the expected results are satisfied.

Figure6-1: Feedback provided to the user about the preprocessing of the _Form.h file

Testing

61

6.2.2 Step 2: Insertion of data in Classes table

This step will verify that the data describing the class _Form, has been inserted in

the Classes table of the PreprocessDB database. The expected results are:

1) The Classes table should have a new record.

2) The field Class_Handle should have the value “__Form”.

3) The field Inherits should have the value “Yes”.

4) The field InheritsFrom should have the value “COleDispatchDriver”.

5) The field ProtMembers should have the value 0.

6) The field ProtFunctions should have the value 0.

7) The field PrivateMembers should have the value 0.

8) The field PrivateFunctions should have the value 0.

9) The field PuclicMembers should have the value 0.

10) The field PublicFunctions should have the value 239.

The following picture (6-2) illustrates the successful insertion of the data which

describes the class _Form, in the Classes table of the PreprocessingDB:

Figure6-2: Insertion of data in the Classes table

6.2.3 Step 3: Insertion of data in Member_Functions table

This step will confirm that the data describing the member functions of the class

_Form, has been inserted in the Member_Functions table of the PreprocessDB

Testing

62

database. Due to the fact that the number of the member functions of the class _Form

is large, the function GoToPage will be used as a sample for the examination. The

expected results are:

1) The Member_Functions table should have 239 new records (that is, the

total number of the member functions of the class _Form).

2) The field Class_Id should have the value “405”.

3) The field Function_Handle should have the value “GoToPage”.

4) The field HasParam should have the value “Yes”.

5) The field ParamNum should have the number 3.

6) The field ReturnType should have the value void.

7) The field Category should have the value Public.

The following picture (6-3) portrays the successful insertion of the data that

describes the member functions of the class Form, in the Member_Functions table,

of the PreprocessingDB:

Figure6-3: Insertion of data in the Member_Functions table (in the red circle there is the

number of the new records)

6.2.4 Step 4: Insertion of data in Function_Parameters table

This step will confirm that the data, describing the parameters of the member

functions of the class _Form, has been inserted successfully in the

Function_Parameters table of the PreprocessDB database. As happened in

Testing

63

§6.2.3, due to the fact that the number of the parameters of the member functions of

the class _Form is large, the parameters that belong to the function GoToPage are

going to be examined thoroughly. The expected results are:

1) The Function_Parameters table should have 116 new records (that is,

the total number of the parameters of the member functions of the class

_Form).

2) The field Function_Id should have the value “9255” (it is the Id of the

function “GoToPage” on the Member_Functions table) in three

consecutive records.

3) In the same three consecutive records, the field Param_Name should have

the values “PageNumber”, “Right”, “Down”.

4) In the same three consecutive records, the field ParamType should have

the value “long”.

5) In the same three consecutive records, the field ParamUse should have the

value “By Value”.

The following picture (6-4) illustrates the successful insertion of the data, which

describe the parameters of the member functions of the class Form, in the

Function_Parameters table of the PreprocessingDB:

Figure6-4: Insertion of data in the Function_Parameters table (in the red circle there is the

number of the new records)

Results - Evaluation

64

7. Results – Evaluation chapter

7.1 Introduction

The evaluation is the examination of the of the Preprocessing Application output’s

accuracy. This output should be:

• Valid, which means that it has to represent the actual model of the system

under examination.

• Useful to the potential maintainer of the system.

• Novel, which means that it has to be something new and not known before.

Two applications, the CAccessReport and CompDB, are used as samples. Their

actual structure will be compared to the outcome of the analysis of their respective

input models. At this point, it has to be clarified that the term analysis indicates the

application of clustering in the input model (data that is stored in the

PreprocessingDB database). IBM’s Intelligent Miner, was used for this purpose.

Another point that has to be emphasised is that both applications,

CAccessReports and CompDB, are created with the help of MFC (Microsoft

Foundation Classes). This means that they can automatically generate most of their

own windows, handle their own messages and do their own drawings. MFC is a system

of C++ classes designed to simplify Windows programming. It consists of a multi-

layered class hierarchy that defines approximately 200 classes, which allow

programmers to construct a Windows application using object-oriented principles. In

other words, MFC provides the programmers with a framework upon which they can

build Windows applications [Schild 1998].

Results - Evaluation

65

7.2 Evaluation of the Preprocessing Application

7.2.1 Description and General Characteristics of the CAccessReport

system

CAccessReport is an application, which was created in order to help users, who:

• Use the MSAccess database engine

• Use the MSAccess database engine from a Visual C++ application

It uses the Access automation objects in order to open a specified database, run a

report (within Access), print it and save the database in HTML format. Such process

is carried out for the database to be viewed in an application that is written in Visual

C++ [http://www.codeguru.com/mfc_database/access_reports_class.shtml].

CAccessReports, is developed by Tom Archer who is an author and a Visual

C++/C# consultant [http://www.codeproject.com/interview/tomarcher3jun2001.asp].

The programming language that was used is Visual C++ 6.

It is a medium-size application and includes 53 public classes and 2812 functions

that have 1614 parameters. It is not a data-driven application as it has only five data

members. It is an automation client as the vast majority of the classes (52 out of 53)

are a sub class of COleDispatchDriver, with the latter to implement the client side

of OLE automation. An automation client is an application that can manipulate

exposed objects belonging to another application. It manipulates them by accessing

those objects’ properties and functions

[http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vccore/html/_core_Automation_Clients.asp].

7.2.1.1 CAccessReport: Classes Analysis

The classes of CAccessReport application have many similarities as:

• Almost all of them inherit from COleDispatchDriver.

• Almost all of them (52 out of 53) have only public member functions.

Therefore, during the clustering process only the fields describing the number of

the public functions and the handle of the class (as a supplementary field) are the only

factors that can play an important role to the creation of the clusters. After the

clustering process the following three clusters were derived:

Results - Evaluation

66

1. As presented in picture 7-1, the first cluster, which represents the

54.72% of the population, consists of small classes that include a

range of 3 to 27 public member functions.

Figure7-1: CAccessReport: First cluster of the Classes table (small size classes).

2. The second cluster, which represents the 22.64% of the population,

consists of medium size classes that include a range from 35 to 87

public member functions. This is illustrated in picture 7-2.

Results - Evaluation

67

Figure7-2: CAccessReport: Second cluster of the Classes table (medium size classes).

3. The third cluster (picture 7-3), which also represents the remaining

22.64 of the population, consists of medium to large size classes,

including a range from 100 to 170 public member functions.

Figure7-3: CAccessReport: Third cluster of the Classes table (large size classes).

Results - Evaluation

68

7.2.1.2 CAccessReport: Member Functions Analysis

There are two significant characteristics of the member functions of

CAccessReport; the first is that all of them are public and the second is that almost

half of them contain parameters (48.06% of the population). They can be divided in

the following three clusters:

1. As illustrated in pictures 7-4 and 7-5, the first cluster, which represents the

45.82% of the population, consists of public functions that have parameters,

and that they have no return type or they return void. Therefore, it can be

concluded that this cluster includes the constructors of the system’s classes

and functions that usually set values to the classes.

Figure7-4: CAccessReport: First cluster of the Member_Functions table. Public functions with

parameters

Results - Evaluation

69

Figure7-5: CAccessReport: First cluster of the Member_Functions table. Public functions that

return void or null

Results - Evaluation

70

2. The second cluster as shown in pictures 7-6 and 7-7 represents the 34.12%

of the population and consists of public functions that have no parameters.

Half of this cluster’s functions return the type CString, which

encapsulates a character string. It is a class that provides basic string

operations such as concatenation, comparison and assignments [Shepherd

and Wingo 1996].

Figure7-6: CAccessReport: Second cluster of the Member_Functions table. Public functions

with no parameters

Results - Evaluation

71

Figure7-7: CAccessReport: Second cluster of the Member_Functions table. Public functions

that return CString

Results - Evaluation

72

3. As demonstrated in pictures 7-8 and 7-9, the third cluster that represents

the 20.06% of the population, consists of public functions in which a rate of

11.17% have no parameters at all, when the remaining 88.83% have.

Almost half of this cluster’s functions return the following types:

i) VARIANT, which is a self-described data type. The first field of the

VARIANT structure is an unsigned short representing the type of

data which is contained in the structure. By using this data type,

passing of data becomes fairly simple since all the parameters are

homogenous [Shepherd and Wingo 1996].

ii) LPDISPATCH, which accesses the underlying IDISPATCH pointer

of the COleDispatchDriver object

[http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vclib/html/vclrfcoledispatchdriveroperatorlpdispatch.asp].

Figure7-8: CAccessReport: Third cluster of the Member_Functions table. Public functions

with parameters and no parameters

Results - Evaluation

73

Figure7-9: CAccessReport: Third cluster of the Member_Functions table. Public functions that

return VARIANT and LPDISPATCH

Results - Evaluation

74

7.2.1.3 CAccessReport: Analysis of the parameters of member

functions

Most of the member functions’ parameters in CAccessReport are passed by

value (1256 out of 1614). They can be divided into three clusters:

1. According to the pictures 7-10 and 7-11, the first cluster (42.44% of the

population) consists of parameters that are passed by value and originate

from the following types:

i) LPCSTR, which is a Windows data type. It is a constant pointer to a

string [Schild 1998].

ii) LPDISPATCH.

iii) pointers of type VARIANT.

From the parameters’ types mentioned above, it can be concluded that the

functions making use of these parameters can manipulate strings and access

ActiveX clients.

Figure7-10: CAccessReport: First cluster of the Function_Parameters table. Parameters by

value

Results - Evaluation

75

Figure7-11: CAccessReport: First cluster of the Function_Parameters table. Parameters of

type LPCSTR, LPDISPATCH and VARIANT

2. The second cluster (41.57%) also consists of parameters that are passed by

value, most of which originate from the following types (pictures 7-12, 7-

13):

a. BOOL

b. short

c. long

Results - Evaluation

76

Figure7-12: CAccessReport: Second cluster of the Function_Parameters table. Parameters

by value

Figure7-13: CAccessReport: Second cluster of the Function_Parameters table. Parameters of type

BOOL, short and long

Results - Evaluation

77

3. As seen in pictures 7-14 and 7-15, the third cluster (15.99%) consists of

parameters that are passed by reference and they are constants of type

VARIANT (77.91%). This means that this cluster’s parameters are based on

the operator IDisparch::Invoke, which provides a way of accessing

and exposing objects within a particular application. They are used by

functions which aim to specify data that cannot be passed by reference in

any other way.

Figure7-14: CAccessReport: Third cluster of the Function_Parameters table. Parameters by

reference

Results - Evaluation

78

Figure7-15: CAccessReport: Second cluster of the Function_Parameters table. Parameters

of type VARIANT

7.2.1.4 CAccessReport: Conclusions

CAccessReport does not show important differences between its components.

The majority of its classes (52 out of 53) inherits from the same superclass

(COleDispatchDriver), and has no member data. All of their member functions

also are public. The differences between the CAccessReport’s components are

mainly quantitative, like for example the number of public functions or parameters.

The return types of the member functions and their parameters’ types are the only

differences that are not quantitative but qualitative are.

A valid point is that every parameter passed by reference is a constant of the type

VARIANT. Thus, it can be derived that the functions that use these parameters are

binding during run-time and the data is not known ahead of time.

Results - Evaluation

79

7.2.2 Description and General Characteristics of the CompDB system

CompDB application is used in order to compare recordsets in a database. A

common problem that programmers face, is the customisation of a new version of an

application in order to process and change data that already resides in a complex table

structure of a database. The main problem is the comparison and the verification of

the results of this new version with the respective results of the old version. CompDB

application helps the user to define a set of queries having parameters, and export the

results in a file. Next, the user can compare the two files (the one from the old version

and the other from the new one), by using the program “WinDiff”

[http://www.codeguru.com/mfc_database/CompDB.html].

CompDB system is a small-size application. It consists of 18 public classes, 64

member data and 256 functions that have 235 parameters. It is based on the

document/view architecture, which is one of the cornerstones of MFC. This

architecture provides a single, consistent way of coordinating application data and

rendering of that data. The document handles data management and the views handle

the user-interface management. In effect, an application’s data is centralised in one

place, and the user-interface code is packaged separately [Shepherd and Wingo 1996].

This separation between the application data (documents) and representations of

that data (views) is the main advantage of the document/view architecture. This

architecture consists of the following components:

• Document, which is the core of the document/view architecture. It is not

implying data in the form of things like word processors or spreadsheets. It

is a place to keep data, a kind of data source [Shepherd and Wingo 1996].

• View, which is responsible for rendering a document’s data. It also

provides a user interface for manipulating the data [Shepherd and Wingo

1996].

• Document/View Frame, which provides the ability to apply a different user

interface (that is, a different set of menus and controls) to each separate

view. Single Document Interface (SDI) applications use a class derived

from CFrameWnd as the frame is housing one view. On the other hand

Multiple Document Interface (MDI) applications derive a class from

CMDIChildWnd as the frame is housing multiple views of the document

[Shepherd and Wingo 1996].

Results - Evaluation

80

• Document Template, which ties the three previous components together.

More specifically the ideas of a document, its renderings, and its user

interface are treated together as a whole. These three components are

managed by a class called CDocTemplate [Shepherd and Wingo 1996].

7.2.2.1 CompDB: Classes Analysis

After the clustering process of the CompDB application’s Input Model, the

following clusters were derived:

1. The first cluster, as depicted in picture 7-16, represents the 38.89% of the

population, and consists of classes that all of them inherit. Their resprective

superclasses are:

i) CStatic, which encapsulates the static control. It is considered to

be a classic control as it has been in Windows since the beginning

[Shepherd and Wingo 1996].

ii) CView, which is the class that a view class is derived from. A

view, in general, is a physical representation of the data. A view

class that is derived from CView, controls the display of the

document. The view window overlays the frame window and relies

on the frame window for the basic window functions, such as

resizing and minimising [Schild 1998].

iii) CMDIFrameWnd, which provides a main, frame window for

Multiple Document Interface (MDI) applications [Shepherd and

Wingo 1996].

iv) CMDIChildWnd, which provides child windows for an MDI

application [Shepherd and Wingo 1996].

Results - Evaluation

81

Figure7-16: CompDB: First Cluster Classes table. Information about the super classes

As presented above the classes belonging to this cluster, are related logically, as

they represent components of the document/view architecture. There are four classes

(CQueryView, CPropView, CParaView, CCompDBView) that derive from the

CView class and two classes that provide the respective frames and which derive

from CMDIFrameWnd (CMainFrame) and CMDIChildWnd (CChildFrame).

In addition what characterises the classes that are members of this cluster is that

the values representing the amount of public functions is distributed between 5 and

10, but the ones representing the amount of the protected functions are either too

small or too big. This can be seen in pictures A-1, A-2 of §Appendix.

2. According to the picture 7-17, the second cluster, represents the 33.33% of

the population, and consists of classes, amongst which, two of them do not

inherit and four of them do. The respective superclasses of those who

inherit are:

i) CStringArray, which is an array of the String type. Its main

task is to handle the memory allocation [Shepherd and Wingo

1996].

Results - Evaluation

82

ii) CListBox, which encapsulates the list box control. It is a classic

control since it has been in Windows from the beginning [Shepherd

and Wingo 1996]. It is similar to the CStatic class.

iii) CDocument, which is the class where the document of an MFC

application (like CompDB) derives from [Shepherd and Wingo

1996].

iv) CListCtrl, which displays a graphical list (Explorer-like) of list

items [Shepherd and Wingo 1996].

Figure7-17: CompDB: Second cluster of Classes Table. Information about the super classes

As portrayed in the above picture, the classes belonging to this cluster do not have

the same logical correlation. There is only one class representing a component

ncluded in the document/view architecture (CCompDBDoc), two others represent

control classes (CPropertyListCtrl, CCrack) and another one that represents a

shape of the MFC collection (CSortStringArray).

In addition what characterises the classes that are members of this cluster is that

the values that represent the number of public and the protected functions are either

too small or too big. This is portrayed in pictures A-3, A-4 of §Appendix.

Results - Evaluation

83

3. According to the picture 7-18 the third cluster represents the 27.78% of the

population, and consists of classes that all of them inherit. Their respective

superclasses are:

i) CDialog, which implements Windows dialogs. It supports both

modal and modeless dialog creation and operations. Modal dialogs

“freeze” the rest of the application and force the user to perform

some operation before it will go away. On the other hand, modeless

dialogs let the user continue using the application while it is

displayed [Shepherd and Wingo 1996].

ii) CButton, which is a standard Windows pushbutton [Shepherd and

Wingo 1996].

iii) CWinApp, which represents the standard Windows Application. It

has overrideable functions that can be used in the initialisation and

the termination cleanup of the application [Shepherd and Wingo

1996].

Figure7-18: CompDB: Third cluster of Classes Table. Information that describes the super

classes

As outlined above, not all classes belonging to this cluster have the same logical

relation. There are three classes representing the dialog controls (CArgDlg,

Results - Evaluation

84

CCompDlg, CQueryDlg), one representing the Windows Application

(CCompDBApp) and another one that represents a control (CComboButton).

An additional characteristic of this cluster is that the values representing the public

functions’ number are distributed between 1 and 5 and the values that represent the

number of the protected functions are between 2 and 7. As illustrated in pictures A-5,

A-6 of §Appendix there are no significant differences.

7.2.2.2 CompDB: Member Data Analysis

The member data of the CompDB application classes are either public or protected.

The clusters drawn after the clustering process are:

1. The first cluster, as portrayed in pictures A-7, A-8 of §Appendix,

represents the 59.38% of the population and consists of protected members,

where none of which is a pointer. The member data of this cluster belongs

to the majority of the CompDB application classes (picture 7-19). However,

almost half of them belongs to classes CCompDBView (with ID = 427) and

CAdoList (with ID = 420). The types of the member data vary. The more

predominant, as showing in picture 7-20, are:

i) int

ii) CString, which encapsulates a character string [Shepherd and

Wingo 1996].

iii) CFont, which wraps the Windows font object (an HFONT) and the

API functions for creating and managing fonts [Shepherd and

Wingo 1996].

iv) CGridCtrl, which is a control derived from the CWnd class.

Results - Evaluation

85

Figure7-19: CompDB: First cluster of Member_Data Table. Distribution of the member data

among the classes of the CompDB application

Figure7-20: CompDB: First cluster of Membe_Data Table. Types of Member Data

2. The second cluster, as depicted in pictures A-9, A-10 of §Appendix,

represents the 32.81% of the population and consists of public members

that none of them is a pointer. Member data of this cluster belong to half of

Results - Evaluation

86

CompDB application classes (picture 7-21). In particular, they belong to

classes CQueryDlg (with ID = 439), CCompDlg (with ID = 429) and

CArgDlg (with ID = 422). It is clear that there is a logical connection

between the member data of this cluster as the majority of it belonging to

classes that are derived from the CDialog class.

Figure7-21: Distribution of the member data of the second cluster among the classes of the

CompDB application

The types of the member data vary. The more predominant, as depicted in the

picture 7-22, are:

i) enum

ii) CString, which encapsulates a character string [Shepherd and

Wingo 1996].

iii) CButton, which wraps a standard Windows pushbutton [Shepherd

and Wingo 1996].

Results - Evaluation

87

Figure7-22: CompDB: Second cluster of Member_Data Table. Types of Member Data

3. The third cluster, as illustrated in pictures A-11 and A-12 of §Appendix,

represents the 7.81% of the population and consists of public and protected

members that all of them are pointers. This is the most important logical

relation between the member data of this cluster, which only belongs to two

CompDB application classes (picture 7-23). The CAdoList (with ID = 420)

and CComboButton (with ID = 424).

Results - Evaluation

88

Figure7-23: CompDB: Third cluster of Member_Data. Distribution of the member data among

the classes of the CompDB application

The types of the member are different. The more predominant, as shown in picture

7-24, are:

i) CPen, which wraps the Windows pen object (an HPEN) and

includes the API functions for creating pens as member functions

[Shepherd and Wingo 1996].

ii) CBrush, which wraps the Windows brush object (an HBRUSH) and

the API functions for creating brushes [Shepherd and Wingo 1996].

Results - Evaluation

89

Figure7-24: CompDB: Third cluster of Member_Data table. Types of Member Data

7.2.2.3 CompDB: Member Functions Analysis

The member functions of the CompDB application classes can be divided in the

following three clusters:

1. The first cluster, as illustrated in picture A-13 of §Appendix, represents the

34.38% of the population and consists of public and protected functions.

The return types of the member functions of the CompDB application

classes vary, with the most predominant being (according to picture 7-25):

i) afx_msg void, where afx_msg is a type specifier used in order to

prototype message handlers. A message handler is a function that

processes Windows messages. The afx_msg void return type

indicates that a message handler of the type WM_COMMAND (which is

a command message that is sent when the user makes a menu

selection) was declared [Schild 1998].

ii) afx_msg int

Results - Evaluation

90

Figure7-25: CompDB: First cluster of Member_Functions table. Return Types of the member

functions

An additional characteristic of the member functions of this cluster is that they

belong to the majority of the CompDB application classes (picture 7-26). However,

most of them belong to classes CChildFrame (with ID = 423),

CPropertyListCtrl (with ID = 434), CParaView (with ID = 436), CPropView,

(with ID = 437) and CQueryView (with ID = 438).

Results - Evaluation

91

Figure7-26: CompDB: First cluster of Member_Functions table. Distribution of the member

functions among the classes of the CompDB application

The final common characteristic of the member functions of this cluster is that the

majority of them have zero or one parameters. This is depicted in picture A-14 of

§Appendix.

2. The second cluster, as presented in picture A-15 of §Appendix, represents

the 33.20% of the population and includes all the categories of the member

functions (public, protected and private). The return types of the member

functions of the CompDB application classes vary, with the most

predominant (according to picture 7-27) being:

i) void

ii) BOOL

Results - Evaluation

92

Figure7-27: CompDB: Second cluster of Member_Functions table. Return Types of the

member functions

In addition the most significant member functions feature in this cluster is that they

belong to the majority of CompDB application classes (picture 7-28). However, most

of them belong to classes CCompDBDoc (with ID = 426), CCompDBView (with ID =

427), CPropertyListCtrl (with ID = 434) and CParaView (with ID = 436).

Figure7-28: Distribution of the member functions of the first cluster among their classes

Results - Evaluation

93

The final common characteristic of the member functions of this cluster is that the

majority of them have zero or one parameters. This is depicted in the picture A-16 of

§Appendix.

3. The third cluster, as demonstrated in picture A-17 of §Appendix,

represents the 32.42% of the population and consists of all the categories of

the member functions (public, protected and private). Almost half of the

functions of this cluster do not have a return type. This indicates that they

are either the constructors or the destructors of the classes where they

belong. Regarding member functions that have a return type, the most

predominant is the type BOOL. This can be depicted in the picture 7-29:

Figure7-29: CompDB: Third cluster of Member_Functions table. Return Types of the member

functions

An additional feature of the member functions of this cluster is that they belong to

the majority of the classes of the CompDB application (picture 7-30). However, most

of them belong to the classes CCompDBDoc (with ID = 426), CCompDBView (with ID

= 427), CPropertyListCtrl (with ID = 434) and CAdoUti (with ID = 421).

Results - Evaluation

94

Figure7-30 CompDB: Third cluster of Member_Functions table. Distribution of the member

functions among their classes

The final common characteristic of the member functions of this cluster is that the

majority of them have zero or one parameters. This is depicted in picture (A-18) of

§Appendix.

7.2.2.4 CompDB: Analysis of thr Parameters of Member

Functions

The parameters of the member functions of the CompDB application classes can be

divided into three clusters:

1. The first cluster, as illustrated in picture A-19 of §Appendix, represents the

42.98% of the population and consists of parameters that are passed by

value. The return types of the member functions of the classes of the

CompDB application vary. According to picture 7-31 the most predominant

are:

i) pointers of type char

ii) int

iii) pointers of type CDC, which is a class that encapsulates device-

context support. A device context defines a display environment

Results - Evaluation

95

(such as a window on the screen). In addition, it provides functions

that allow applications to draw various objects, like lines and circles

[Schild 1998].

Figure7-31: CompDB: First cluster of Function_Parameters table Types of parameters.

2. The second cluster, as portrayed in picture A-20 §Appendix, represents the

42.55% of the population and consists of parameters that are passed by

value. The return types of the member functions of the classes of the

CompDB application vary. According to picture 7-32 the more predominant

are:

i) char

ii) UINT, which is an unsigned 32-bit integer. It is not a standard

C/C++ data type but a Window data type that MFC uses [Schild

1998].

iii) COLOREF, which is a 32-bit integer that holds an RGB color [Schild

1998].

Results - Evaluation

96

Figure7-32: CompDB: Second cluster of Function_Parameters table Types of parameters

3. The third cluster, as it is depicted in the picture A-21 of §Appendix,

represents the 14.47% of the population and consists of parameters that are

passed by reference. The return types of the member functions of the

classes of the CompDB application vary, with the most predominant being

(according to picture 7-33):

i) CDUMPCONTEXT, which is a class that its objects provide several

diagnostic messages.

ii) _CONNECTIONPTR, which is a class that its objects are pointers to a

Connection Interface [http://www.devarticles.com/art/1/230/4].

Results - Evaluation

97

Figure7-33 CompDB: Third cluster of Function_Parameters table. Types of parameters

7.2.2.5 CompDB: Conclusions

Logical correlations between the classes of the CompDB can be found: In the first

place, there are the classes deriving from the CView (CQueryView, CPropView,

CParaView, CCompDBView). These classes apart from logical correlation, they

have also structural (member data) and behavioural (member functions) similarities.

They have the same size as there are no significant differences between the number of

their member data and functions. Their member data has also common data types. On

the other hand, their member functions have common return types and similar

parameter numbers.

Another category of logically related classes are (CMainFrame, CChildFrame)

classes that derived from CWnd. They also have structural similarities, since their

member data have common data types. On the other hand their member functions

seem to have similarities but a lower rate than the member data.

The classes CArgDlg, CCompDlg, CQueryDl that derive from the class CDialog

are also logically related and present structural and behavioural similarities. Their

member data and functions have lots of similarities, such as common data types (for

the member data), number of parameters and return types (for the member functions).

Results - Evaluation

98

Nine out of the eighteen classes of the CompDB application (50% of its population)

are logically, structurally and behaviourally correlated, which is a useful fact for the

application’s maintenance. For example, if the maintainer needs to change the data

type of a member data in the CParaView class, then he/she may have to change

CQueryView, CPropView and CCompDBView. Hence, the conclusion is that by

finding logical correlations between the classes of a system, it is very likely to find

also structural and behavioural correlations. This can be useful for the easier

understanding and maintenance of CompDB. Their ability to inherit is a vital factor of

the logical correlation of a system’s classes. If some classes have the same superclass,

then it is more likely to have similar structure and behaviour.

At this point it has to be underlined that finding logical correlations between the

classes of a system is not the only way for a maintainer to understand the system.

There are classes that do not have any logical correlation, but they can have either

structural or behavioural similarities. Examples of this are the CAdoList and

CComboButton classes, which have member data of the same type (structural

similarity). They are pointers of type CPen and CBrush. Therefore, if the maintainer

wants to make a change in the type of the member data of CAdoList, is very likely

that he will do the same change to CComboButton as well.

Conclusions – Future Work

99

8. Conclusions – Future Work Chapter

8.1 Introduction

This chapter presents the conclusions derived from the investigation in terms of

program understanding and software maintenance, with the help of data mining

techniques such as clustering. It outlines the challenges that were met, the solutions

implemented and their outcome. It also suggests ways on how to further develop this

approach in terms of program understanding of the C++ Source Code.

8.2 Overview

The methodology developed in order to carry out this investigation, consists of the

following steps:

1. Contacting background research in order to gain appropriate knowledge

and form the theoretical basis for the development of the whole

methodology. This includes an examination of program understanding

strategies (such as bottom-up, top-down, opportunistic), categories of

software maintenance changes (such as adaptive, protective, preventive and

perfective), and data mining techniques.

2. Gathering the requirements for the C++ source code preprocessing system.

The requirements are concerned with the Model of Input Data, the

Preprocessing Application’s Front-End (G.U.I.) and Back-End (Algorithm).

Investigation of the state of the art was the main source for these

requirements.

3. Designing the system based on concepts derived from the previous steps.

An example of this is the choice of the top-down program understanding

strategy, which forms the basis of the Preprocessing Algorithm (Back-End)

for the Application. UML is used in order to depict main concepts, such as

the Model of the Input Data, during the design process.

4. Implementing the system based on the outcome of the previous step. The

system consists of the Preprocessing Application that parses the C++

source code, a database management system where data is stored in a

format capable in order to perform cluster analysis, and a data mining tool

Conclusions – Future Work

100

that carries out the particular analysis. Java is used for the implementation

of the Preprocessing Application and SQL Server 2000 is used as the

database management system for the PreprocessingDB database. IBM’s

Intelligent Miner is used as the data mining tool for performing clustering

analysis on PreprocessingDB’s data.

5. Testing the implemented system to verify that the Preprocessing

Application is producing the expected results. A testing script is used for

this reason, according to which a header file is opened and preprocessed.

The expected outcome is the successful insertion of the extracted

information in the respective tables of the PreprocessingDB database,

and the right feedback by the G.U.I of the Preprocessing Application.

6. Evaluation of the system’s results. The intention here is to confirm that the

entire system is working according to the stated requirements, and that the

overall approach and methodology are valid. For this reason, the clustering

analysis results of the two different software systems (CAccessReports,

CompDB) are examined, and useful conclusions about the structure of them

are drawn.

8.3 Lessons learned

The carried out research in the domain of program understanding and software

maintenance with data mining, and the scientific approach that was conducted in

order to provide an appropriate solution, resulted in useful lessons derived from the

development of the above methodology. Scientific literature was studied and previous

solutions were reviewed. This helped in the creation of a strong scientific background

concerning the solution provided, and contributed in gaining a structured and

systematic approach in problem solving. An example of this (as mentioned in §8.2)

was the choice of the top-down program understanding strategy, which formed the

basis for the Preprocessing Algorithm (Back-End) of the Preprocessing Application.

Moreover, a valuable lesson was the improvement of software engineering and

programming skills for the development of the Preprocessing Application. The

waterfall model was chosen in order to develop the particular application and monitor

its progress. Java was used in order to build the G.U.I. of the application and

implement the Preprocessing Algorithm. SQL Server 2000 was used for the

Conclusions – Future Work

101

management of the Preprocessing DB and IBM’s Intelligent Miner for the clustering

analysis in relation to its data.

8.4 Conclusions

8.4.1 Conclusions for the methodology

The following conclusions can be derived from the comparison of the methodology

described in §8.2 with the solutions described in §2.7.1, §2.7.2, §2.7.3, §2.7.4.

This project focuses on program understanding, unlike the method presented in

§2.7.1, which focuses on software reliability assessment. The choice of the clustering

data mining technique and the appropriate Model of Input Data indicate the principal

area that the project is concerned with.

Then, it is designed specifically for C++ source code and is tested using larger

datasets than the solution of §2.7.2. Two systems were used in order to test this

solution. CAccessReport with 53 files of 224KB in total, and CompDB with 18 files

of 70KB in total.

The third conclusion is that this solution, unlike the one at §2.7.3, is not fully

automated. As soon as the Preprocessing Application finishes the C++ source code

preprocessing, the user has to use a separate data mining tool. This particular tool is

the IBM’s Intelligent Miner. The solution and the methodology developed do not

make use of any custom clustering algorithms.

Finally, and unlike the solution in §2.7.4, this work uses only cluster analysis in

order to facilitate the understanding of a software system. What is more, according to

the level of detail that the user requires; relations of high level (such as classes) and of

medium level (such as functions) among components can be found.

8.4.2 Conclusions for the Preprocessing Application

First of all, the Preprocessing Application meets the criteria that were selected

during the design phase. Its Front-End (G.U.I.) is user-friendly because:

o It is understandable. There are not many controls on the “Preprocessing

Form” that the user can interact with, just buttons (“Open”, “Preprocess”

Conclusions – Future Work

102

and “Cancel”) that have discrete roles and their functionalities do not

overlap.

o It is tolerant to mistakes. Exception handling mechanisms are used in the

Preprocessing Application in order to prevent the application from crashing

after a user error, or during the preprocessing of a header file. Error

messages are also used in order to ensure that the user will be able to

observe the progress of the preprocessing process and restart it from an

early stage in case that something goes wrong.

o It provides feedback to the user regarding the actions undertaken. A

progress bar is used in order to depict the progress of the extraction and the

insertion of the data in the database. A text area is also provided to the user,

in order to help him/her understand the stage of the Preprocessing

Algorithm that the application performs.

o It is task-suitable as it does not provide too much functionality that can

confuse the user. The Preprocessing Application consists only of two

forms: The “C++ Source Code Preprocessing Application” window, which

is the parent window and has the menu with the functionalities of the

Preprocessing Application and the “File Preprocessing” form, which is the

child window.

In addition, the Back-End (Algorithm) meets its respective requirements. The data

that is retrieved from the source code (header file) is stored in a way that is easy to

apply cluster analysis. Suitable attributes were selected in order to avoid an

unnecessarily increase of the records’ similarity for the Model of Input Data entities.

For instance, the Category attribute of the Member Data and Classes entities was

used in order to define the category of the data members and the classes. Originally

the design used to have three binary fields (IsPublic, IsPrivate, IsProtected)

instead of this attribute.

The Back-End (Preprocessing Algorithm) is also able to process a large number of

files in a reasonable amount of time. For example it took less than fifteen minutes to

preprocess (that is parse the files, extract information and insert it in the

PreprocessingDB database) the 53 separate header files of the CAccessReport

application of a total size of 224KB.

Finally, the clustering analysis of the output of the Preprocessing Application

indicates that:

Conclusions – Future Work

103

• The output is valid. The information reflects the actual structure of both

the CAccessReport and CompDB systems.

• The output is useful. There are patterns discovered that a potential

maintainer would have found very useful, as they could help him/her

understand the system under maintenance. An example of this is the

following pattern: by finding logical correlations between the classes of a

system it is very likely to find also structural and behavioural correlations.

• The patterns discovered were not entirely novel. Most of them have been

theoretically described before, but nonetheless were verified by the

clustering analysis. A maintainer could have expected results like the

previous example. A probable novel pattern would be the fact that either

structural or behavioural similarities can be found in classes that are not

logically correlated, or in other words they do not inherit from the same

class.

8.5 Future Work

The evaluation of the investigation work and the conclusions that were presented

in §8.4.1 and §8.4.2 can lead to further work suggestions that can improve this

project.

In the first place, the Preprocessing Application is not database – independent, as it

functions only with the SQL Server 2000 DBMS. Thus, there is a need for

administrative functionalities for the maintainer in order to be able to change the

database he/she works with.

Secondly, the Preprocessing Application has to be flexible in order to support

several editions of C++. There is the standard C++, Microsoft’s Visual C++ and

Visual C++ .NET, MFC (Microsoft Foundation Classes), and Borland C++ that can

be used for the development of an application. Such editions are different in terms of

their data types and their syntax. Hence, the application should be designed in order to

be flexible to adjust with these editions of C++.

On the other hand, the Model of the Input Data is designed to facilitate the

clustering analysis. Hence, the input model has to change in order to be able to use

Conclusions – Future Work

104

other data mining techniques such as association rules. New attributes (fields) can be

added to the description of the system entities (database tables).

An added suggestion is to process some elements of the *.cpp files of the

analysed system. These elements can be:

• The header files which are included in each file. This is another way to

discover logical correlations between the classes of a system, other than

inheritance. As it is previously mentioned, logical correlations among the

classes of a system are likely to indicate structural and behavioural

correlations.

• The definitions of the constants that are used in the *.cpp file. This can

help to find more structural similarities between the classes of a system,

even in case they do not have any logical correlations.

In order to do that, the Model of the Input Data should change by adding new

attributes to the existing entities.

In conclusion, the proposed solution can be fully automated. This means that a

module that will implement several data mining algorithms can be integrated in the

existing Preprocessing Application, in order to start the data analysis automatically, as

soon as the data preprocessing is completed.

References

105

References

Papers

1. [Chen et al. 2002]. Kai Chen, Christos Tjortjis, Paul Layzell. A Method for

Legacy Systems Maintenance By Mining Data Extracted From Source

Code. In the case studies of IEEE 6th European Conference Software

Maintenance and Reengineering (CSMR 2002).

2. [Clements et al. 1996]. Paul Clements, Robert Krut, Ed Morris, Kurt

Wallnau. The Gadfly: An approach to Architectural – Level System

Comprehension. Fourth IEEE Workshop on Program Comprehension,

Berlin March 1996.

3. [IEEE Software Maintenance Standards 1998]

4. [Lientz et al. 1978]. B.P.Lientz, E.B. Swanson, and G.E. Tompkins,

Characteristics of Software Application Maintenance, Communications of

the ACM, Volume 21, Number 6, pp. 1-3, June 1978.

5. [Mancoridis et al. 1998], S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen,

E.R. Gansner. Clustering to Produce High-Level System Organisations of

Source Code. In the IEEE Proceedings of the 1998 International Workshop

on Program Understanding.

6. [Padula 1993]. Alan Padula, Use of a Program Understanding Taxonomy

at Hewlett-Packard, Second IEEE Workshop on Program Understanding,

July 1993.

7. [Sartipi 2001], Karman Sartipi, A Software Evaluation Model Using

Component Association Views. In the IEEE Proceedings of the 2001

International Workshop on Program Understanding.

8. [Tjortjis and Layzell 2001]. Christos Tjortjis, Paul Layzell. Using Data

Mining to Assess Software Reliability. In the proceedings of the 12th IEEE

International Symposium Software Reliability Engineering, (ISSRE2001).

9. [Von Mayrhauser, Vans 1995]. Program comprehension during software

maintenance and evolution, Von Mayrhauser Anneliese, Vans Anne Marie,

Computer, Volume: 28 Issue: 8 , Aug 1995, Page(s): 44 -55, IEEE Journal

References

106

Books

10. [Deitel & Deitel 1999], H. M. Deitel, P. J. Deitel, Java How to Program

(Covers Java 2 Introducing Swing), Prentice Hall 1999.

11. [Fayyad et al. 1996]. Usama M. Fayyad, Gregory Piatetsky-Sapiro,

Padhraic Smith, and Ramasamy Uthurusamy. Advances in Knowledge

Discovery and Data Mining. The MIT press 1996.

12. [Han, Kamber 2001], Jiawei Han, Micheline Kamber, Data Mining

Concepts and Techniques, Morgan Kauffman Publishers 2001.

13. [Lafore 1999]. Robert Lafore, Object-Oriented Programming in C++,

Third Edition, SAMS Publishing 1999.

14. [Piroumian 1999], Vartan Piroumian, Java GUI Development, SAMS

1999.

15. [Schild 1998], Herbert Schildt, MFC Programming from the Ground Up,

Osborne/McGraw-Hill 1998.

16. [Shepherd and Wingo 1996] George Shepherd and Scot Wingo, MFC

Internals Inside the Microsoft Foundation Class Architecture, Addison-

Wesley Developers Press 1996

17. [Takang, Grupp 1996].Armstrong A. Takang and Penny A. Grubb.

Software Maintenance Concepts and Practice. International Thompson

Computer Press 1996.

URLs

18. http://developer.kde.org/documentation/standards/kde/style/basics/usage.ht

ml

19. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vccore/html/_core_Automation_Clients.asp

20. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vclib/html/vclrfcoledispatchdriveroperatorlpdispatch.asp

21. http://www.codeguru.com/mfc_database/access_reports_class.shtml

22. http://www.codeguru.com/mfc_database/CompDB.html

23. http://www.codeproject.com/interview/tomarcher3jun2001.asp

24. http://www.devarticles.com/art/1/230/4

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_core_Automation_Clients.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_core_Automation_Clients.asp
http://www.codeguru.com/mfc_database/access_reports_class.shtml
http://www.codeproject.com/interview/tomarcher3jun2001.asp
http://www.devarticles.com/art/1/230/4

References

107

25. http://www-ksl-svc.stanford.edu:5915/doc/frame-editor/what-is-a-

class.html

http://www-ksl-svc.stanford.edu:5915/doc/frame-editor/what-is-a-class.html
http://www-ksl-svc.stanford.edu:5915/doc/frame-editor/what-is-a-class.html

Appendix

108

Appendix

Screenshots from the Analysis of CompDB Application

CompDB: Screenshots from Classes Analysis

FigureA-1: CompDB: First cluster Classes Table. Distribution of the values that represent the

number of the Public Functions

Appendix

109

FigureA-2: CompDB: First cluster Classes Table. Distribution of the values that represent the

number of the Protected Functions

FigureA-3: CompDB: Second cluster of Classes Table. Distribution of the values that represent

the number of the Public Functions

Appendix

110

FigureA-4: CompDB: Second cluster of Classes Table. Distribution of the values that represent

the number of the Protected Functions

FigureA-5: CompDB: Third cluster of Classes Table. Distribution of the values that represent

the number of the Public Functions

Appendix

111

FigureA-6: CompDB: Third cluster of Classes Table. Distribution of the values that represent the

number of the Protected Functions

CompDB: Screenshots from Member Data Analysis

FigureA-7: CompDB: First cluster of Member_Data Table. Category of member data

Appendix

112

FigureA-8: CompDB: First cluster of Member_Data Table. Information that describes if the

member data are pointers or not

FigureA-9: CompDB: Second cluster of Member_Data Table. Category of member data

Appendix

113

FigureA-10: CompDB: Second cluster of Member_Data Table. Information that describes if the

member data are pointers or not

FigureA-11: CompDB: Third cluster of Member_Data Table Categories of member data

Appendix

114

FigureA-12: CompDB: Third cluster of Member_Data Table. Information that describes if the

member data are pointers or not

CompDB: Screenshots from Member Functions Analysis

FigureA-13: CompDB: First cluster of Member_Functions table. Categories of the member

functions

Appendix

115

FigureA-14: CompDB: First cluster of Member_Functions table. Number of parameters of the

member functions

FigureA-15: CompDB: Second cluster of Member_Functions table. Categories of the member

functions

Appendix

116

FigureA-16: CompDB: Second cluster of Member_Functions table. Number of parameters of

the member functions

FigureA-17: CompDB: Third cluster of Member_Functions table. Categories of the member

functions

Appendix

117

FigureA-18 CompDB: Third cluster of Member_Functions table. Number of parameters of the

member functions

CompDB: Screenshots from Parameters of Member Functions

Analysis

FigureA-19: CompDB: First cluster of Function_Parameters table. Use of Parameters

Appendix

118

FigureA-20 CompDB: Second cluster of Function_Parameters table Use of Parameters

FigureA-21 CompDB: Third cluster of Function_Parameters table Use of Parameters

