
 -i-

Traffic Prediction in Smart
Cities, Featuring the
Impact of COVID-19

Liapis Stergios

SID: 3308190015

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

JANUARY 2021

THESSALONIKI – GREECE

-ii-

Traffic Prediction in Smart
Cities, Featuring the
Impact of COVID-19

Liapis Stergios

SID: 3308190015

Supervisor: Assoc. Prof. C. Tjortjis

Supervising Committee

Members:

Dr D. Karapiperis

Dr N. Serketzis

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

JANUARY 2021

THESSALONIKI – GREECE

 -iii-

Abstract

This dissertation was written as a part of the MSc in Data Science at the

International Hellenic University.

Smart cities emerge as highly sophisticated bionetworks, providing smart services

and ground-breaking solutions. This dissertation presents a novel method using

classification in the context of Smart City projects, focusing on traffic prediction. A

methodical literature review identifies the main topics and methods used, emphasizing

on various Smart Cities components, such as data harvesting and data mining. It

addresses the research question whether traffic loads can be forecasted based on past

data, meteorological conditions, seasonality, and time intervals, as well as COVID-19

related restrictions. We propose reliable models by utilizing smaller data partitions.

Apart from feature selection, we incorporate features related to movement restrictions,

forming a pioneering data model. Our approach explores the optimal degree of data

aggregation. Results have shown that various models can be developed with varying

levels of success. The best outcome was achieved when factoring in all relevant

features. Accuracy improved significantly compared to previously published work.

Acknowledgements

Firstly, I would like to thank my supervisor, Professor Christos Tjortjis, for

providing invaluable advice and guidance and for encouraging me to publish my

research.

I would like to express my special gratitude to Konstantinos Christantonis for his

willingness to assist me and for sharing his valuable domain knowledge.

I am thankful to Victor Chazan–Pantzalis for providing important insights on data

sources and for his useful suggestions. Additionally, I would like to thank DOTSOFT

S.A. for providing the sensor data required for our experiments.

Lastly, I am grateful to my family and my close people for their faith in me and for

giving me strength throughout this dissertation.

Stergios Liapis

03 January 2021

 -v-

Contents

ABSTRACT ... III

CONTENTS ... V

1 INTRODUCTION .. 1

2 LITERATURE REVIEW .. 5

2.1 SMART CITIES ... 5

2.1.1 Smart Energy ... 7

2.1.2 Smart Healthcare ... 8

2.1.3 Smart Economy ... 9

2.1.4 Smart Education .. 9

2.1.5 Smart Governance .. 10

2.1.6 Smart Mobility and Transportation .. 10

2.2 TRAFFIC PREDICTION .. 11

2.3 ACCIDENT PREDICTION ... 16

3 METHODOLOGY ... 21

3.1 PROBLEM DEFINITION ... 21

3.2 APPROACH .. 22

3.3 DATASET ... 23

3.3.1 Dataset Description ... 23

3.3.2 Dataset Pre-processing .. 24

3.3.3 Feature Engineering and Selection .. 25

3.3.4 Exploratory Analysis ... 28

4 EXPERIMENTS 2-CLASSES .. 33

4.1 BASELINE AND MODEL EVOLUTION 2-CLASSES 33

4.2 3-MONTH SPLIT 2-CLASSES ... 36

4.3 4-MONTH SPLIT 2-CLASSES ... 36

4.4 COVID-19 2-CLASSES ... 37

-vi-

4.5 ATHENS-THESSALONIKI COMPARISON 2-CLASSES 39

5 EXPERIMENTS 3-CLASSES .. 43

5.1 BASELINE AND MODEL EVOLUTION 3-CLASSES 43

5.2 3-MONTH SPLIT 3-CLASSES .. 45

5.3 4-MONTH SPLIT 3-CLASSES .. 45

5.4 COVID-19 3-CLASSES .. 46

5.5 ATHENS-THESSALONIKI COMPARISON 3-CLASSES 48

6 EVALUATION AND DISCUSSION .. 51

6.1 DISCUSSION ON EARLY RESULTS ... 51

6.2 EVALUATION 3-4 MONTHS .. 53

6.3 WEEKDAY VS. WEEKEND .. 53

6.4 MORNING / NOON / AFTERNOON / EVENING .. 54

6.5 COVID-19 / LOCKDOWN.. 54

6.6 ATHENS VS. THESSALONIKI .. 55

6.7 THREATS TO VALIDITY .. 55

7 CONCLUSIONS AND FUTURE WORK.. 57

7.1 CONCLUSIONS .. 57

7.2 FUTURE WORK ... 58

REFERENCES ... 61

APPENDICES .. 65

 -1-

1 Introduction

Smart Cities are designed to solve urban challenges. The growing urban population

leads to more complex city problems. Thus, Smart Cities should focus on providing

proactive solutions and improving liveability for citizens. Undoubtedly, Smart

Governance is a key factor to manage cities more efficiently. Hence, Smart Cities

should have data awareness and apply data-driven decision making for Smart

Governance. The transformation of cities to Smart Cities is tightly connected with

efficiency and transparency. Τheir function requires innovation in problem solving,

keeping in mind citizen needs. As a result, managing cities more efficiently empowers

communities and augments sustainability.

A sustainable smart city utilizes city data for enhanced decision making. Data

intelligence enables the identification of insights to fulfil the needs of the urban

ecosystem. This framework of data creation and data usage improves operational

efficiency. Thus, local government should develop the city’s data culture and could

promote innovation in decision making. However, creating a robust urban governance

requires a responsible management of data security and data privacy. Consequently, the

concept of Smart Cities is responsible for effective resource management driven by

solving complex urban problems.

 The deployment of modern smart cities increasingly gains attention, as large urban

centers present numerous challenges for citizens over time. Traffic is a stressful and

time-consuming factor affecting citizens. Recently, many local authorities attempt to

design and create smart infrastructures and tools in order to collect data and utilize

models for better decision making and citizen support. Such data are often obtained

from sensors collecting information about Points Of Interest (POIs) in real time. Data

mining techniques and algorithms can then support getting useful insights into the

problem, whilst forming appropriate strategies to counter it.

This dissertation focuses on analyzing different approaches regarding data

manipulation in order to predict day-ahead traffic loads around two cities, mainly based

on weather conditions, but also including seasonality and the impact of COVID-19

-2-

related restrictions. Prediction efforts regard classification tasks aiming at highlighting

factors that affect traffic forecast. The novel method we propose utilizes weather data

collected from sensors located in Athens and Thessaloniki, Greece. This work is an

extension of prior efforts [1], when three different time slots were introduced (Morning,

Afternoon, Evening) and compared, while subsets of trimesters were also tested. The

current work further expands the analysis to investigate the impact of a fourth time slot,

namely Noon. In addition, 4-month periods of time are also tested with the introduction

of new features.

The work also includes an analysis on how COVID-19 impacted traffic loads, with

COVID-19 used as a factor supplementary to weather conditions. Additionally, it

contributes to the understanding of how unexpected events can modify traffic loads on a

temporary/semi-permanent basis.

This dissertation differs from standard approaches for traffic prediction in several

ways, mainly associated to the methodology. To the best of knowledge, the

transformation of the problem into classification and the inclusion of movement

restrictions is an approach that has not been used for predicting traffic loads. Our

contribution is part of an internal layer that assists those predictions in the day-ahead

case.

To summarize, traffic prediction is a problem with extended seasonality.

Constructing a general model needs numerous resources. Our focus is on investigating

whether we can build reliable models by utilizing smaller partitions of data. In addition,

feature selection is essential to solve the classification problem. The incorporation of

features related to movement restrictions, led to identifying abnormal traffic conditions

and formed a pioneering data model. Furthermore, our approach attempts to ascertain

the optimal degree of data aggregation, which is regarded as an open research question.

Our computational approach led to a significant improvement of accuracy.

This dissertation is structured as follows: Chapter 2 provides a methodical literature

review on Smart Cities, focusing on traffic and accidents prediction. Chapter 3 provides

the problem definition and describes the approach we followed for traffic prediction,

including data selection and feature engineering. Chapter 4 presents the 2-classes

experimental results on a variation of time periods, focusing on the lockdown impact

and the comparison between Athens and Thessaloniki. Chapter 5 presents the respective

3-classes experimental results, while Chapter 6 discusses and evaluates the research

 -3-

findings extracted from this dissertation. Chapter 7 summarizes the most remarkable

findings and concludes with suggestions for future work.

 -5-

2 Literature Review

In this section a methodical literature review on the concept of Smart Cities is

presented. It comprises all dimensions of Smart Cities, such Energy, Healthcare,

Economy, Education and Governance, but mainly focuses on Smart Mobility. More

specifically, our focus on Smart Mobility and Transportation is concentrated on traffic

prediction and accident prediction.

2.1 Smart Cities

The concept of Smart Cities originally appeared in the literature in the late 1990’s,

but latest state-of-the-art technologies and evolved human-device interaction have led to

a contextual shift in Smart Cities. A general definition of the term is that “Smart City is

an innovative city that uses ICT and other means to improve quality of life, efficiency of

urban operation and services, and competitiveness, while ensuring that it meets the

needs of present and future generations with respect to economic, social and

environmental aspects” [2].

The smartness of a city refers to its ability to combine different resources aiming to

achieve goals in a more effective way. The Smart City concept focuses on providing

sustainable solutions for economic growth, reduced emissions and more importantly

improved life conditions for citizens. Interestingly, Figure 1 showcases a wordcloud

based on the abstracts of research works on Smart Cities [3]. As expected, “cities” and

“data” are the most frequent words. Then, “system”, “service”, “big data”,

“technologies” and “application” occur repeatedly. Additionally, we can identify words

related to the dimensions of Smart Cities such as “governance”, “energy”, “economic”

and “traffic”.

Smart cities are mainly linked with smart mobility, smart living, smart governance

and smart environment. Figure 2 indicates that Smart Cities should be considered as a

“data engine” in order to effective. This “data engine” is consisted of a cyclic flow of

data production, data storage, data analytics and service design [4]. According to

Soomro, the main domains of a smart city are governance, environment, transport,

-6-

economy and energy and each one faces various challenges and limitations, so different

solutions could be implemented [5]. Smart cities present big data applications such as

smart education, smart traffic lights, smart electrical grid system. In addition, the main

challenges in smart cities could be summarized in data sources and characteristics,

information sharing, data quality, security and privacy, cost and city population [6].

Figure 1: Most frequently used words mined from selected abstracts [3].

Figure 2: Smart City as a “data engine” [4].

 -7-

A detailed presentation of each dimension of Smart Cities presented in Figure 3,

follows in the next subsection.

Figure 3: Dimensions of Smart Cities.

2.1.1 Smart Energy

An important dimension of the Smart Cities environment is Smart Energy. The main

challenge is to produce cleaner energy, promote lower energy consumption and smooth

energy consumption peaks. First, it is urgent to encourage renewable sources of energy

such as wind and solar energy. Changing the energy generation from fossil fuels to

alternative methods, could reduce air pollution and emissions of CO2, and improve air

quality and make environment cleaner.

Smart Energy concept is based on Smart Buildings and Smart Homes. Smart

buildings emphasize on enhancing energy efficiency along with high levels of comfort

for their occupants. For instance, smart sensors will provide information about energy

usage, reveal load patterns, predict peak demand and measure air quality. Thus, it is

possible to detect the least energy efficient buildings and regulate energy improvement

measures in order to comply with the energy policy. In addition, real-time energy

consumption is available and billing information is simplified.

Smart sensors could identify the energy demand patterns in households [7],[8].

There is a variation between energy supply and demand throughout day, so dynamic

pricing could balance the energy management. This could transform the most energy

-8-

consuming habits. For example, avoid operating the washing machine when energy

demand is at peak level due to the higher pricing [9]. It also has the potential to optimize

the energy usage. As a result, implementing the smart building concept could benefit

owners with reduced energy bills and lower energy consumption.

2.1.2 Smart Healthcare

Smart Cities applications can contribute to transiting from preventing healthcare

systems to treating systems. The level of deployment of Smart Healthcare applications

in 50 cities is presented in Figure 4. Smart healthcare focuses on preventing diseases

before they occur, reducing the possibility of dangerous complications or the need for a

patient to be hospitalized [10]. This can be achieved by gathering real time data of

patients through smart devices, which will monitor for instance blood pressure, blood

sugar levels, sleep patterns and heart rate. Collecting all this information on a daily basis

will give more accurate diagnoses and even detect health issues that are difficult to be

recognized by a health expert.

Also, patient history records could be beneficial for insurance companies and some

government agencies which will suggest more personalized health and treatment plans

for each individual patient [6]. Additionally, smart healthcare can be a tool for accessing

rural areas that suffer from poor connectivity and limited supply of doctors by providing

personalized treatment, early detection of illness, imaging and AI driven diagnostics

[11].

Figure 4: Rollout status of healthcare applications [10].

 -9-

2.1.3 Smart Economy

Smart economy applications are a vital part of the Smart City concept. The

increasing amount of data combined with AI technologies and analytics could provide

better results in risk assessment. It is true that access to detailed data of peoples’ needs,

preferences and behavior is a key step to maintain competitive advantage. In addition,

insurance companies could benefit from IoT and valuable available data to improve risk

assessments and offer their clients more personalized services and products.

Also, a smart dynamic pricing is one of the most important infrastructures of modern

cities, where efficiency is maintained while demand and supply are aligned. Thus, smart

technologies like sensors and payment systems could produce real-time data about the

use of infrastructure and contribute to create a real dynamic pricing in smart cities.

Moreover, the implementation of new technologies has already changed the way of

payments and transactions in everyday life. Indeed, mobile payments via smartphones

combined with biometric authentication are leading to an almost complete elimination

of cash money for payments which are now digitalized [9].

2.1.4 Smart Education

One of the expectations of the digital revolution is to improve the educational

system in all levels from primary schools to universities and lifelong learning. Smart

education aims to deploy all potential useful data and combine them in a way that the

learning outcomes will be improved.

Nowadays, education systems treat all students with the same way, ignoring the

uniqueness of every student or learner and their personal skills or special talents.

Personal learning is the primary goal of this concept which aims to adjust the content,

the speed and the style of instructions in order to meet the needs of each student

individually.

Also, taking advantage of data and analyzing them could give insights about faculty

performance, course progression, or students tuition fees which will benefit colleges and

universities. Among others, predictive analytics could make accurate predictions about

students who are about to drop out or face severe difficulties and support them using

different methods and material.

Another application of smart education is lifelong learning which focuses on

effective and usually short-term training programs for midcareer workers or people with

-10-

no working experience. These programs help learners to advance their skills or gain new

ones, find their way into new occupations and expand their knowledge. Digital online

platforms could also contribute to a more efficient labor market, mitigating

unemployment levels. Finally, smart education could enable easy access to students in

disadvantaged populations or inaccessible areas to high-quality education, resources and

expert support [10].

2.1.5 Smart Governance

A significant component of a Smart City is Smart Governance which aids planning

and decision making, by taking advantage of data-driven useful information. One of the

most challenging applications of the smart concept for governments is to integrate

different agencies and combine their processes. This inter-departmental collaboration

will result in more efficient operations, enhance policy making and enforcement and

data will be easier to handle [6]. Indeed, the need for a big data strategy for smart cities

is urgent, where privacy is preserved in open data, which are securely gathered and

processed to support effective and timely decision making [3].

In addition, the smart concept will help governments to focus on citizens’ issues and

concerns about healthcare, transportation, education, or economy and develop citizen-

centric public services, which are accessible anytime anywhere. Furthermore, smart

governance aims to improve business decisions by supporting firms with big data

analytics tools. Data concerning a firm’s behavior in comparison with its competitors,

along with economic and environmental factors can lead to more accurate decisions

about employment, production, sales and strategies [6]. However, smart governance

solutions require city administrations to reform their processes and adopt these

solutions, as well as IT experts to design and implement these technologies [3].

2.1.6 Smart Mobility and Transportation

The growth of population in the last decades has led to a significant increase of

vehicles driving on the roadway every day, especially in big cities. Therefore, traffic

congestion and accidents have increased, since transportation systems have not evolved,

and strategies and policies have not been agreed to solve these problems. Thus,

predicting traffic and dealing with it has gained great attention and became a vital issue

in smart cities.

 -11-

Traffic data can be collected from different sources such as sensors and GPS

devices, but they are difficult to be handled, processed and analyzed because of their

huge size. Data mining techniques could extract useful information and discover hidden

patterns from large amount of traffic data, which can help governments, companies and

researchers to make better decisions. Analyzing and predicting traffic data could also

help drivers organize their trips better, find the best route for their destination or even

avoid risky areas and drive safe.

Smart Transportation could benefit a city by predicting traffic congestion and

controlling traffic flow. For instance, recognizing traffic patterns enables efficient

transport management. By analyzing traffic data, local government it able to regulate the

supply chain delivery system. As a result, transport optimization is essential to reduce

delivery time and energy cost. The challenge here is to facilitate data creation and data

usage. In that case, control of smart traffic lights could be coordinated with traffic

information collected through sensors [6].

Additionally, finding a free parking spot is a great challenge especially in large

cities. Smart solutions can be used to optimize the occupancy of parking spaces by

detecting if a spot is occupied or not via sensors. This data could be beneficial for users

to reduce their time spent on searching for parking space and provide with several

alternatives according to price and nearest solution. Smart Mobility also includes

solutions to individuals needing or selling a ride. There are multiple smart apps and

digital platforms which have recently gained attention and their systematic use could

lead to reduced congestion and emissions [9].

2.2 Traffic Prediction

Traffic data analysis could be used to predict traffic flow and local speed at several

locations examined and also locate areas with high traffic congestion level. A recent

study [12] presents a methodology of short-term prediction of traffic state and local

speed using data-driven approaches, as seen in Figure 5. Data has been collected in

Irvine CA and Tel Aviv, Israel through sensors which are numerous, and facilitate

researchers to retrieve information about traffic flow. The results indicate that the more

the clusters, the lower the performance. It is proposed that a lower number of clusters

related to the traffic states leads to a better performance. On the contrary, a big number

of clusters leads to overfitting problems. This data-driven approach could be expanded

-12-

with additional explanatory variables so that system is fed with more information, which

helps with the understanding and prediction of the traffic system.

Figure 5: Overall local traffic state prediction framework [12].

Similarly, Kalvapalli et al. investigated the influence of weather conditions on taxi

rides in New York City and applied XGBOOST technique to predict the mean waiting

time for taxi pooling [13]. Especially, it is claimed that the average travel speed is

mainly affected by the hour and the day of the week, but not by the month. It concludes

that XGBoost is the optimal algorithm to predict the trip duration given the origin and

the destination coordinates.

In another work [14], authors developed a model that supports spatio-temporal

queries on taxi trips in New-York City. The model can detect patterns and create visual

representations of the traffic system. Moreover, pickup and drop-off clusters were

created. The traffic flow to main hubs, such as train stations and airports was researched

and traffic state changes over time were investigated. The dataset was also used to

predict the cost and duration of taxi trips, by applying Linear Regression and Random

Forest. The results were satisfactory and comparable with Google Maps prediction [15].

Hashemi et al. employed classification techniques to predict the future traffic state.

The following classification algorithms have been applied: Classification Tree, Naïve

Bayes, Random Forest and CN2 [16]. The target variable was the Level Of Service

(LOS) in short time intervals; it was better predicted by Classification Tree and Random

 -13-

Forest. Another purpose of that paper was to extract if-then rules, which were used for

studying traffic patterns. This was accomplished by applying the CN2 model. The rule

with the highest quality seemed to be “IF Time Duration (min)<=240 AND Flow

(veh/h) <=774 AND Time Duration (min)>30 AND Speed (km/h)>69 THEN

nextState=A”. Extracting these patterns and understanding the traffic system parameters

such as speed, flow and travel time could benefit the traffic management.

Similar research aimed to predict traffic congestion using association rules to

achieve higher accuracy in classification problems, taking into consideration the traffic

environment with DBSCAN (Density Based Spatial Clustering of Application with

Noise) [17]. The main idea was to predict the congestion level having the temporal

association rules of the traffic environment, which are extracted by Genetic Algorithms.

The classification levels of traffic congestion included the following states: free,

moderate and severe based on the traffic density. The proposed method achieved high

accuracy close to 95%.

Theodorou et al. focused on traffic prediction in California based on abnormal

conditions, such as accidents and road maintenance [18]. The proposed model was more

accurate and achieved generalization ability as more information about abnormal

conditions was inserted. Another study conducted based on data from Los Angeles [19],

proposed a feature selection model to investigate the impact of traffic incidents.

According to this study, it is urgent to include non-recurring incidents, such as

accidents, music concerts, road reconstruction, because these events are possibly related

to traffic jams. Considering all these factors, their prediction model combines historical

data and event information, and outperforms well known algorithms in terms of

accuracy, for different traffic conditions.

Figure 6 represents a scalable distributed stream mining system for highway traffic

data, which can perform traffic analysis and detect real time abnormal events, traffic

congestion and predict flow speed [20]. The limitations of this proposal include

inadequate research, limited distributed data mining algorithms and infrastructure issues

related to sensors. An experiment was conducted based on the proposed system with

promising results and it was regarded as a successful trial, which could improve the

transportation system. Vlahogianni et al. established that further research is needed to

ascertain the optimal degree of data aggregation [21], which further motivated our work.

-14-

Figure 6: Framework of the distributed traffic stream mining system [20].

Gecchele et al. presented a comparison between various clustering methods in order

to estimate the Annual Average Daily Traffic (AADT) in the Province of Venice [22].

The study was carried out using data from Automatic Traffic Recorders (ATRs) which

were capturing data for each traffic direction. Vehicles were categorized in two classes

in order to lower the complexity of the problem. The two categories used were

Passengers Vehicles (PV) and Truck Vehicles (TV), depending on the vehicle’s length.

Results have shown that 7 clusters of roads should be formed. The model-based

clustering methods, such as the VEI (Variable Equal Identity) model, achieved

marginally better results than hierarchical and partitioning methods. This work suggests

that traffic prediction is more demanding on weekdays and during the summer and

depends on vehicle-type for truck vehicles.

In another research, street segments in New Haven, Connecticut were studied based

on GPS data from 10000 vehicles. Necula et al. tried to explore street segments which

present a similar traffic flow over time [23]. Data mining techniques, such as K-means,

were applied to generate patterns based on temporal and spatial characteristics, resulting

to an optimal model with 4 clusters. Interesting insights were discovered by clustering

the data and constructing Speed-Density, Speed-Flow and Flow-Density diagrams. One

of the conclusions indicated that lower density implies higher speed values and vice

versa. In addition, peak hours are identified between 7:45 and 8:45 in the morning, as

well as between 17:15 and 18:15 on weekdays.

Another research on traffic prediction claimed that the optimal process of collecting

travel data for different transportation modes could be with GPS travel surveys [24].

Then Bolbol et al., applied an SVM model in order to predict the transportation mode

 -15-

(car, bus, train, tube, walk) based on attributes such as speed and acceleration and

achieved accuracy of 88%. Interestingly, research efforts simulated the traffic system

based on data from connected automated vehicles (CAVs) in order to reduce energy

consumption and traffic levels up to 20% with penetration rate at 0.5 [25].

Another application of data mining aims to predict traffic in a Bike-Sharing System.

Li et al. developed a model to predict the incoming flow of bikes to each station and the

outcoming flow of bikes to each station. The main idea is to optimize the reallocation of

bikes. First, stations were clustered based on their location. Each station’s flow is

affected by numerous factors such as time of the day, weather conditions, events and

there is correlation between stations, which should not be ignored. The experiments

were conducted on four datasets from D.C. and NYC. RMLSE and Error Rate metrics

were employed to measure the performance of methods, such as hierarchical prediction

(HP), ARMA, HP-KNN (based on K-NN), geographical clustering (GC). The results

showed that as the number of clusters increases, prediction accuracy is affected

negatively. Moreover, HP-MSI (prediction based on multi-similarity inference)

achieved the best performance for common hours and P-TD (Prediction based on

clustering Trip Duration) for anomalous hours [26].

At the IEE ICDM 2010 Contest “TomTom Traffic Prediction for Intelligent GPS

Navigation” data mining algorithms were presented that could efficiently predict the

traffic flow in order to provide smart navigation to the drivers and optimize city

planning. The contest included three tasks, the 1st task was about prediction of traffic

congestion based on historical timeseries data from traffic recorder devices and

evaluation on RMSE. The 2nd task was related to predicting traffic jams during peak

hours due to road maintenance based on radio information; precision was considered as

evaluation metric. The 3rd task referred to short-term traffic prediction based on real-

time data acquired by sensors installed on vehicles, having as evaluation metric the

RMSE [27].

Especially, for the case of Thessaloniki Mystakidis and Tjortjis investigated the

traffic system and suggested that the size and the quality of the dataset affects the

model’s accuracy and a Decision Tree Classifier has been identified as the best

performer [28]. Boufidis examined the traffic conditions in Thessaloniki based on a

dataset generated by GPS sensors on taxi vehicles [29]. After the implementation of

map-matching algorithm, the Random Forest regression algorithm outperformed the

-16-

other models in all evaluation metrics such as Mean Square Error (MSE), Root Mean

Square Error (RMSE), Mean Absolute Error (MAE). In an alternative approach for

traffic prediction in Thessaloniki, Adam used classification and regression algorithms

on floating car data combined with the weather status [30].

The most recent study presents a traffic prediction approach based on historical

traffic loads data and weather data collected from 8 sensors in Athens and 2 sensors in

Thessaloniki during a six-month period. Moreover, data collection consisted of

averaging sensor values and assigning them to the following intervals: Morning,

Afternoon and Evening. The target variable is the Jam Factor and it is investigated as a

binary and a three-class (high, medium, low) variable. For the classification task, the

Random Forest classifier is applied, with satisfactory accuracy results in both cases,

especially for the binary experiments. Thus, beneficial insights were produced about the

traffic system, such as that the traffic load is heavier in the afternoon. Interestingly,

there is a fluctuation in accuracy during time periods and the highest performance was

presented in July-October 2019 [1]. We considered this research work remarkable and

regarded it as a baseline for this dissertation. We aimed to extend this research. A

detailed analysis is presented in Chapter 3.

2.3 Accident Prediction

Traffic states are affected significantly by unexpected events, such as accidents.

Research efforts focus on the causes of traffic accidents and the injury severity.

Specifically, Najada et al. investigated the main causes of traffic accidents happening

daily and cause congestion especially in big cities [31]. It is shown that human behavior

plays a significant role in traffic causation and attributes such as age, type of driver

(pedestrian, cyclist, car occupant) were selected for prediction of new cases of road

accidents. The algorithms that gave the best results were Naïve Bayes and Decision Tree

Classifier C4.5 and data mining tools like H20 and WEKA were used in order to design

and run the experiments. In the future we could use real time traffic data to adjust traffic

flow and reduce traffic accidents.

Another study proposed that other factors causing serious road accidents could be

alcohol consumption and collision type [32]. Moreover, the fatal rate is not significantly

affected by weather conditions, light conditions or road surface type. The association

rules discovered were produced by Apriori, Naïve Bayes classifier was applied and

 -17-

clusters were formed by k-means. By clustering it is obvious that some geographical

regions have higher fatality rate compared to others, so this information led to advise

drivers to drive more carefully when driving through higher risk areas. To extend this

research we could incorporate traffic data of both fatal and non-fatal accidents, so we

could be more accurate in detecting patterns and extracting useful information.

Unfortunately, road accidents are linked with injuries, casualties and fatalities daily.

The main idea to reduce road accidents, is to detect the most influential factors and try

to mitigate them. Data mining techniques were used in order to predict the severity of

injuries caused by traffic accidents [33]. The algorithms used in this research include

Decision Tree, Rule Induction, Naïve Bayes and Multilayer Perceptron. The study

indicated that the main factors affecting mostly the severity of an injury were age,

gender, nationality, casualty status and collision type. The results have shown that

young drivers tend to be involved more frequently in road accidents. Also, drivers are

more prone to accidents than pedestrians and male drivers more so than female ones.

Additionally, a study based on crash data during (2006-2008) from traffic crashes on

two-lane, two-way roads in Iran [34], tried to identify key factors which affect traffic

injury severity with data mining, as seen in Figure 7. The dataset contained 14 variables

of which injury severity is the target. The target variable is categorized in three levels:

1st level no-injury, 2nd level injury and 3rd level fatality. Classification and Regression

Tree (CART) classifier was applied for the classification problem. According to CART,

the most important features were improper overtaking and not using the seat belt, which

increase the probability of injury and fatality. Future direction could focus not only on

rural roads, but also on urban areas.

Krishnaveni et al. focused on several classification models in order to predict the

severity of injuries caused by traffic. Many features were taken into consideration, such

as the weather conditions, the number of vehicles involved in the crash, the role of

casualty, the driver’s sex and age. Feature reduction was implemented with Genetic

Algorithm. Then, three experiments were conducted based on accident information,

vehicle information and casualty information and in each case the respective attributes

were involved. Random Forest was the best performing model in all experiments [35].

-18-

Figure 7: Decision Tree of traffic accident severity prediction [34].

Another research focused on detecting patterns appeared in car crashes and

developing a model that can predict the class of injury severity [36]. Chong et al.

compared the performance of neural networks, decision trees and a concurrent hybrid

model involving both. The state of the target variable can be no injury, possible injury,

non-incapacitating injury, incapacitating injury and fatal injury. The models were

applied on the GES automobile accident dataset from 1995 to 2000, which is consisted

of 417.670 instances with a variety of attributes about driving, road condition, weather

and injury details. The hybrid model outperformed the other models in predicting the

state and it is shown that the attribute affecting the level of injury the most is vehicle

speed. We could extend this research by applying more advanced machine learning

models.

Moreover, Shanthi et al. implemented data mining techniques and more specifically

classification algorithms such as C4.5, CR-T, ID3, CS-CRT, CS-MC4, Naïve Bayes and

Random Tree on data about road traffic accidents [37]. The training dataset consisted of

77125 samples with 33 attributes related to time, driver’s characteristics, accident

description, alcohol test, location and having as target attribute Injury Severity which

 -19-

takes the following values: Possible Injury, Non-incapacitate, Incapacitate and Fatal.

Since the misclassification rate was high, authors applied feature selection algorithms to

select the most important features and then incorporated a meta classifier algorithm Arc-

X4 to improve accuracy. Results showed that Random Tree classifier using meta

classifier achieved the highest performance with 99.73% in accuracy. According to

feature importance results, injury severity is mainly affected by collision type, seating

positing, harmful event and protection system.

Ramya et al. also attempted to identify the risk factors causing traffic accidents that

can lead to fatalities [38]. The classification of the type of accident severity included 3

classes: fatal, serious and slight and features were selected based on Information Gain

and Gain Ratio. The models were developed using different combinations of attributes

affecting them like weather and light conditions, speed limit and road type and surface.

The target classes were imbalanced and oversampling and undersampling methods were

applied to eliminate bias. The proposed classification algorithm is Random Forest

classifier, which outperformed other algorithms tested, such as J48 Decision Tree and

Artificial Neural Networks.

In an alternative approach, incident situations are investigated using data mining

tools [39]. Lee suggested that data mining techniques could help the user to define the

impact area of the incident temporally and spatially. The technique proposed the

clustering of data based on time, traffic density and flow. The information was retrieved

and visualized through DataScope, so that traffic engineers could tackle traffic problems

and instantly intervene when an incident occurs. The algorithms used for this purpose

were Fuzzy C-Means (FCM) and some built-in algorithms known as relation finder and

decision support. Future improvements could include the application of data mining

tools to establish a management traffic system.

To conclude with, road traffic accidents and traffic congestion constitute a serious

problem and prediction of its magnitude has become a necessity. Data mining

techniques could be very beneficial in order to predict and give solutions to these

problems, in combination with the application of the right policies and measures to

reduce them.

 -21-

3 Methodology

Weather data can be exploited in different smart cities problems and scenarios.

Collecting accurate weather data can benefit numerous daily problems which associate

weather with human decisions. Traffic is affected by various factors, only some of

which are predictable. As mentioned in Chapter 2, traffic is directly affected by weather

conditions, however the scale differs across cities, cultures and climate zones.

Also, traffic is affected by emergency incidents, which cannot be predicted. On the

other hand, it would be very useful to predict the impact that those events may have on

traffic. This is a challenging task. It is also necessary to discriminate between

unexpected events with temporary effects and those with mid-term or long-term effects.

COVID-19 is such a new circumstance affecting everyday life as well as traffic.

This chapter presents the problem we address with a description of our approach,

followed by a detailed description of the data we collected, the necessary preprocessing

and feature selection we conducted prior to experimentation presented in Chapters 4 and

5 respectively.

3.1 Problem Definition

This section tests the intuition presented above, about traffic prediction. Traffic is a

multi-dimensional problem; researchers mostly focus on either predicting traffic loads

on a certain time interval or selecting the optimal route based on real-time adaptations,

in order to minimize travel time. Accidents and social events can shortly disrupt normal

traffic in specific areas, while seasonality and weather conditions can affect traffic on a

larger scale. Based on that, weather data were used, collected from sensors installed

around carefully chosen city spots, for predicting the day-ahead traffic volume.

To select the most appropriate locations for installing sensors that either measure

traffic loads or collect weather data, it is crucial to define their objective in advance.

Research efforts focus on the question: “How can one exploit sensor data that are not

personalized and create meaningful conclusions for the general public?” Deployment of

smart city infrastructure requires a deep understanding of the traffic problem. Roads that

-22-

are busier than others do not always provide more information as compared to more

isolated ones. The number of alternative roads or the location of busy buildings can

affect the necessity of measuring traffic for a specific road.

3.2 Approach

The approach followed, besides examining traffic predictability based on weather

data, aims also to clarify the differences among two cities, namely Athens and

Thessaloniki, about which we collected data. Our effort focused on creating two new

features that describe “abnormal” conditions throughout the year, one for the separation

of weekdays and weekends and one related with movement restrictions. Moreover, a

series of experiments were conducted regarding different monthly periods serving the

objective to understand which months contribute positively to the deployment of such

models. The approach we followed is elaborated in Chapter 4 for 2-classes and in

Chapter 5 for 3-classes.

In addition to the main problem we addressed, the outbreak of COVID-19 added a

new dimension to our research. Two main questions were integrated into the problem

definition: The first question was: “in what way did lockdown restrictions imposed

because of COVID-19 affect traffic?” The second question was: “in what way is a

model for traffic prediction affected by emergency situations like the COVID-19

pandemic?” Following this, we focused on creating another subset of data related to the

lockdown period and examined the model on it.

Reformulating the problem from one requiring regression to one suitable for

classification by categorizing the target variable into two and later into three classes,

was an important decision. Ideally, the outcome should be the exact Jam Factor value,

requiring regression techniques, but this research is conducted with a broader motivation

to identify factors that affect predictions positively or negatively. An investigation was

conducted on how effective the model would be for each set of parameters and which

reasons lead to differentiation in accuracy. Therefore, the model was initially

transformed into a binary one. The split point was the median value for each dataset,

aiming at a fully balanced task, which would grant safer conclusions.

Thus, by addressing the problem as a classification one, the whole process could be

easily automated. Forecasting Jam Factor fluctuation has a totally different purpose than

building a model that focuses on the exact Jam Factor value.

 -23-

The two initial labels were “High” and “Low”, with regards to the Jam Factor. The

median values reflect the median Jam Factor throughout predetermined time periods. In

a different set of experiments, the target variable was split into three categories of equal

size (namely, “High”, “Medium” and “Low”), following the same splitting strategy. The

metric used for evaluation was accuracy since classes are balanced and of equal interest.

After training the model, two types of model evaluation were used. One involved

using a test set, containing 20% of the records available, and another using a validation

set. Both evaluation types produced matching results with high accuracy. The results

presented in Chapter 4 and in Chapter 5 pertain to the type using the validation set, as it

emerged after a typical 10-fold cross validation.

Finally, apart from splitting the time based on COVID-19 related restrictions,

seasonal based segregations were also performed. Models based on both 3-month and 4-

month intervals were used and their results were compared with the results from the

whole dataset. Interesting conclusions were extracted and are discussed in Chapter 6.

3.3 Dataset

In this section, the selection of traffic and weather data is presented. Follows an

analysis of the preprocessing and the feature engineering steps. Then, an exploratory

analysis is performed to investigate data and extract insights.

3.3.1 Dataset Description

The data source we used was ppcity.eu [40], an integrated system of platforms,

which promotes contextual engineering and citizen involvement in decision making and

life quality improvement. Multiple environmental, geospatial, and traffic data have been

integrated into ppCity platforms. These data are open and may be exploited for

experimental purposes. They are collected from various sources and serve the analysis

purposes that have been pre-established.

We focused on data extracted from several sensors located at central points around

the cities of Athens and Thessaloniki, Greece. These two large urban centers host almost

half the Greek population. In general, there are numerous city spots in both cities, where

the environmental and traffic conditions are measured. Initially, locations were chosen

according to data available regarding traffic and weather conditions. The focus of our

attention was on 26 reliable spots that produce data, i.e. sensors with the wider range of

https://panel.ppcity.eu/platform3/

-24-

recording and most compact flow of data. The dataset comprises data collected between

01.08.2019 and 31.08.2020.

Weather related attributes we used for our analysis, involved the following: relative

Humidity (%), Atmospheric Pressure (hPa), Temperature (oC), Wind Direction

(degrees), Wind Speed (m/s) and Ultraviolet Radiation (UV index). The target variable

(traffic load), named Jam Factor, represents quality of travel. It ranges from 0 to 10,

where 0 describes a completely empty road and 10 stopped traffic flow. Data samples

are given in Appendix A.

3.3.2 Dataset Pre-processing

The way the data were processed is conceptually straightforward. Regarding the data

structure, three distinct time intervals within a day were originally defined and their

predictability was examined [1]. Initially the focus was set on specific hours, which

were recognized as the time intervals when people drive to or depart from their jobs, and

the time interval that they usually go out for entertainment. The first interval, named

Morning, includes data from sensors between 07:00 and 10:00. The second one named,

Noon, includes data between 12:00 and 15:00. The third interval, named Afternoon,

includes data between 15:00 and 18:00 and the last one, named Evening, includes data

between 19:00 and 22:00.

Therefore, the average value for the given data was computed. For example, if a

sensor captures information every hour (e.g. at 07:10, 08:10, 09:10 etc.), the average

value for each weather metric and the traffic load for that specific interval was

computed.

Fortunately, the quality of the dataset is high, thus missing values are minimal. It is

worth noting that the averaging strategy implemented does not replace missing values.

If there is a missing value in weather metrics, averaging is performed using the

remaining two available values, instead of averaging and labeling three values. We used

data collected from 26 sensors over 13 months for our experiments. Thus, the volume of

data available is significantly large.

Moreover, the imbalance between the sensors located in Thessaloniki and Athens

was addressed. In Christantonis et. al [1], 8 sensors were in Athens and 2 in

Thessaloniki. Following an increase to sensor availability, data were collected from 10

sensors located in Athens and 16 in Thessaloniki. The location of those sensors is

 -25-

depicted in Figure 8. With this distribution of sensors, a straightforward comparison of

accuracy regarding the Jam Factor between the two cities is now possible.

Figure 8: Sensor location in Athens (left) and Thessaloniki (right).

3.3.3 Feature Engineering and Selection

The dataset comprises data collected between 01.08.2019 and 31.08.2020, including

time periods with movement and transportation restrictions due to COVID-19. The

Greek government took the following measures to hinder the spread of COVID-19:

⎼ On March 23, 2020 they implemented a general lockdown and introduced an SMS

based system to provide movement permits only within regional units.

⎼ On May 4, 2020 they abolished the SMS system but preserved regional restrictions

regarding transportation.

⎼ On May 18, 2020 they permitted free and unconditional movement and transportation.

Consequently, based on movement and transportation restrictions due to COVID-19,

we introduced a new feature, named “status”, and our research focused on three time

periods of equal number of values (56 days):

⎼ August 1, 2019 to March 22, 2020, the pre-lockdown period, with unrestricted

transportation.

⎼ March 23, 2020 to May 17, 2020, the lockdown period, with restrictions on

transportation.

⎼ May 18, 2020 to August 31, 2020, the post-lockdown period, with unrestricted

transportation.

-26-

The aforementioned information is depicted in Figure 9. The red lines signify the

beginning and the end of the government restriction measures. It is obvious that

restrictions and public concerns over COVID-19 had a huge impact on the Jam Factor.

It is also important to mention that there is a dramatic drop in the Jam Factor a few days

before the implementation of the movement and transportation restrictions. This can be

explained by the fact that coffee shops, bars and shopping centers were forced to close

on March 14, 2020, exactly where the black line is. We can additionally observe that the

gradual increase in the Jam Factor after the COVID-19 period, actually begins from the

green line, which signifies the day that the SMS system was abolished by the

government (May 4, 2020), and movement became easier.

Figure 9: Jam Factor during 07.2019-08.2020.

Another special feature that was incorporated in our research was derived from the

segregation of the days examined into weekdays and weekends. Figure 10 illustrates a

significant drop of the Jam Factor during weekends, which deepens on Sundays. Thus, a

new Boolean attribute was created, to examine the effect that weekends have on

predicting the Jam Factor.

 -27-

Figure 10: Average Jam Factor per Day.

The feature “wind direction” was transformed from numerical (degrees) into

categorical (cardinal points). To convert degrees to cardinal points, compass was

divided into 4 sectors of 90 degrees each and represented by a dummy variable. For

instance, if “wind direction” ranges between 315o and 45o is mapped to “North”, if

ranges between 45o and 135o is mapped to “East”, if ranges between 135o and 215o is

mapped to “East” else to “West”.

Additionally, recursive feature elimination was implemented to select the optimal

subset of features. The least important features were wind direction cardinal points and

were removed. According to Figure 11, “weekends” have the highest importance score

by far from the rest. Then, “uv” and “status” follow with equally high importance

scores. The remaining features that contribute to model performance, such as

temperature and atmospheric pressure, refer to weather conditions. These features are

related with weather phenomena that severely affect the traffic system. For instance,

rain and snow often limit movement and cause traffic congestions. Interestingly,

grouping together features related to weather conditions, reaches feature importance

score at 0.5. Thus, we could support the significance of weather information for our

classification problem. More details about feature correlation and recursive feature

elimination are given in Appendix B.

-28-

Figure 11: Feature Importance using Recursive Feature Elimination.

3.3.4 Exploratory Analysis

Considering the importance of the temperature feature “temp”, we investigated how

it ranges every month. As expected, Figure 12 indicates that temperature is maximized

during summer months, fluctuates at the same level in Autumn and Spring and

significantly decreases during winter months. Overall, it seems that there is high

variance between months and this could enhance model performance.

Another important feature according to feature importance analysis is humidity,

which highly related to rainfall and therefore affects traffic conditions. Figure 13

represents the average percentage of relative humidity for each month of the year.

November has the highest percentage of relative humidity and August the lowest. We

could claim from May to September humidity is limited to low levels and from October

to April reaches high levels.

 -29-

Figure 12: Temperature monthly average.

Figure 13: Humidity monthly average

Extending previous research efforts [1], we added a new time interval to the existing

ones. The interval is named Noon and includes data from sensors between 12:00 and

15:00. This time interval was deemed to be important for our research. As seen in

Figure 14, interestingly, the Jam Factor during Noon is slightly higher than any other

hour within the day.

-30-

Figure 14: Jam Factor Hourly Average.

The time periods when people drive to their jobs and when they drive back home are

generally considered as rush hour. Usually rush hours are before 12:00 and after 15:00.

However, in big cities like Athens and Thessaloniki, there is a high volume of traffic

even during noon, when people need to move through the city for tasks like school runs,

shopping, business meetings, urban freight transport etc. Thus, the time interval called

Noon, can also be regarded as rush hour. Additionally, rush hours often differ during the

year. More details about Jam Factor hourly average values for each day of the week are

given in Appendix D.

It has already been mentioned that the Jam Factor and our predictions were

influenced by the outbreak of COVID-19. Therefore, it is essential to investigate the

impact on each time interval, as Figure 15 depicts. As already mentioned, the red lines

indicate the beginning and the end of the lockdown period, the black line signifies when

Ho.Re.Ca and retail shops shut down and the green line denotes the abolishment of SMS

system. For all periods, it is clear that traffic conditions were heavier at Noon and in the

Afternoon and lower traffic levels were observed in the Morning and in the Evening.

Remarkably, during lockdown traffic levels were decreased in all time intervals, as a

result the gaps between them were diminished. After lockdown, the gaps between time

intervals reach pre-lockdown levels. We can detect the valleys every weekend, so

weekly seasonality is identified. Surprisingly, in the period oriented between the green

line and the second red line, we can observe that on weekend mornings traffic is

 -31-

boosted, although movement restrictions were still present. The source code of all

graphs is given in Appendix D.

Figure 15: Jam Factor before, throughout and after lockdown, featuring all time intervals.

 -33-

4 Experiments 2-classes

This section presents 2-classes experiments we conducted on our data, starting with

the baseline, extended by model improvements involving the introduction of an attribute

related to the type of day (weekday vs. weekend) the type of period related to COVID-

19 (pre- during and post-lockdown) as well as a combination of both. It also presents

experimental results related to 3 or 4 month splits of the data. It concludes with a

comparison between results achieved for Athens vs. Thessaloniki.

4.1 Baseline and Model Evolution 2-classes

As described in Chapter 3 both types of generalization (test set and validation set)

have insignificant variation and almost identical trends. Using the validation set and test

set display minor differences, with the validation set producing slightly better results in

terms of accuracy. Two classifiers were used Random Forest and Logistic Regression,

because these classifiers were recommended the most in the literature review. Grid

search was executed for both, in order to specify the optimal parameters of each given

model. Figure 16 shows the accuracy achieved by Random Forest (RF-2) and Logistic

Regression (LR-2) for the 2-class problem. For the 2-classes the two classifiers

consistently achieved accuracy over 80% with best results for Afternoon. RF-2 with 10-

fold cross-validation achieved slightly better results than LR-2.

Figure 16: Comparing Logistic Regression and Random Forest classifiers in 2-classes

experiments.

-34-

Thus, all remaining figures in the main body of this chapter refer to results achieved

using a validation set, for models trained with Random Forest and for target attribute

with two classes.

The baseline model is regarded as the model developed by Christantonis et al [1]. It

was not trained with special circumstances, such as the COVID-19 pandemic. Thus,

when evaluated on the whole dataset and its accuracy fluctuated around 64%, as can be

seen in the first set of four bars, labeled “BASELINE” in Figure 17.

With the incorporation of the feature “status”, related to the lockdown due to

COVID-19 (having three distinct values: pre-lockdown, lockdown, post-lockdown) into

the original model, a slight improvement was observed, achieving accuracy close to

67% and over 70% for the Evening time interval. This can be observed in the second set

of four bars labeled “STATUS” in Figure 17.

Figure 17: Model evolution featuring all time intervals.

Moreover, with the incorporation into the baseline model of the feature “weekends”,

which categorizes days into weekdays and weekends, the new model achieves

significant higher accuracy, even above 80% for Morning, as can be seen in the third set

of four bars labeled “WEEKENDS”, in Figure 17.

Finally, both these two features, i.e. status and weekends are used conjointly and

form the final model, illustrated by the fourth set of four bars in Figure 17, labeled

“FINAL”. Compared to the baseline approach, an undoubted improvement was

 -35-

achieved on accuracy, which increased to over 80% for all periods and approximated

90% for certain day intervals. Additionally, it is worth mentioning that the feature

“status” contributes more to the classification task when combined with the feature

“weekends” rather than combined just with the original model. “Weekends” actually

offered higher improvement than that introduced by “status”.

Another observation derived from Figure 17 is that the two new features, namely

“status” and “weekends” have a different impact on each time interval. In particular,

“status” has a homogenous impact on each time interval, by slightly improving

accuracy. On the other hand, the feature “weekends” seems to affect evening time

intervals less than it affects the other three. It is observed that the Evening time interval

has the best accuracy in the baseline model but has the worst accuracy when the feature

“weekends” is incorporated into the model. One possible explanation for that

observation lies in the fact that evenings’ traffic congestion is related with transportation

for recreation rather than for business purposes. Since weekends are rest days, it is

normal for traffic congestion to be reduced during morning, noon and afternoon on

those days, but this does not reflect the evening traffic loads. Therefore, while the

prediction about the three other time intervals is heavily affected by the feature

“weekends”, this is not the case about Evening time interval.

This assumption is further confirmed by Figure 18, where it is obvious that,

regarding the Jam Factor, the difference between weekdays and weekends is

significantly lower during the evenings (19:00 - 22:00) than any other time interval.

Figure 18: Average Hourly Jam Factor on weekdays vs. weekends.

-36-

4.2 3-month split 2-classes

By examining the dataset segregated using 3-month periods, it emerges that

Morning and Afternoon are more predictable intervals than Noon and Evening. The

model trained on the whole dataset performs better than the other splits except for one:

the best performing training period (01.05.20-31.07.20) contains both movement

restrictions and free movement, which seems to be a key factor in data selection. Those

observations are depicted in Figure 19.

Figure 19: Accuracy for 3-month periods and 2-classes.

4.3 4-month split 2-classes

The model is also trained and tested based on 4-month periods and compared to the

training case of the whole dataset. The 3rd 4-month split (01.04.20-31.07.20)

outperforms all others for every time slot. Observing Figure 19 and comparing it to

Figure 20, the same patterns emerge as in the case of 3-month periods. For instance, the

model performs better in the Morning and in the Afternoon. The model trained with the

whole dataset (01.08.19-31.08.20) achieves higher accuracy (86%) than the first two 4-

months intervals (84%-81%) but is being outperformed (87%) by the last one (01.04.20-

31.07.20). This remark also applies to Figure 19.

It seems that a range containing both normal and special (COVID-19) traffic

conditions is an optimal training period for the model. Moreover, since in this case there

is a subset that outperforms the whole dataset, we assume that it is recommended to

 -37-

include normal and special traffic conditions to our model. In any case, more data

records do not guarantee higher accuracy.

Figure 20: Performance on 4-month periods for 2-classes.

4.4 COVID-19 2-classes

It has already been mentioned that the Jam Factor and our predictions were

influenced by the outbreak of COVID-19 (see Figure 9). To investigate that influence,

the dataset was initially split into three periods of equal size (pre-lockdown, lockdown,

post-lockdown) and the results were compared with those for the whole dataset. Later,

we merged those intervals and added one more time period, from 27.01.2020 to

12.07.2020, which proved to be revealing for this research. Results are presented in

Figure 21, after aggregating sensor outcomes for every time interval during the day.

Lockdown and post-lockdown periods turned out to be the most difficult to predict,

demonstrating that COVID-19 has caused unexpected changes to every-day life. The

pre-lockdown split appeared to be the easiest to predict. As previously exhibited, in pre-

lockdown days, traffic conditions were normal. Afterwards, during the lockdown, traffic

dropped and then, in post-lockdown days, rose but not up to normal levels.

Subsequently, it could be assumed that accuracy is affected by traffic conditions (i.e.

movement restrictions) and it is easier to predict traffic during normal traffic conditions.

-38-

Figure 21: Accuracy comparison related to the lockdown.

Surprisingly, though, the whole dataset produced better results than any time

intervals. The explanation of this ostensible abnormality is given by inspecting the time

interval that was added later. It is clear that the model trained from 27.01.2020 until

12.07.2020 achieved the highest performance with accuracy close to 90%. This can be

explained by the fact that the feature “status”, which is one of the most important

features of the model, during this period takes exactly equal number of values from each

category. Consequently, there is a perfect balance on the values of this feature, and this

contributes to the model training and as a result to the classification ability. Balance

between days with restrictions and days without restrictions is absent for all three time

periods (pre-lockdown, lockdown, post-lockdown), so “status” is constant and does not

have a big contribution to the baseline model.

The Figure 22 is an extension of Figure 21, with the addition of time intervals. As

already noted, Morning and Afternoon traffic is predicted with higher accuracy for most

of the cases, except for the lockdown period, when Noon and Evening traffic has higher

predictability.

 -39-

Figure 22: Accuracy comparison related to lockdown periods, featuring all time intervals.

4.5 Athens-Thessaloniki comparison 2-classes

Finally, we compare and contrast experimental results for Athens and Thessaloniki.

Table 1 presents the 2-classes experiments Athens outperforms Thessaloniki in all time

intervals, having the model trained on the whole dataset. On average accuracy is 2.25%

higher in Athens. The difference in accuracy rises in the Morning and converges in the

Evening. We should also highlight that the model performs better in both cities in the

Morning and in the Afternoon than the rest intervals.

Table 1: Accuracy comparison between Athens and Thessaloniki for 2-class experiments for the

whole dataset.

Furthermore, Figure 23 shows the fluctuation of the Jam Factor, during the whole

13-month period for which data were collected. Both cities hit a peak on July 15, 2020,

which incidentally was the day when direct flights from Great Britain to Greece were

resumed.

-40-

Figure 23: Average Jam Factor in Athens and Thessaloniki during 07.2019-08.2020.

Focusing closer to the Jam Factor for the period between 27.01.2020 and 12.07.2020

in Figure 24, one can observe the similar distribution for traffic in Athens and

Thessaloniki. It is obvious that Athens has heavier traffic conditions than Thessaloniki.

It is worth mentioning that the gap between the two cities is higher during the days with

free movement after lockdown compared to other periods. One reason behind that might

be road construction work in the city center of Athens. In one case, for Panepistimiou

Str., travel time almost doubled. This street is close to sensors 18, 25, 31 and surely it

affected traffic congestion. The beginning of the construction works was on May 21,

2020 and the end was on June 14, 2020.

Figure 24: Average Jam Factor in Athens and Thessaloniki before, during and after the

lockdown.

 -41-

As far as accuracy is concerned, no major differences were observed between the

two cities. Figure 25 showcases that the accuracy was slightly better for Thessaloniki

during pre-lockdown and lockdown periods, and better for Athens during the post-

lockdown era. Evidently, pre-lockdown was the best period for both cities, regarding

accuracy. For each city, as traffic drops due to movement restrictions, accuracy

decreases as well. Interestingly accuracy does not improve enough post-lockdown to

reach pre-lockdown levels, similarly to traffic levels. Especially in Thessaloniki

accuracy post-lockdown slightly falls, although traffic levels rise.

Figure 25: Accuracy comparison between Athens and Thessaloniki before, during and after

lockdown.

Focusing on time intervals during the day, Figure 26 depicts that for Athens the best

time interval in terms of accuracy is Afternoon, at any stage; before, during or after the

COVID-19 restrictions. On the other hand, in Thessaloniki, the best predicted time

interval is Morning, except for the lockdown period. It must also be noted that the worst

predicted time interval is Evening for Athens and Afternoon for Thessaloniki.

The source code of the 2-classes experiments is given in Appendix C. The detailed

results of each sensor are presented in Appendix E.

-42-

Figure 26: Accuracy comparison between Athens and Thessaloniki before, during and after

lockdown, featuring all time intervals.

 -43-

5 Experiments 3-classes

This section presents 3-classes experiments we performed on our data, beginning

with the baseline, extended by model changes involving the inclusion of an attribute

related to the type of day (weekday vs. weekend), the type of period related to COVID-

19 (pre-, during and post-lockdown) as well as a mixture of both. It also presents

experimental results findings relating to data splits of 3 or 4 months. Then, follows a

contrast of the outcomes of Athens vs. Thessaloniki. The detailed results of each sensor

are presented in Appendix F.

5.1 Baseline and Model Evolution 3-classes

Similarly to the 2-class problem, two classifiers were used: Random Forest and

Logistic Regression. Grid search was executed for both, in order to specify the optimal

parameters of each given model. Figure 27 shows the accuracy achieved by Random

Forest (RF-3) and Logistic Regression (LR-3) for the 3-class problems. For the 3-

classes the model achieved accuracy over 80% in the Morning, close to 75% for Noon

and Afternoon and lower than 70% in the Evening. Random Forest with 10-fold cross-

validation achieved slightly better results than Logistic Regression.

Thus, all remaining figures in the main body of this chapter refer to results achieved

using a validation set, for models trained with Random Forest and for target attribute

with three classes.

Figure 27: Comparing Logistic Regression and Random Forest classifiers in 3-classes

experiments.

-44-

Respectively, the model developed by Christantonis et al. [1] is called the baseline

model for the 3-classes experiments. Special cases, such as the COVID-19 pandemic,

were not included. Hence, when assessed on the whole dataset, performance was lower

than 55% for all time intervals as Figure 28 showcases.

Figure 28: Model evolution for 3-classes experiments, featuring all time intervals.

This model was extended with the inclusion of the feature “status”, related to the

lockdown movement restrictions. A small improvement was observed on the

performance of the model “STATUS”. Accuracy in the Morning, Noon and Afternoon

interval is almost equal at 55%, with Evening being lower.

Another approach, led to the introduction of the feature “weekends” into the

baseline model, forming the “WEEKENDS” model. In comparison with the baseline

model, it achieved accuracy close to 80% in the Morning interval and even above 65%

for the rest. Comparing it to the baseline model, we observe a homogenous impact on

each time interval. For instance, Morning remained the most predictable interval and

Evening the worst performing.

The final edition of the 3-classes model incorporates as features both “weekends”

and “status”. As can be seen in the fourth set of bars in Figure 28, the “FINAL” model

has clearly outperformed the baseline model. It is remarkable that “weekends” assisted

more than “status” on model’s performance.

 -45-

5.2 3-month split 3-classes

In another experiment, we split the dataset into on 3-month periods and trained the

model with each of them. As Figure 29 showcases, the best performing model was

trained with data from 01.02.20 until 30.04.20. Remarkably, it outperforms even the

model trained on the whole dataset (01.08.19-31.08.20). The performance peaks in the

Morning interval in all cases, then drops noticeably during Noon and collapses in the

Evening. Despite that models are trained on periods with completely different

characteristics, there is a similar pattern between the accuracy lines.

Figure 29: Results on 3-month periods for 3-class experiments.

5.3 4-month split 3-classes

Afterwards, the dataset was split into 4-month periods which were utilized for

training the model conducting the 3-classes experiments. Observing Figure 30, the third

4-month period (01.04.20-31.07.20) achieved the highest performance among all other

periods. Comparing it with the model trained on the whole dataset, it is obvious that the

latter outperforms during the Morning interval, at Noon equal accuracy score is

accomplished, while in the rest intervals underperforms.

-46-

Figure 30: Results on 4-month periods for 3-class experiments.

5.4 COVID-19 3-classes

Afterwards, our research concentrated on the effect of COVID-19 pandemic into our

3-classes experiments. As already presented for the 2-classes experiments, our model

was evaluated on periods of equal size. Each period before, throughout and after

lockdown period lasts 56 days, as many as the lockdown period from 23.03.2020 to

17.05.2020. The merge of these periods is called “pre until post” period from

27.01.2020 to 12.07.2020 and was compared with results from the “whole” dataset.

Figure 31 indicates that accuracy was marginally higher before lockdown (67%) than

throughout (65%) and after (66%). Interestingly, as Figure 24 showcases, Jam Factor

follows a similar pattern with accuracy. Specifically, traffic was at peak levels before

lockdown, then during lockdown fell dramatically and after lockdown surged but not up

to normal levels. Therefore, there is evidence that traffic levels affect model’s

performance.

Additionally, the results based on the merged period “pre until post” reveal that

accuracy rose up to 75%. Moreover, the whole dataset achieved marginally even better

results, with accuracy at 75,9%. This suggests that model should be trained on data both

with and without movement restrictions.

 -47-

Figure 31: Accuracy comparison related to the lockdown for 3-class experiments.

Figure 32 focuses on each time interval of the day for the 3-classes experiments. For

instance, it is clear that model performs better in the Morning and it is confirmed in all

cases. In the second place of predictability stands Afternoon for most of the cases,

except from the post lockdown period. Then, follow Noon and Evening with changes in

the ranking, but for the “whole” model, Noon is more predictable (74.6%) than Evening

(69.1%).

Figure 32: Results before during and after lockdown periods for 3-class experiments.

-48-

5.5 Athens-Thessaloniki comparison 3-classes

Next, we focus our research on a city level comparison between Athens and

Thessaloniki. These 3-classes experiments are based on a model trained on the whole

dataset (01.08.2019-31.08.2020). The results are listed in Table 2 and contain all time

intervals. It is clear that Morning is the most predictable interval in both cities, with

Athens at the top. In fact, only in the Morning accuracy exceeded 80%. On the contrary,

in the Evening Athens and Thessaloniki underperformed with accuracy lower than 70%.

Moreover, Athens scored higher at Noon with accuracy at 75.89% and Thessaloniki in

the Afternoon (77.80%). On average accuracy is 1% higher in Athens and the difference

in accuracy it not characterized by sharp fluctuations. Overall, results can be considered

as satisfactory for a 3-class classification problem.

Table 2: Accuracy comparison between Athens and Thessaloniki for 3-class experiments for the

whole dataset.

Another 3-class experiment concentrated on effect of COVID-19 on our predictions,

keeping in mind that movement restrictions significantly decreased traffic levels. Figure

33 presents an accuracy comparison between Athens and Thessaloniki before, during

and after lockdown. We observe that there are alternations in best performing city.

Specifically, in Thessaloniki accuracy is higher in the pre-lockdown and post-lockdown

period. In both cities, accuracy fluctuates between 65% and 68% in all time periods.

Indeed, COVID-19 mainly affected Jam Factor in Thessaloniki, as mentioned

previously according to Figure 24. As a result accuracy is influenced as well, following

the same direction with traffic levels.

 -49-

Figure 33: Accuracy comparison between Athens and Thessaloniki before, during and after

lockdown for 3-classes experiments.

Focusing on time intervals during the day, Figure 34 depicts that for Athens the best

predicted time interval is Morning before and after lockdown, and Afternoon during the

COVID-19 restrictions, reaching a peak at 76.8%. On the other hand, in Thessaloniki, in

each period there is different interval with a higher predictability. Before lockdown, the

best predicted time interval is Morning, during lockdown period is Afternoon and after

lockdown is Evening. Overall, model underperforms at Noon in both Athens and

Thessaloniki, even though accuracy never drops lower than 60%.

Figure 34: Accuracy comparison between Athens and Thessaloniki before, during and after

lockdown, featuring all time intervals for 3-classes experiments.

 -51-

6 Evaluation and Discussion

This chapter examines and discusses the findings of the current work, whilst

comparing these with literature findings. While previous research work focused on

analyzing periods with the main goal of extracting conclusions regarding individual

sensors, current work examines the sensors as a whole and provides a comparison

between the two cities. A major conclusion that previous effort unfolded [1], was that

the subsets containing abnormal (whether expected or not) traffic periods (mostly

holidays) were performing better than the corresponding trimester with the lowest

expected abnormalities (15.09.2019-20.12.2019). Based on that, it was decided to

exploit the heavily disruptive period of the COVID-19 related imposed lockdown. The

initial model contained only weather metrics and was not discriminating weekdays from

weekends. The dataset range was approximately six months, from August 2019 to

January 2020. The current work includes a binary variable that distinguishes weekends

as well as a new feature regarding the lockdown, while expanding the range until

August 2020. The following subsections briefly compare primary conclusions for the

initial work regarding the main technical aspects and concepts.

6.1 Discussion on early results

Combining the information of Figure 16 and Figure 27, Figure 35 was created. It

was established that the model constructed with 2 classes for the target variable

outperforms the 3-classes model. Figure 35 shows the accuracy achieved by Random

Forest (RF-2, RF-3) and Logistic Regression (LR-2, LR-3) for the 2 and 3 class

problems, respectively. RF-2 being the best option followed by LR-2. For the 2-classes

the model consistently achieved accuracy over 80% with best results for Afternoon,

while the 3-classes fared better in the Morning. Random Forest with 10-fold cross-

validation achieved slightly better results than Logistic Regression. The trade-off

between them is that Random Forest was 10 times slower than Logistic Regression.

Given the amount of data used, Random Forest was chosen due to its higher accuracy.

However, for a vast amount of data, Logistic Regression might be the appropriate

classifier, due to its speed.

-52-

Figure 35: Comparing Logistic Regression and Random Forest classifiers in 2-classes and 3-

classes.

Other efforts utilize the same two classifiers: Random Forest and Logistic

Regression [1]. The difference in performance among the two classifiers was deemed

insignificant with minor deviations. The same conclusion emerges from the current

findings. On top of that, the Random Forest classifier needs approximately x10 times

tuning, regarding hyper-parameters. Thus, the selection can be based on individual

needs in terms of training and adaptation speed vs. accuracy. Respectively, related

works suggest either Random Forest [23] or Decision Trees [28] as top performers.

Another important part was that in the 3-classes case, the accuracy of the baseline

model barely exceeded a satisfactory level. However, processing more data and the

addition of a new variable that distinguishes weekdays from weekends resulted in an

impressive accuracy leap. The same conclusion applies for both cases (2 and 3-classes).

In fact, for Morning the accuracy for 3 classes was surprisingly close to that of 2 classes.

In both works, time intervals other than Morning resulted in a significant drop in

accuracy.

One further verification of earlier findings the current work offers is that adding

more data does not always result in higher accuracy. Similarly to the literature [1], the

best scores were not achieved by training the whole dataset.

 -53-

6.2 Evaluation 3-4 months

By selecting multiple splits to the dataset reveals points worth discussing, after

observing the results emerging from a 10-fold cross-validation. The first point is that

quadrimester splits produce better results for most of the cases. The line indicating the

whole dataset (13 months) is common in Figure 19 and Figure 20, however it does not

achieve better results than the corresponding subset of the lockdown and post-lockdown

period at any interval during the day.

An interesting fact is that the newly introduced day interval named Noon, gives

always worse results than the corresponding Afternoon one, while it only once scores

higher than Morning. Afternoon produces the best results for the case of two classes in

both splits (3 and 4 months) and seems to be the more predictable interval among those

examined. The Evening interval has the lowest traffic load and for both splits it fails to

withstand.

When the dataset is split into 3 classes the results during the day differ. The Morning

interval gives better results than the rest, but still Afternoon outperforms Noon. Even

though Morning and Evening intervals have the lowest loads of traffic throughout the

dataset range, they do not share similar predictability. Evening usually underperforms

all others, however in the case of the 4-month split it achieves accuracy similar to Noon.

6.3 Weekday vs. weekend

A period of undoubted traffic variation is weekends. The literature [1] is unclear if

weekdays should be processed without weekends or models should consider them as a

whole.

Besides the fact that another work [1] segregated data as such, weekends as a binary

feature was the dominating factor of this work. In general, this tagging was expected to

show increased accuracy in advance, because those instances (weekends) present

significantly less traffic congestion. Thus, the target variable on those instances is

expected to be lower than the median value (class Low), bearing in mind that weekends

are fewer than weekdays. However, based on applied recursive feature elimination, it is

impressive that it achieves approximately three times higher importance than any

weather condition metric. The evaluation of this addition is positive and it is considered

of high significance for future research as it is not an expensive and hard to capture

feature like the rest utilized by the model.

-54-

6.4 Morning / Noon / Afternoon / Evening

Time intervals of interest during a day can vary. In small cities normally the focus is

mostly up to the afternoon. In this case both cities are quite large (Athens with over 4

million population, and Thessaloniki with over 1 million) and considered busy until

very late. Thus, multiple splits were examined. In addition to another work [1], a new

subset of the same length (3 hours), named Noon was introduced and captured data from

12:00 to 15:00. It is identified as peak hours but differs from other findings [23].

Prior observations [1] had shown that the load of traffic congestion was lower for

Morning, while the new data which contain information for a whole year reflect a

slightly different conclusion. Indeed, the current dataset reveals that the lowest traffic

load is linked with Evening, followed by Morning. By having a bigger dataset, Noon

and Afternoon are still the most heavily loaded intervals during a day. Another

significant observation for the 2-classes experiments, is that for the Evening split the

final model struggles to compete with the rest intervals, while for the baseline model,

without the addition of the new features, it was the only prominent one. Overall,

Morning and Afternoon intervals outperform the rest for both 2-classes and 3-classes

experiments, even for the cases of the whole model and the lockdown segmentation.

6.5 COVID-19 / Lockdown

Unfortunately, 2020 contained a concurrent lockdown for both cities which -

inevitably- heavily affected traffic. Indicatively, the levels of traffic were even lower

than these in the middle of August which traditionally is considered in Greece to be the

peak of vacations, thus traffic congestion is extremely low in both cities.

For this approach we decided to form a time range of interest based on the length of

the lockdown period (56 days). In other words, we chose one subset of 56 days for the

pre-lockdown period and another for the post-lockdown with the goal to compare the

model for all three.

Based on that, clearly, the periods during the lockdown and after it scored

approximately 10% worse than pre-lockdown. Interestingly, combining all three subsets

the best accuracy achieved, was even higher than the score for the whole dataset, as seen

in Figure 21 and Figure 22 for the 2-classes experiments. Similarly to the previous

subsection, the same experiments were performed for all time intervals during the day

for the 3-class split (see Figure 31 and Figure 32). During the lockdown period

 -55-

(23.03.2020-17.05.2020) the algorithm regarding Afternoon had the worst accuracy

among all intervals, while Noon was slightly the best. Finally for the case of 2-classes, a

validation of the trends is that the model trained on the whole dataset has very similar

(in terms of deviation) results to the whole COVID-19 related split of data from 27

January to 12 July. For the case of 3-classes, again, the Morning interval scores higher

accuracy while the whole model also has very similar results to the merged lockdown-

split.

6.6 Athens vs. Thessaloniki

Undoubtedly, Athens is more populated than Thessaloniki and attracts more tourists

throughout the year. Considering that traffic is positively correlated to the population,

higher jam factor values for Athens are explainable. However, the similarities between

the two cities in daily activities lead to analogous patterns before and after COVID-19

restrictions. The results of the 2-classes experiments indicate that the model performs

better with data from Thessaloniki before and during the lockdown (see Figure 25).

However, after the lockdown, traffic in Thessaloniki does not return to normal levels

and it also results in a drop in accuracy. Consequently, it can be claimed that the

model’s accuracy is affected by the traffic levels. This claim is supported during and

after the lockdown transition. However, in the case of 3-classes (see Figure 33) the

accuracy levels before, during and after the lockdown range between 65% and 68%, as a

result not significant variations are detected and there is not a drop during the lockdown

period.

6.7 Threats to validity

Many scientific efforts analyze and examine their questions based on several

assumptions. Most of the time those assumptions are raised due to unknown factors,

limited data, or personal estimations. The validity of results and conclusions with

assumptions is highly connected.

A crucial assumption of this work relies on the fact that the model developed needs

accurate predictions of day-ahead weather conditions, which is not always feasible.

Another threat is that 2020, due to the pandemic, seems to affect the post-lockdown load

of traffic and thus the results may differ from previous years. In addition, transforming

the problem into balanced classification may slightly affect the accuracy of the model

-56-

since the introduction of abnormal instances may not affect the split point the same way

the mean value might do.

 -57-

7 Conclusions and Future
Work

The purpose of this dissertation was to examine how different intervals during the

day and year can affect traffic forecasting. The main aspects of the proposed model are

weather metrics, combined with features describing weekends and the lockdown. In

general, the fragmentation of the dataset was extensive. The dataset was initially split

into four intervals during a day (Morning, Noon, Afternoon, Evening) and consecutive

trimesters and quadrimesters along the whole range. On top of that, findings led to the

decision for a further split adjusted for the lockdown period which lasted 56 days in

Greece.

7.1 Conclusions

The major factor that boosted the model's performance was the distinction of

weekends. Besides that, having a variable that marks the status of days, regarding

lockdown presence, also rewarded the model with a small increase.

In between, transforming the target variable into three classes resulted in remarkably

lower accuracy (besides the Morning subset), however it justified some findings

regarding day intervals.

A clear conclusion is that the model was more successful for Morning and

Afternoon. This is probably because these splits coincide with the beginning and the end

of work for most of the working population. Also, the Evening interval does not stand

out in comparison with the rest. This can be speculated to be because weather metrics

such as UV and humidity do not add much variation. The Evening interval though has

the lowest load of traffic and thus its predictability may be affected in a negative way.

The splits regarding Spring achieved higher accuracy, but this rather happened

because of the explosion of the pandemic. The constructed subset based on the

lockdown era, consisting of 168 days, clarified that datasets with equally mixed data had

scores consistently higher, and Morning and Afternoon intervals were again the most

-58-

reliable. Consequently, in case of special events, it is suggested that training of models

should be equal for each period.

It seems that higher traffic load does not guarantee higher accuracy, since even

though the Noon split had higher traffic load, it did not outperform the rest at any point.

On the other hand, the Evening interval which marked the lowest traffic load, performed

worse for almost every scenario. Also, testing the model on the whole dataset did not

result in better performance, thus it is concluded that a bigger training set does not

directly improve accuracy. This means that similar models in order to remain

competitive in terms of accuracy should be deployed with a clear target period and not

arbitrarily be trained on all available data.

The comparison of the two cities did not yield concrete results. It seems that the

model is better adjusted on sensors based in Thessaloniki, but without significant

differentiation and certainly not for the post-lockdown period.

Overall, we could claim that our research effort could enhance Smart Mobility and

Transportation and therefore the Smart Cities concept. Traffic prediction is vital for

efficient traffic management and could reduce traffic congestion. Our approach is

concentrated on predicting traffic levels based on weather conditions, day of the week

and traffic restrictions. Our findings could provide trip advisory to travelers in order to

plan travel accurately. Another contribution of our work could be on traffic management

system. For instance, smart traffic lights could operate based on our traffic level

prediction in order to reduce congestion, limit air pollution and improve travel time.

7.2 Future Work

The insights this work concluded were very interesting, and while some were

expected, there are others that were not. Our understanding suggests that the analysis

regarding the day intervals has not much space to be further exploited.

On the other hand, the splits throughout the year may reveal significant points in

order to adopt the model and the potential is considered substantial. Feature-wise it

would be interesting to also focus on the weather icon (snow, rain etc.). This

information could enhance our model’s performance. Partially, our model already

categorizes the weather icon in the background, based on weather conditions such as

humidity and atmospheric pressure. Possibly, weather icon could lead to a different

feature selection. Furthermore, it could improve our model’s explainability.

 -59-

Furthermore, there is room for improvement in our data modeling approach. Special

events and holidays should be incorporated in our model and the current conclusions

should be examined. Lastly, possible future movement restrictions could assist on

further validating existing conclusions.

 -61-

References

[1] Christantonis, K., Tjortjis, C., Manos, A., Filippidou, D. E., Mougiakou, Ε., & Christelis, E.

(2020, June). Using Classification for Traffic Prediction in Smart Cities. In IFIP International

Conference on Artificial Intelligence Applications and Innovations (pp. 52-61). Springer, Cham.

[2] Anthopoulos, L. G. (2017). Understanding smart cities: A tool for smart government or an

industrial trick? (Vol. 22). Cham: Springer International Publishing.

[3] Soomro, K., Bhutta, M. N. M., Khan, Z., & Tahir, M. A. (2019). Smart city big data

analytics: An advanced review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 9(5), e1319.

[4] Moustaka, V., Vakali, A., & Anthopoulos, L. G. (2018). A systematic review for smart city

data analytics. ACM Computing Surveys (CSUR), 51(5), 1-41.

[5] Soomro, K., Bhutta, M. N. M., Khan, Z., & Tahir, M. A. (2019). Smart city big data

analytics: An advanced review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 9(5), e1319.

[6] Al Nuaimi, E., Al Neyadi, H., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big

data to smart cities. Journal of Internet Services and Applications, 6(1), 25.

[7] Christantonis, K., & Tjortjis, C. (2019, July). Data mining for smart cities: predicting

electricity consumption by classification. In 2019 10th International Conference on Information,

Intelligence, Systems and Applications (IISA) (pp. 67-73). IEEE.

[8] Christantonis, K., Tjortjis, C., Manos, A., Elizabeth, D., & Filippidou, E. C. (2020). Smart

Cities Data Classification for Electricity Consumption & Traffic Prediction. Automatics &

Software Enginery, 31(1), 49-69.

[9] Dubbeldeman, R., & Stephen, W. (2015). Smart cities: How rapid advances in technology

are reshaping our economy and society. Deloltte. Available from:

https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/public-sector/deloitte-nl-ps-

smart-cities-report.pdf

[10] Woetzel, J., Remes, J., Boland, B., Lv, K., Sinha, S., Strube, G., ... & Von der Tann, V.

(2018). Smart cities: Digital solutions for a more livable future. McKinsey Global Institute: New

York, NY, USA, 1-152.

[11] NITI Aayog (2018, June). National strategy for artificial intelligence. Discussion Paper.

Available from: http://niti.gov.in/writereaddata/files/document_publication/NationalStrategy-

for-AI-Discussion-Paper.pdf

[12] Antoniou, C., Koutsopoulos, H. N., & Yannis, G. (2013). Dynamic data-driven local traffic

state estimation and prediction. Transportation Research Part C: Emerging Technologies, 34,

89-107.

https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/public-sector/deloitte-nl-ps-smart-cities-report.pdf
https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/public-sector/deloitte-nl-ps-smart-cities-report.pdf
http://niti.gov.in/writereaddata/files/document_publication/NationalStrategy-for-AI-Discussion-Paper.pdf
http://niti.gov.in/writereaddata/files/document_publication/NationalStrategy-for-AI-Discussion-Paper.pdf

-62-

[13] Kalvapalli, S. P. K., & Chelliah, M. (2019). Analysis and Prediction of City-Scale

Transportation System Using XGBOOST Technique. In Recent Developments in Machine

Learning and Data Analytics (pp. 341-348). Springer, Singapore.

[14] Ferreira, N., Poco, J., Vo, H. T., Freire, J., & Silva, C. T. (2013). Visual exploration of big

spatio-temporal urban data: A study of new york city taxi trips. IEEE transactions on

visualization and computer graphics, 19(12), 2149-2158.

[15] Antoniades, C., Fadavi, D., & Amon, A. F. (2016). Fare and duration prediction: A study

of New York city taxi rides. Tech. Rep.

[16] Hashemi, S. M., Almasi, M., Ebrazi, R., & Jahanshahi, M. (2012). Predicting the next state

of traffic by data mining classification techniques. International Journal of Smart Electrical

Engineering, 1(03), 181-193.

[17] Wen, F., Zhang, G., Sun, L., Wang, X., & Xu, X. (2019). A hybrid temporal association

rules mining method for traffic congestion prediction. Computers & Industrial

Engineering, 130, 779-787.

[18] Theodorou, T. I., Salamanis, A., Kehagias, D. D., Tzovaras, D., & Tjortjis, C. (2017,

April). Short-term traffic prediction under both typical and atypical traffic conditions using a

pattern transition model. In International Conference on Vehicle Technology and Intelligent

Transport Systems (Vol. 2, pp. 79-89). SCITEPRESS.

[19] Pan, B., Demiryurek, U., & Shahabi, C. (2012, December). Utilizing real-world

transportation data for accurate traffic prediction. In 2012 IEEE 12th International Conference

on Data Mining (pp. 595-604). IEEE.

[20] Liu, Y., Choudhary, A., Zhou, J., & Khokhar, A. (2006, September). A scalable distributed

stream mining system for highway traffic data. In European Conference on Principles of Data

Mining and Knowledge Discovery (pp. 309-321). Springer, Berlin, Heidelberg.

[21] Vlahogianni, E. I., Karlaftis, M. G., & Golias, J. C. (2014). Short-term traffic forecasting:

Where we are and where we’re going. Transportation Research Part C: Emerging

Technologies, 43, 3-19.

[22] Gecchele, G., Rossi, R., Gastaldi, M., & Caprini, A. (2011). Data mining methods for

traffic monitoring data analysis: A case study. Procedia-Social and Behavioral Sciences, 20,

455-464.

[23] Necula, E. (2015). Analyzing traffic patterns on street segments based on GPS data using

R. Transportation Research Procedia, 10, 276-285.

[24] Bolbol, A., Cheng, T., Tsapakis, I., & Haworth, J. (2012). Inferring hybrid transportation

modes from sparse GPS data using a moving window SVM classification. Computers,

Environment and Urban Systems, 36(6), 526-537.

[25] Makridis, M., Mattas, K., Ciuffo, B., Raposo, M. A., & Thiel, C. (2018). Assessing the

impact of connected and automated vehicles. A freeway scenario. In Advanced Microsystems for

Automotive Applications 2017 (pp. 213-225). Springer, Cham.

[26] Li, Y., Zheng, Y., Zhang, H., & Chen, L. (2015, November). Traffic prediction in a bike-

sharing system. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances

in Geographic Information Systems (pp. 1-10).

 -63-

[27] Wojnarski, M., Gora, P., Szczuka, M., Nguyen, H. S., Swietlicka, J., & Zeinalipour, D.

(2010, December). Ieee icdm 2010 contest: Tomtom traffic prediction for intelligent gps

navigation. In 2010 IEEE International Conference on Data Mining Workshops (pp. 1372-

1376). IEEE.

[28] Mystakidis, A., & Tjortjis, C. (2020). Big Data Mining for Smart Cities: Predicting Traffic

Congestion using Classification. In 2020 IEEE 11th International Conference on Information,

Intelligence, Systems and Applications.

[29] Boufidis, N. (2019). Distributed traffic forecasting using Apache Spark. [Master’s

dissertation, International Hellenic University].

[30] Adam, K. (2018). Real-time Traffic Prediction using Multiple Data Sources - a Neural

Network Approach. [Master’s dissertation, Aristotle University of Thessaloniki].

[31] Al Najada, H., & Mahgoub, I. (2016, September). Big vehicular traffic data mining:

Towards accident and congestion prevention. In 2016 International Wireless Communications

and Mobile Computing Conference (IWCMC) (pp. 256-261). IEEE.

[32] Li, L., Shrestha, S., & Hu, G. (2017, June). Analysis of road traffic fatal accidents using

data mining techniques. In 2017 IEEE 15th International Conference on Software Engineering

Research, Management and Applications (SERA) (pp. 363-370). IEEE.

[33] Taamneh, M., Alkheder, S., & Taamneh, S. (2017). Data-mining techniques for traffic

accident modeling and prediction in the United Arab Emirates. Journal of Transportation Safety

& Security, 9(2), 146-166.

[34] Kashani, A. T., & Mohaymany, A. S. (2011). Analysis of the traffic injury severity on two-

lane, two-way rural roads based on classification tree models. Safety Science, 49(10), 1314-

1320.

[35] Krishnaveni, S., & Hemalatha, M. (2011). A perspective analysis of traffic accident using

data mining techniques. International Journal of Computer Applications, 23(7), 40-48.

[36] Chong, M., Abraham, A., & Paprzycki, M. (2004, August). Traffic accident data mining

using machine learning paradigms. In Fourth International Conference on Intelligent Systems

Design and Applications (ISDA'04), Hungary (pp. 415-420).

[37] Shanthi, S., & Ramani, R. G. (2012, October). Feature relevance analysis and classification

of road traffic accident data through data mining techniques. In Proceedings of the World

Congress on Engineering and Computer Science (Vol. 1, pp. 24-26).

[38] Ramya, S., Reshma, S. K., Manogana, V. D., & Saroja, Y. S. (2019). Accident Severity

Prediction using Data Mining Methods. International Journal of Scientific Research in

Computer Science, Engineering and Information Technology, 5(2).

[39] Lee, D. H., Jeng, S. T., & Chandrasekar, P. (2004). Applying data mining techniques for

traffic incident analysis. Journal of the Institution of Engineers, 44(2), 90-101.

[40] Public Participation CITY. PPCITY. Retrieved November 28, 2020, from

https://panel.ppcity.eu/platform3/

https://panel.ppcity.eu/platform3/

 -65-

Appendices

Appendix A: Traffic and Weather Data Samples

-66-

Appendix B: Feature Correlation and Feature Selection

1. import seaborn as sns
2. import matplotlib.pyplot as plt
3.
4. plt.figure(figsize=(20,20))
5. sns.heatmap(final_df.corr(),fmt=".2f", cmap='coolwarm',annot=True)

1. from sklearn.feature_selection import RFECV
2. from sklearn.model_selection import GridSearchCV, cross_val_score, StratifiedK

Fold, learning_curve
3.
4. X = final_df.drop(['Target'], axis=1)
5. target = final_df['Target']
6.
7. rfc = RandomForestClassifier(random_state=0)
8. rfecv = RFECV(estimator=rfc, step=1, cv=StratifiedKFold(10),
9. scoring='accuracy')
10. rfecv.fit(X, target)
11.
12. print('Optimal number of features: {}'.format(rfecv.n_features_))

 -67-

13. plt.figure(figsize=(16, 9))
14. plt.title('Recursive Feature Elimination with Cross-Validation',
15. fontsize=18, fontweight='bold', pad=20)
16. plt.xlabel('Number of features selected', fontsize=14, labelpad=20)
17. plt.ylabel('% Correct Classification', fontsize=14, labelpad=20)
18. plt.plot(range(1, len(rfecv.grid_scores_) + 1),
19. rfecv.grid_scores_, color='#303F9F', linewidth=3)
20.
21. plt.show()

1. import numpy as np
2.
3. #features to drop
4. print(np.where(rfecv.support_ == False)[0])
5.
6. X.drop(X.columns[np.where(rfecv.support_ == False)[0]], axis=1, inplace=True)

7. print("We eliminate these features: East, North, South, West")

Appendix C: Scripts for Traffic Prediction

1. # Traffic Prediction
2.
3. #connect to Google Drive
4.
5. from google.colab import drive
6. drive.mount('/content/drive')
7.
8. #imports
9.
10. import pandas as pd

-68-

11. import copy
12. from sklearn.model_selection import train_test_split
13. from sklearn.preprocessing import StandardScaler
14. from sklearn.ensemble import RandomForestClassifier
15. from sklearn.linear_model import LogisticRegression
16. from sklearn.model_selection import GridSearchCV
17. from sklearn.metrics import accuracy_score
18.
19. # Read csv files
20.
21. df_temp_raw = pd.read_csv('/content/drive/My Drive/thesis_colab/temp_02.09.20.

csv',sep=';', encoding="ISO-8859-1")
22. df_traffic_raw = pd.read_csv('/content/drive/My Drive/thesis_colab/traffic_02.

09.20.csv',sep=';',encoding="ISO-8859-1")
23.
24. # Processing 1
25.
26. def day_intervals(
27. sensor_no, prox_km, interval_start, interval_stop , weekday_check):
28.
29. df_traffic_raw['date_insert'] = pd.to_datetime(
30. df_traffic_raw ['date_insert'])
31. df_temp_raw['date_insert'] = pd.to_datetime(df_temp_raw['date_insert'])
32.
33. #create weekends feature
34. if weekday_check == True:
35. df_temp_raw['weekday'] = df_temp_raw['date_insert'].dt.dayofweek
36. df_temp_raw['weekday'] = (df_temp_raw['weekday']// 5 == 1).astype(int)
37.
38. #select sensor_id
39. df_traffic = df_traffic_raw.loc[(df_traffic_raw['sensor_id'] == sensor_no)

40. & (df_traffic_raw['prox'] == prox_km)]
41.
42. df_temp = df_temp_raw.loc[df_temp_raw['sensor_id'] == sensor_no]
43.
44. #select time interval
45. df_traffic = df_traffic[(df_traffic['date_insert'].dt.hour <=
46. interval_stop)& (df_traffic['date_insert'].dt.hour >= interval_start)]
47.
48. df_temp = df_temp[(df_temp['date_insert'].dt.hour <= interval_stop) &
49. (df_temp['date_insert'].dt.hour >= interval_start)]

50.
51. df_temp = df_temp.groupby([df_temp['date_insert'].dt.date]).mean()
52. df_traffic = df_traffic.groupby(
53. [df_traffic['date_insert'].dt.date])['jamfactor'].mean()
54.
55. #join dataframes
56. df_combined = pd.concat([df_traffic, df_temp], axis=1, join='inner')
57. df_combined = df_combined.drop(['temp_id', 'sensor_id', 'ref_id'], axis=1)

58.
59. # Processing 2 for 2-class classification
60.
61. def two_classes_classification(df_combined):
62. jammax = df_combined['jamfactor'].max()
63. jammin = df_combined['jamfactor'].min()
64. jamrange = jammax - jammin
65. jammedian = df_combined['jamfactor'].median()
66. jammean = df_combined['jamfactor'].mean()
67. print(' ')
68. print('Max of Jamfactor equals to: ', jammax)
69. print('Min of Jamfactor equals to: ', jammin)
70. print('Median of Jamfactor equals to: ', jammedian)
71. print('Range of Jamfactor equals to: ', jamrange)

 -69-

72. print('Mean of Jamfactor equals to: ', jammean)
73.
74. #class limits
75. Targetlist = df_combined['jamfactor'].tolist()
76. emptylist = []
77. for i, elem in enumerate(Targetlist):
78. if elem > jammedian:
79. emptylist.append('High')
80. else:
81. emptylist.append('Low')
82.
83. dfentry = pd.Series(emptylist)
84. df_combined['Target'] = dfentry.values
85. print("No. of High values is: ", emptylist.count('High'))
86. print("No. of Low values is: ", emptylist.count('Low'))
87.
88. # Wind Direction feature engineering
89. DirectionList = df_combined['wind_direction'].tolist()
90. emptylist = []
91. for i, elem in enumerate(DirectionList):
92. if elem < 45.0 or elem > 315.0:
93. emptylist.append('North')
94. elif elem < 135.0:
95. emptylist.append('East')
96. elif elem < 225.0:
97. emptylist.append('South')
98. else:
99. emptylist.append('West')
100.
101. dfentry = pd.Series(emptylist)
102. df_combined['wind_direction'] = dfentry.values
103.
104. initial_df_ = pd.get_dummies(df_combined['wind_direction'])
105. final_df = pd.concat([df_combined, initial_df_], axis=1)
106.
107. del final_df['jamfactor']
108. del final_df['wind_direction']
109.
110. #feature selection suggests:
111. del final_df['East']
112. del final_df['North']
113. del final_df['South']
114. del final_df['West']
115.
116. return final_df
117.
118. # Classification
119.
120. def classification_task(dataframe, algorithm, scale_option):
121. Y = dataframe['Target']
122. X = dataframe.drop('Target', 1)
123.
124. X_train, X_test, y_train, y_test = train_test_split(X, Y,
125. test_size=0.2, random_state=42)
126.
127. if scale_option == True:
128. scaler = StandardScaler()
129. scaler.fit(X_train)
130. X_train = scaler.transform(X_train)
131. X_test = scaler.transform(X_test)
132.
133. if algorithm == 'RandomForest':
134. clf = RandomForestClassifier(random_state=42)
135. n_estimators = [5, 10, 30, 50, 100]
136. min_samples_split = [2, 5]
137. min_samples_leaf = [2, 3, 4]

-70-

138. max_depth = [2, 3]
139. max_features = ['auto']
140. param_grid = {'n_estimators': n_estimators,
141. 'max_features': max_features,
142. 'min_samples_split': min_samples_split,
143. 'min_samples_leaf': min_samples_leaf,
144. 'max_depth': max_depth}
145. else:
146. clf = LogisticRegression(penalty='l2', random_state=42)
147. max_iter = [10, 20, 50, 100, 150]
148. C = [0.001, 0.01, 0.1, 0.5, 1, 2, 3]
149. param_grid = {'max_iter': max_iter, 'C': C}
150.
151. CLF = GridSearchCV(clf, param_grid=param_grid, cv=10, verbose=10)
152. CLF.fit(X_train, y_train)
153.
154. preds = CLF.predict(X_test)
155. accuracy = accuracy_score(y_test, preds)
156. params = CLF.best_params_
157.
158. print('Best parameters: ', CLF.best_params_)
159. print('Average score: ', CLF.best_score_)
160.
161. return CLF.best_score_, accuracy , params
162.
163. # 3-class classification
164.
165. def three_classes_classification(dataframe):
166.
167. Targetlist = dataframe['jamfactor'].tolist()
168. Flaglist = copy.deepcopy(Targetlist)
169. Flaglist.sort()
170. Flag1 = round(len(Flaglist) / 3)
171. Flag2 = Flag1 * 2
172. print(Flag1)
173. print(Flag2)
174.
175. #class limits
176. emptylist = []
177. for i, elem in enumerate(Targetlist):
178. if elem <= Flaglist[Flag1 - 1]:
179. emptylist.append('Low')
180. elif elem <= Flaglist[Flag2 - 1]:
181. emptylist.append('Medium')
182. else:
183. emptylist.append('High')
184.
185. dfentry = pd.Series(emptylist)
186. dataframe['Target'] = dfentry.values
187.
188. # Wind Direction feature engineering
189. DirectionList = dataframe['wind_direction'].tolist()
190. emptylist = []
191. for i, elem in enumerate(DirectionList):
192. if elem < 45.0 or elem > 315.0:
193. emptylist.append('North')
194. elif elem < 135.0:
195. emptylist.append('East')
196. elif elem < 225.0:
197. emptylist.append('South')
198. else:
199. emptylist.append('West')
200.
201. dfentry = pd.Series(emptylist)
202. dataframe['wind_direction'] = dfentry.values
203.

 -71-

204. # Dummies for Wind Direction
205. initial_df_ = pd.get_dummies(dataframe['wind_direction'])
206. final_df = pd.concat([dataframe, initial_df_], axis=1)
207. del final_df['wind_direction']
208. del final_df['jamfactor']
209.
210. #feature selection suggests:
211. del final_df['East']
212. del final_df['North']
213. del final_df['South']
214. del final_df['West']
215.
216. return final_df
217.
218. def year_intervals(dataframe):
219.
220. # selecting time period for experiments
221. startdate = pd.to_datetime('2019-08-01').date()
222. enddate = pd.to_datetime('2020-08-31').date()
223.
224. final_df = dataframe.loc[startdate: enddate]
225.
226. print(final_df.head(70))
227. print(final_df.shape)
228.
229. return final_df
230.
231. # create "status" feature
232.
233. def create_status(df_combined):
234. df_combined['date_insert'] = df_combined.index
235. df_combined['date_insert'] = pd.to_datetime(df_combined['date_insert'],
236. format='%Y-%m-%d')
237.
238. status = {'Free Before COVID19': ('29 July 2019', '22 March 2020'),
239. 'Movement Restriction ':('23 March 2020', '17 May 2020'),
240. 'Free After COVID-19': ('18 May 2020', '02 September 2020')}
241. status_map = {date.date(): status for status,
242. dates in status.items() for date in pd.date_range(*dates)}
243.
244. df_combined['status'] = df_combined['date_insert'].dt.date.map(
245. status_map).fillna('Free After COVID-19')
246. pd.set_option('display.max_rows', df_combined.shape[0]+1)
247. del df_combined['date_insert']
248. df_dum_status = pd.get_dummies(df_combined['status'])
249. df_combined = pd.concat([df_combined, df_dum_status], axis=1)
250. del df_combined['status']
251.
252. return df_combined
253.
254. #Experiments
255.
256. ids=[]
257. for i in range(7,37): #all sensors
258. if i not in [11,32,34,35]: #sensors dropped
259. ids.append(i)
260. for i in ids:
261. sensor_id = i
262. start_time = 19
263. end_time = 21 #21 means until 21:59
264.
265. weekday_option = True #"weekends" feature
266. df_combined = day_intervals(sensor_id, 1, start_time, end_time,
267. weekday_option)
268. df_combined = year_intervals(df_combined) #time period
269. df_combined = create_status(df_combined) #"status" feature

-72-

270.
271. #select 2 or 3 classes
272. classes = 3
273. if classes ==2:
274. final_df = two_classes_classification(df_combined)
275. else:
276. final_df = three_classes_classification(df_combined)
277.
278. #select classifier
279. algorithm = 'RandomForest'
280. # algorithm = 'LR'
281.
282. #scale option
283. if algorithm == 'LR':
284. scale_option = True
285. else:
286. scale_option = False
287.
288. classification_task(final_df, algorithm, scale_option)
289. result= classification_task(final_df, algorithm, scale_option)
290. score =result[0] #validation score
291. accuracy = result [1] #test score
292. params = result [2] #grid search parameters
293.
294. print('Algorithm:', algorithm, 'Score=', "{:.4f}".format(score),
295. 'Accuracy=', "{:.4f}".format(accuracy), 'Sensor_id=',
296. sensor_id ,'Time=', start_time, ', end_time+1,
297. 'params',params,'length=',len(final_df) ,
298. file=open("output_3_3.txt", "a"))

Appendix D: Graphs

1. df_new['date_insert'] = pd.to_datetime(df_new['date_insert'])
2.
3. mask = (df_new['date_insert'] > '2019-8-1') &
4. (df_new['date_insert'] < '2020-9-1')
5. df_new = df_new.loc[mask]
6.
7. df_new = df_new[(df_new.sensor_id != 4) & (df_new.sensor_id != 5) &
8. (df_new.sensor_id != 6) & (df_new.sensor_id != 11) &
9. (df_new.sensor_id != 34) & (df_new.sensor_id != 35)]
10.
11. df_new = df_new[(df_new.prox == 1)]
12. df_new['date_insert'] = df_new['date_insert'].dt.floor('30min')
13.
14. df_graph= df_new.loc[:, ['date_insert', 'jamfactor', 'sensor_id']]
15. df_graph['date_insert'] = pd.to_datetime(df_graph['date_insert'],
16. format='%Y-%m-%d')

1. df_temp= pd.read_csv('/content/drive/My Drive/thesis_colab/
2. temp_02.09.20.csv', sep=';', encoding="ISO-8859-1")
3. mask = df_temp['date_insert'] < '2020-9-1'
4.
5. df_temp = df_temp.loc[mask]
6.
7. df_temp = df_temp[(df_temp.sensor_id != 4) & (df_temp.sensor_id != 5) &
8. (df_temp.sensor_id != 6) & (df_temp.sensor_id != 11) &
9. (df_temp.sensor_id != 34) & (df_temp.sensor_id != 35)]
10.
11. city_dict = {10:"Athens", 13:"Athens", 14:"Athens",16:"Athens",18:"Athens",
12. 19:"Athens",20:"Athens",25:"Athens",30:"Athens",31 :"Athens",

 -73-

13. 7:"Thessaloniki",8:"Thessaloniki",9:"Thessaloniki",
14. 12:"Thessaloniki",15:"Thessaloniki",17:"Thessaloniki",
15. 21:"Thessaloniki", 22:"Thessaloniki", 23:"Thessaloniki",
16. 24:"Thessaloniki",26:"Thessaloniki",27:"Thessaloniki",
17. 28:"Thessaloniki",29:"Thessaloniki",33:"Thessaloniki",
18. 36:"Thessaloniki"}
19. df_temp ['city'] = df_temp["sensor_id"].map(lambda x:city_dict[x])
20.
21. df_temp['date_insert'] = pd.to_datetime(df_temp.date_insert)
22. df_temp['date_insert'] = df_temp['date_insert'].dt.floor('30min')
23.
24. df_temp['month'] = df_temp['date_insert'].dt.strftime('%B')
25.

Code for Figure 9: Jam Factor during 07.2019-08.2020.

1. plt.figure(dpi=1200)
2. df_graph.plot(x ='date_insert', y='jamfactor', kind = 'scatter',
3. figsize=(20, 10))
4.
5. plt.xlim(dt.datetime(2019, 8, 1), dt.datetime(2020, 8, 17))
6. plt.xlabel('Date', fontsize=28)
7. plt.ylabel('Jam Factor', fontsize=26)
8. plt.xticks(fontsize=24)
9. plt.yticks(fontsize=22)
10.
11. plt.axvline(dt.datetime(2020, 3, 14), color ='black', linestyle="--

", ymin=0.04)
12. plt.axvline(dt.datetime(2020, 3, 22), color ='red', linestyle="--

", ymin=0.04)
13. plt.axvline(dt.datetime(2020, 5, 4), color ='green', linestyle="--

", ymin=0.04, ymax = 0.85)
14.
15.
16.
17. plt.axvline(dt.datetime(2020, 5, 17),
18. color ='red', linestyle="--",ymin=0.04)
19. plt.text(dt.datetime(2020, 3, 27),6.2,'Movement ', color ='red', size =22)
20. plt.text(dt.datetime(2020, 3, 27),5.9,'Restrictions', color ='red', size =22)

21.
22. plt.savefig('year')
23. plt.show()

Code for Figure 10: Average Jam Factor per Day.

1. df_graph_day = df_graph.groupby(['day'])['jamfactor'].mean()
2. print(df_graph_day.head(7))
3. df_graph_days = pd.DataFrame(df_graph_day)
4. df_graph_days['day'] = df_graph_days.index
5. df_graph_days.index.names = ['Weekday']
6. print(df_graph_days.head(7))
7.
8. cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'S

unday']
9. df_graph_days['day'] = pd.Categorical(df_graph_days['day'], categories=cats, o

rdered=True)
10. df_graph_days = df_graph_days.sort_values('day')
11.
12. plt.figure(dpi=1200)
13.
14. plt.figure(figsize=(20,9))
15. sns.barplot(data = df_graph_days, x='day',y='jamfactor')

-74-

16. sns.lineplot(df_graph_days['day'], df_graph_days['jamfactor'], color='orange',
linewidth = 2.0)

17. bars = plt.bar(df_graph_days['day'], height=df_graph_days['jamfactor'], width=
.8)

18.
19. plt.xlabel('Day', fontsize=28)
20. plt.ylabel('Jam Factor', fontsize=26)
21. plt.xticks(fontsize=24)
22. plt.yticks(fontsize=22)
23. for bar in bars:
24. yval = round(bar.get_height(),2)
25. plt.text(bar.get_x(), yval + .005, yval,fontsize=25)
26. plt.xlabel('Day', fontsize=28)
27. plt.ylabel('Jam Factor', fontsize=26)
28. plt.xticks(fontsize=24)
29. plt.yticks(fontsize=22)
30. plt.savefig('days')
31.
32. plt.show()

Code for Figure 12: Temperature monthly average.

1. plt.figure(dpi=1200)
2. plt.figure(figsize=(30, 10))
3. bars = plt.bar(df_graph_months['month'],
4. height=df_graph_months['temp'], width=.8)
5.
6.
7. for bar in bars:
8. yval = round(bar.get_height(),1)
9. plt.text(bar.get_x(), yval + .005, yval, fontsize=30)
10.
11. plt.xlabel('Month', fontsize=28)
12. plt.ylabel('Temperature', fontsize=26)
13. plt.xticks(fontsize=24)
14. plt.yticks(fontsize=22)
15.
16. plt.savefig('temp_month')
17. plt.show()

Code for Figure 13: Humidity monthly average

1. df_graph_month = df_temp.groupby(['month'])['humidity'].mean()
2. print(df_graph_month)
3. df_graph_months = pd.DataFrame(df_graph_month)
4. df_graph_months['month'] = df_graph_months.index
5. df_graph_months.index.names = ['Month']
6. print(df_graph_months)
7.
8. cats = ['January', 'February', 'March', 'April', 'May',
9. 'June', 'July', 'August', 'September',
10. 'October', 'November', 'December']
11. df_graph_months['month'] = pd.Categorical(df_graph_months['month'],
12. categories=cats, ordered=True)
13. df_graph_months = df_graph_months.sort_values('month')
14. print(df_graph_months)
15.
16. plt.figure(dpi=1200)
17. plt.figure(figsize=(30, 10))
18.
19. bars = plt.bar(df_graph_months['month'],
20. height=df_graph_months['humidity'], width=.8)
21.

 -75-

22. for bar in bars:
23. yval = round(bar.get_height(),1)
24. plt.text(bar.get_x(), yval + .005, yval, fontsize=20)
25.
26. plt.xlabel('Month', fontsize=28)
27. plt.ylabel('Humidity', fontsize=26)
28. plt.xticks(fontsize=24)
29. plt.yticks(fontsize=22)
30.
31. plt.savefig('month_humidity')
32. plt.show()

Code for Figure 15: Jam Factor before, throughout and after lockdown, featuring all

time intervals.

1. df_graph ['city'] = df_graph["sensor_id"].map(lambda x:city_dict[x])
2. df_interval= df_new
3. df_interval['hour'] = df_new['date_insert'].dt.strftime('%H')
4. cat = {
5. "07" :"Morning", "08" :"Morning", "09" :"Morning",
6. "12" :"Noon", "13" :"Noon", "14" :"Noon",
7. "15" :"Afternoon", "16" :"Afternoon", "17" :"Afternoon",
8. "19" :"Evening", "20" :"Evening", "21" :"Evening"
9. }
10. df_interval["interval"] = df_interval['hour'].map(cat)
11. df_interval = df_interval[df_interval['interval'].notna()]
12.
13. df_interval['date_insert']=df_interval['date_insert'].dt.date
14. df_interval_group = df_interval.groupby(['date_insert','interval']).mean()
15.
16. import matplotlib.patches as mpatches
17.
18. plt.figure(dpi=1200)
19.
20. plt.figure(figsize=(20,9))
21. sns.lineplot(data = df_interval_group, x='date_insert',y='jamfactor',
22. hue='interval')
23.
24. plt.ylim(0, 4.5)
25. plt.xlim([dt.date(2020, 1, 27), dt.date(2020, 7, 12)])
26. plt.xlabel('Date', fontsize=28)
27. plt.ylabel('Jam Factor', fontsize=26)
28. plt.xticks(fontsize=24)
29. plt.yticks(fontsize=22)
30.
31. plt.axvline(dt.datetime(2020, 3, 14),
32. color ='black', linestyle="--", ymin=0.04)
33. plt.axvline(dt.datetime(2020, 3, 22),
34. color ='red', linestyle="--", ymin=0.04)
35. plt.axvline(dt.datetime(2020, 5, 4), color ='green',
36. linestyle="--", ymin=0.04, ymax = 0.85)
37.
38. plt.axvline(dt.datetime(2020, 5, 17),
39. color ='red', linestyle="--",ymin=0.04)
40. plt.text(dt.datetime(2020, 3, 30),4.2,
41. 'Movement Restrictions', color ='red', size =22)
42.
43. handles, labels = plt.gca().get_legend_handles_labels()
44. myorder = [2, 3, 0, 1]
45. labels = [labels[i] for i in myorder]
46. handles = [handles [i] for i in myorder]
47.
48. plt.legend(fontsize='18', handles = handles, labels = labels)

-76-

49.
50. plt.savefig('intervals_corona')
51. plt.savefig('intervals_corona.tif', dpi=600)
52.
53. plt.show()

Code for Figure 18: Average Hourly Jam Factor on weekdays vs. weekends.

1. df_weekends_hour['weekend']= df_weekends_hour['date_insert'].dt.dayofweek
2. df_weekends_hour['weekend'] = (df_weekends_hour['weekend']
3. // 5 == 1).astype(int)
4. df_weekends_hour['hour'] = df_weekends_hour['date_insert'].dt.strftime('%H')
5.
6. plt.figure(dpi=1200)
7.
8. plt.figure(figsize=(35,30))
9.
10. sns.catplot(x = 'hour', y='jamfactor',
11. hue = 'weekend',data=df_weekends_hour,
12. kind='bar', height=8.27, aspect=11.7/8.27, palette=["C0", "C1"])
13.
14. red_patch1 = mpatches.Patch(label='Hourly Traffic on weekdays', color='C0')
15. red_patch2 = mpatches.Patch(label='Hourly Traffic on weekdends', color='C1')

16.
17. plt.legend(handles=[red_patch1,red_patch2],fontsize=16)
18. plt.xlabel('Hour', fontsize=28)
19. plt.ylabel('Jam Factor', fontsize=26)
20. plt.xticks(fontsize=24)
21. plt.yticks(fontsize=22)
22.
23. plt.savefig('myimage_weekday_weekends_hour')
24.
25. plt.show(sns)

Code for Figure 23: Average Jam Factor in Athens and Thessaloniki during

07.2019-08.2020.

1. df_city = df_graph.groupby(['date_insert','city']).mean()
2.
3. plt.figure(dpi=1200)
4. plt.figure(figsize=(20,9))
5. sns.lineplot(data = df_city, x='date_insert',y='jamfactor', hue='city')
6. plt.xlim(dt.datetime(2019, 8, 1), dt.datetime(2020, 8, 17))
7.
8. plt.xlabel('Date', fontsize=28)
9. plt.ylabel('Jam Factor', fontsize=26)
10. plt.xticks(fontsize=24)
11. plt.yticks(fontsize=22)
12.
13. plt.axvline(dt.datetime(2020, 3, 14), color ='black',
14. linestyle="--", ymin=0.04)
15. plt.axvline(dt.datetime(2020, 3, 22), color ='red',
16. linestyle="--", ymin=0.04)
17. plt.axvline(dt.datetime(2020, 5, 17), color ='red',
18. linestyle="--",ymin=0.04)
19. plt.text(dt.datetime(2020, 3, 27),2,'Movement ', color ='red', size =22)
20. plt.text(dt.datetime(2020, 3, 27),1.8,'Restrictions', color ='red', size =22)
21. plt.legend(fontsize='13')
22.
23. plt.savefig('cities_year')
24. plt.show()

 -77-

Code for Figure 24: Average Jam Factor in Athens and Thessaloniki before, during

and after the lockdown.

1. mask = (df_city['date_insert'] > '2020-1-26') &
2. (df_city['date_insert'] < '2020-7-12')
3. df_city_corona = df_city.loc[mask]
4.
5. plt.figure(dpi=1200)
6. plt.figure(figsize=(20,9))
7. sns.lineplot(data = df_city_corona, x='date_insert',y='jamfactor', hue='city')

8. plt.ylim(0.4, 2.5)
9. plt.xlabel('Date', fontsize=28)
10. plt.ylabel('Jam Factor', fontsize=26)
11. plt.xticks(fontsize=24)
12. plt.yticks(fontsize=22)
13.
14. plt.axvline(dt.datetime(2020, 3, 22), color ='red',
15. linestyle="--", ymin=0.04)
16. plt.axvline(dt.datetime(2020, 5, 17), color ='red',
17. linestyle="--",ymin=0.04)
18. plt.text(dt.datetime(2020, 4, 7),2.3,'Movement ', color ='red', size =22)
19. plt.text(dt.datetime(2020, 4, 7),2.2,'Restrictions', color ='red', size =22)
20.
21. plt.text(dt.datetime(2020, 2, 10),2.3,'Free Movement ', color ='red',
22. size =22)
23. plt.text(dt.datetime(2020, 2, 10),2.2,'Before Covid- 19',
24. color ='red', size =22)
25.
26. plt.text(dt.datetime(2020, 5, 20),2.3,'Free Movement ', color ='red',
27. size =22)
28. plt.text(dt.datetime(2020, 5, 20),2.2,'After Covid-19',
29. color ='red', size =22)
30.
31. plt.legend(fontsize='18')
32. plt.savefig('cities_year_corona.tif', dpi=600)
33.
34. plt.show()

Code for Figure: Average Jam Factor per day per hour

1. df_graph_day_hour = df_graph.groupby(['hour', 'day'])['jamfactor'].mean().sort
_values()

2. day_order = ["Monday", "Tuesday", "Wednesday", "Thursday",
3. "Friday", "Saturday", "Sunday"]
4. plt.figure(dpi=1200)
5.
6. plt.figure(figsize=(25,10))
7. df_graph_day_hour = df_graph.groupby(['hour', 'day'])['jamfactor'].mean().rese

t_index().sort_values('hour')
8. sns.barplot(x = 'day', hue ='hour',y = 'jamfactor',data = df_graph_day_hour,

order = day_order, edgecolor="white")
9.
10. plt.show()

-78-

 -79-

Appendix E: Results 2-classes

Model evolution results:

OLD STATUS WEEKENDS FINAL OLD STATUS WEEKENDS FINAL OLD STATUS WEEKENDS FINAL OLD STATUS WEEKENDS FINAL

0.6591 0.7143 0.8178 0.8611 0.6432 0.6713 0.8443 0.8654 0.6271 0.659 0.7922 0.8854 0.714 0.736 0.751 0.8217

0.6218 0.6735 0.8168 0.8686 0.6217 0.6745 0.8304 0.8764 0.6343 0.6844 0.8067 0.8816 0.6766 0.7209 0.7772 0.8587

0.6527 0.6818 0.8137 0.8842 0.6355 0.6949 0.8256 0.9037 0.6264 0.6875 0.8218 0.9132 0.6725 0.7382 0.7889 0.7966

0.6974 0.7379 0.8525 0.9226 0.6543 0.7132 0.796 0.8756 0.701 0.7376 0.8403 0.9168 0.7375 0.7444 0.7905 0.8208

0.6395 0.6722 0.8102 0.8462 0.6587 0.6907 0.7279 0.6979 0.6569 0.6755 0.7709 0.8448 0.6087 0.6587 0.755 0.8199

0.6908 0.7075 0.8591 0.9095 0.6414 0.6872 0.8122 0.8916 0.6778 0.7011 0.847 0.8935 0.7274 0.7543 0.7808 0.8305

0.6906 0.7446 0.8757 0.9259 0.636 0.7048 0.8068 0.8758 0.7009 0.7274 0.837 0.9034 0.7444 0.7545 0.7939 0.8374

0.6142 0.6454 0.8248 0.8819 0.6177 0.6582 0.8276 0.8779 0.6141 0.6344 0.819 0.8903 0.6653 0.6932 0.7892 0.8105

0.7171 0.7007 0.8234 0.8916 0.7186 0.7452 0.7249 0.7783 0.6819 0.7054 0.7841 0.8398 0.6376 0.6781 0.8258 0.8949

0.6272 0.6422 0.803 0.8593 0.6616 0.6856 0.824 0.8609 0.6483 0.6755 0.8016 0.8766 0.6776 0.7209 0.742 0.8018

0.6823 0.7438 0.8141 0.8955 0.6588 0.7053 0.8168 0.8857 0.69 0.7367 0.8433 0.9133 0.7444 0.7645 0.7939 0.8275

0.6941 0.7074 0.849 0.9129 0.7005 0.74 0.7895 0.8585 0.6911 0.7375 0.8505 0.9169 0.6712 0.7142 0.8172 0.8837

0.6438 0.6636 0.839 0.8424 0.677 0.7172 0.8257 0.8685 0.6746 0.7075 0.8437 0.8669 0.6047 0.6381 0.7408 0.7571

0.6437 0.6742 0.7984 0.8365 0.631 0.6648 0.8101 0.8711 0.6031 0.6339 0.8045 0.8732 0.6392 0.6817 0.756 0.8159

0.6194 0.6871 0.8214 0.8808 0.6748 0.6786 0.8381 0.8691 0.645 0.6626 0.7958 0.8852 0.7177 0.7509 0.7396 0.8104

0.6293 0.6612 0.832 0.8565 0.6261 0.7058 0.8149 0.9053 0.6746 0.7142 0.8028 0.8831 0.6966 0.7534 0.7382 0.7762

0.6413 0.6967 0.854 0.9056 0.6278 0.6782 0.8337 0.9034 0.638 0.6698 0.8232 0.8905 0.6735 0.7222 0.792 0.8205

0.6906 0.7274 0.869 0.896 0.6713 0.7072 0.8255 0.882 0.7142 0.7309 0.8204 0.8835 0.7542 0.7711 0.7772 0.8075

0.6378 0.683 0.8447 0.8777 0.6185 0.6963 0.7037 0.6889 0.6446 0.69 0.7718 0.854 0.6354 0.6698 0.7775 0.844

0.6167 0.6641 0.8406 0.8707 0.6432 0.7055 0.756 0.7515 0.6485 0.6732 0.7863 0.842 0.6313 0.6643 0.77 0.8688

0.6565 0.6637 0.8057 0.8422 0.6421 0.694 0.7159 0.782 0.6755 0.7085 0.7798 0.8322 0.6595 0.694 0.822 0.8454

0.6442 0.6408 0.8333 0.8188 0.6818 0.7021 0.8117 0.856 0.5953 0.6368 0.8063 0.8406 0.602 0.5948 0.7262 0.733

0.6692 0.6854 0.8048 0.8605 0.6452 0.6805 0.8473 0.8972 0.6857 0.7071 0.8 0.8786 0.7111 0.763 0.763 0.8

0.6746 0.7131 0.8649 0.8955 0.6762 0.7026 0.8452 0.9132 0.7131 0.7202 0.8657 0.9232 0.7812 0.7927 0.8117 0.8195

0.638 0.6632 0.8228 0.8618 0.6117 0.6538 0.8292 0.8951 0.5846 0.64 0.8662 0.9129 0.6768 0.71 0.766 0.8528

0.634 0.6671 0.8377 0.8699 0.6752 0.6623 0.8321 0.8696 0.6413 0.6411 0.8424 0.8803 0.6943 0.703 0.8049 0.8269

Average 0.654842 0.686996154 0.831861538 0.875930769 0.651919 0.693069231 0.804426923 0.853869 0.657226923 0.688376923 0.816280769 0.881608 0.682873077 0.714880769 0.776557692 0.822385

Sensor 31

Sensor 33

Sensor 36

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 24

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 7

Sensor 8

Sensor 9

Sensor 10

RF SCORE

Sensor 12

Sensors

whole dataset 2-class

01.08.19-31.08.20 07--10 12--15 15--18 19--22

OLD STATUS WEEKENDS FINAL OLD STATUS WEEKENDS FINAL OLD STATUS WEEKENDS FINAL OLD STATUS WEEKENDS FINAL

0.5873 0.5873 0.8413 0.873 0.5775 0.6901 0.7887 0.8732 0.5571 0.6143 0.8429 0.8571 0.6912 0.7059 0.8088 0.8235

0.6349 0.746 0.8571 0.8889 0.5352 0.7465 0.8169 0.9014 0.5714 0.5714 0.8714 0.8714 0.6765 0.7353 0.7353 0.7941

0.6393 0.6721 0.8197 0.8525 0.7353 0.6471 0.75 0.8382 0.7015 0.597 0.7164 0.806 0.7344 0.7969 0.7188 0.8438

0.5467 0.6267 0.8267 0.92 0.6316 0.6711 0.7105 0.8684 0.6184 0.6579 0.75 0.8947 0.8026 0.7895 0.7632 0.8289

0.6129 0.6935 0.8226 0.9032 0.6087 0.6377 0.5942 0.6812 0.7206 0.5735 0.6765 0.7059 0.6061 0.6515 0.7121 0.7879

0.5867 0.5867 0.8667 0.9067 0.6316 0.6711 0.8158 0.8947 0.6316 0.7105 0.8816 0.8816 0.7368 0.75 0.6974 0.7763

0.5467 0.6267 0.8133 0.92 0.6364 0.6753 0.9091 0.9221 0.5526 0.6316 0.7763 0.8947 0.7368 0.7895 0.7632 0.8158

0.6818 0.6515 0.7273 0.7727 0.5867 0.6 0.7867 0.88 0.6081 0.6486 0.8378 0.8514 0.7042 0.7606 0.7324 0.8873

0.6351 0.6351 0.7973 0.9324 0.75 0.7763 0.6711 0.8289 0.7922 0.8052 0.8831 0.8701 0.5789 0.6184 0.8289 0.8947

0.6667 0.697 0.7727 0.8485 0.5676 0.6081 0.7297 0.9054 0.5946 0.7297 0.8649 0.8649 0.7042 0.7746 0.7183 0.8169

0.6533 0.6133 0.9067 0.9467 0.6753 0.6883 0.8961 0.9351 0.6842 0.7237 0.7368 0.8553 0.7632 0.8026 0.7368 0.8158

0.6 0.6133 0.7467 0.9067 0.7105 0.6842 0.7105 0.8421 0.6184 0.6974 0.8158 0.8947 0.6579 0.6974 0.8026 0.8421

0.6 0.68 0.76 0.7733 0.6842 0.6974 0.7105 0.7895 0.6447 0.7237 0.8158 0.8026 0.6447 0.5921 0.75 0.6974

0.6061 0.6515 0.8333 0.9091 0.6216 0.5946 0.8108 0.9324 0.6081 0.6757 0.7703 0.9324 0.6761 0.7746 0.7746 0.8732

0.5714 0.6349 0.7778 0.8571 0.5775 0.662 0.7746 0.8732 0.5714 0.6286 0.8 0.8143 0.6471 0.6765 0.7353 0.7941

0.5645 0.6935 0.7581 0.871 0.6957 0.6377 0.7101 0.7826 0.5942 0.6522 0.8406 0.8696 0.697 0.803 0.8182 0.8333

0.6949 0.7458 0.7966 0.8475 0.6154 0.5846 0.8615 0.8615 0.5312 0.6719 0.7344 0.8906 0.6452 0.6935 0.7903 0.7903

0.6667 0.5733 0.88 0.9067 0.5974 0.6623 0.6623 0.8052 0.6316 0.6842 0.7895 0.8684 0.7632 0.8158 0.7632 0.8158

0.6885 0.6557 0.8689 0.8525 0.7353 0.7206 0.7647 0.75 0.6866 0.6418 0.791 0.7463 0.6308 0.5077 0.7846 0.7846

0.7797 0.7119 0.8305 0.8136 0.6615 0.6615 0.7231 0.7538 0.7188 0.8438 0.7812 0.875 0.5738 0.623 0.5902 0.6557

0.5806 0.5645 0.7742 0.8871 0.6912 0.6618 0.7059 0.7353 0.7015 0.6866 0.7612 0.8657 0.5538 0.5692 0.7538 0.8308

0.662 0.662 0.8873 0.8873 0.5753 0.6575 0.7671 0.8493 0.589 0.6301 0.7945 0.863 0.6438 0.7534 0.6849 0.7808

0.5556 0.6667 0.8095 0.9206 0.6197 0.7042 0.8169 0.9155 0.5571 0.6429 0.8857 0.8714 0.7353 0.7941 0.7353 0.7794

0.6462 0.6462 0.8615 0.8308 0.6716 0.6716 0.8358 0.8657 0.6364 0.6515 0.8636 0.8333 0.7424 0.697 0.7121 0.7727

0.7119 0.6102 0.8475 0.8305 0.6769 0.7077 0.8154 0.8462 0.6719 0.7812 0.8281 0.8594 0.6557 0.6885 0.7049 0.8033

0.6727 0.6909 0.7818 0.8364 0.6333 0.6333 0.9 0.9 0.6441 0.5593 0.8136 0.8644 0.7193 0.7193 0.7544 0.7719

Average 0.630469 0.651396154 0.817888462 0.872876923 0.642423 0.667407692 0.770692308 0.847342 0.632203846 0.67055 0.804730769 0.854008 0.681576923 0.714611538 0.744984615 0.804246

Sensor 36

Sensor 33

Sensors

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 20

Sensor 21

whole dataset 2-class

01.08.19-31.08.20 07--10 12--15 15--18 19--22

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 13

RF ACUURACY

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 12

-80-

Whole dataset (01.08.2019-31.08.20) results:

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.8611 0.873 0.8409 0.8254 0.8654 0.8732 0.8552 0.8451 0.8854 0.8571 0.8819 0.8571 0.8217 0.8235 0.7991 0.8382

0.8686 0.8889 0.8366 0.8889 0.8764 0.9014 0.8835 0.9014 0.8816 0.8714 0.878 0.8714 0.8587 0.7941 0.855 0.8088

0.8842 0.8525 0.8633 0.8361 0.9037 0.8382 0.9037 0.8382 0.9132 0.806 0.9131 0.806 0.7966 0.8438 0.7768 0.8438

0.9226 0.92 0.8892 0.8667 0.8756 0.8684 0.8427 0.8816 0.9168 0.8947 0.8871 0.8816 0.8208 0.8289 0.834 0.8026

0.8462 0.9032 0.8462 0.9032 0.6979 0.6812 0.6976 0.6522 0.8448 0.7059 0.8484 0.7059 0.8199 0.7879 0.8084 0.7879

0.9095 0.9067 0.8759 0.8667 0.8916 0.8947 0.8883 0.8947 0.8935 0.8816 0.8835 0.8816 0.8305 0.7763 0.8173 0.7895

0.9259 0.92 0.8892 0.88 0.8758 0.9221 0.8726 0.9221 0.9034 0.8947 0.8804 0.8816 0.8374 0.8158 0.8206 0.7895

0.8819 0.7727 0.8781 0.7727 0.8779 0.88 0.8576 0.88 0.8903 0.8514 0.8834 0.8649 0.8105 0.8873 0.7817 0.8451

0.8916 0.9324 0.8847 0.9324 0.7783 0.8289 0.7814 0.8421 0.8398 0.8701 0.8394 0.8571 0.8949 0.8947 0.8883 0.8947

0.8593 0.8485 0.8477 0.8485 0.8609 0.9054 0.8545 0.8784 0.8766 0.8649 0.8662 0.8649 0.8018 0.8169 0.7879 0.8028

0.8955 0.9467 0.8789 0.9333 0.8857 0.9351 0.8559 0.9221 0.9133 0.8553 0.9 0.8289 0.8275 0.8158 0.8274 0.8158

0.9129 0.9067 0.8928 0.8667 0.8585 0.8421 0.8518 0.8684 0.9169 0.8947 0.8937 0.9079 0.8837 0.8421 0.864 0.8421

0.8424 0.7733 0.7987 0.8133 0.8685 0.7895 0.8087 0.7763 0.8669 0.8026 0.8208 0.7632 0.7571 0.6974 0.681 0.7368

0.8365 0.9091 0.8175 0.8788 0.8711 0.9324 0.8647 0.9189 0.8732 0.9324 0.8732 0.9189 0.8159 0.8732 0.8158 0.8732

0.8808 0.8571 0.8571 0.8095 0.8691 0.8732 0.8515 0.8873 0.8852 0.8143 0.8783 0.8429 0.8104 0.7941 0.7953 0.75

0.8565 0.871 0.8523 0.8387 0.9053 0.7826 0.9091 0.7826 0.8831 0.8696 0.8611 0.8841 0.7762 0.8333 0.7755 0.8182

0.9056 0.8475 0.888 0.7797 0.9034 0.8615 0.9034 0.8615 0.8905 0.8906 0.8785 0.8906 0.8205 0.7903 0.8247 0.7903

0.896 0.9067 0.8657 0.9067 0.882 0.8052 0.8454 0.8182 0.8835 0.8684 0.8705 0.8816 0.8075 0.8158 0.8173 0.8158

0.8777 0.8525 0.8697 0.8525 0.6889 0.75 0.737 0.75 0.854 0.7463 0.8463 0.7463 0.844 0.7846 0.8363 0.7846

0.8707 0.8136 0.8707 0.8136 0.7515 0.7538 0.7629 0.7692 0.842 0.875 0.8342 0.8281 0.8688 0.6557 0.8688 0.6557

0.8422 0.8871 0.842 0.9032 0.782 0.7353 0.7933 0.7353 0.8322 0.8657 0.847 0.8507 0.8454 0.8308 0.8451 0.8

0.8188 0.8873 0.8083 0.8592 0.856 0.8493 0.8184 0.8493 0.8406 0.863 0.8268 0.8219 0.733 0.7808 0.7086 0.7808

0.8605 0.9206 0.8326 0.8889 0.8972 0.9155 0.8658 0.9155 0.8786 0.8714 0.875 0.8714 0.8 0.7794 0.7815 0.8088

0.8955 0.8308 0.884 0.8615 0.9132 0.8657 0.8906 0.8358 0.9232 0.8333 0.9154 0.8788 0.8195 0.7727 0.8385 0.8485

0.8618 0.8305 0.8618 0.8305 0.8951 0.8462 0.8951 0.8462 0.9129 0.8594 0.9129 0.8594 0.8528 0.8033 0.8322 0.8033

0.8699 0.8364 0.8608 0.8364 0.8696 0.9 0.8697 0.9 0.8803 0.8644 0.8803 0.8644 0.8269 0.7719 0.8093 0.7368

Average 0.875931 0.872877 0.85895 0.857427 0.853869 0.847342 0.844631 0.845092 0.881608 0.854008 0.872131 0.850431 0.822385 0.804246 0.811169 0.802446

07--10

RF LR

12--15

whole dataset 2-class

19--22

RF LR
Sensors

01.08.19-31.08.20 15--18

RF RF

Sensor 19

Sensor 27

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 26

Sensor 15

Sensor 16

Sensor 17

Sensor 18

LR

Sensor 14

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 12

Sensor 13

LR

Sensor 36

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 33

Sensor 25

Sensor 20

3-month results:

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.725 0.8333 0.745 0.8333 0.76 0.6 0.8267 0.8667 0.88 0.9333 0.85 0.9333 0.8 0.8571 0.8 0.7857

0.87 0.7273 0.84 0.6364 0.7633 0.8 0.8133 0.8667 0.8633 0.9333 0.8667 0.9333 0.73 0.8571 0.76 0.7143

0.6 0.7778 0.5833 0.6667 0.765 0.75 0.805 0.75 0.87 0.5 0.87 0.5 0.81 0.8182 0.735 0.7273

0.9321 0.9474 0.9304 0.9474 0.9571 0.8889 0.9571 0.8333 0.9179 0.8947 0.9071 0.8947 0.9339 0.8947 0.8946 0.8947

0.75 0.7 0.625 0.8 0.7133 0.5385 0.5433 0.7692 0.7067 0.6923 0.7633 0.6923 0.69 0.5 0.73 0.5833

0.9321 0.9474 0.9304 0.9474 0.9571 0.8889 0.9429 0.8889 0.9179 0.8947 0.9071 0.8947 0.9464 0.9474 0.9071 0.9474

0.9446 0.9474 0.9321 0.9474 0.9429 0.8947 0.9304 0.8947 0.9179 0.8947 0.9071 0.8947 0.9446 0.8947 0.8911 0.8947

0.8867 0.9286 0.8933 0.7857 0.9429 0.8947 0.9429 0.7895 0.9321 0.8421 0.9054 0.8421 0.9 0.7778 0.8714 0.7222

0.8857 0.8889 0.8857 0.7778 0.6786 0.6842 0.6929 0.8421 0.8804 0.8947 0.8375 0.8947 0.9036 0.8421 0.8929 0.8421

0.9667 1 0.9 0.9333 0.8357 0.8421 0.8339 0.7368 0.9179 0.9474 0.9196 0.9474 0.8357 0.7222 0.8667 0.7778

0.9304 0.9474 0.9304 0.9474 0.9429 0.9474 0.9304 0.8947 0.9161 0.8947 0.8893 0.8947 0.8929 0.8947 0.8911 0.8947

0.9304 0.9474 0.9446 0.9474 0.9571 0.8333 0.9446 0.8333 0.9571 0.9474 0.8893 0.8947 0.9446 0.8421 0.8661 0.8421

0.9446 0.8947 0.9161 0.8947 0.9304 0.8333 0.9304 0.8333 0.9321 0.8947 0.9304 0.8421 0.8375 0.7895 0.8071 0.7895

0.93 0.8571 0.91 0.9286 0.8893 0.8333 0.9161 0.7778 0.9429 0.9474 0.9018 0.9474 0.7976 0.9444 0.8405 0.8333

0.805 0.8333 0.775 0.8333 0.7633 0.7333 0.83 0.8 0.8633 0.8667 0.8333 0.8667 0.6767 0.8571 0.6767 0.7143

0.675 0.8 0.7 0.8 0.7667 0.7857 0.75 0.7857 0.85 0.7143 0.8867 0.7857 0.73 0.7692 0.73 0.7692

0.7833 0.7143 0.7 0.4286 0.8167 0.4444 0.8417 0.5556 0.8 0.7778 0.8 0.5556 0.7167 0.75 0.55 0.875

0.9321 0.9474 0.9304 0.9474 0.9446 0.8889 0.9304 0.8333 0.9179 0.8947 0.9071 0.8947 0.8643 0.8947 0.8089 0.7895

0.725 0.7 0.7167 0.6 0.625 0.5833 0.58 0.75 0.825 0.8333 0.755 0.75 0.655 0.8182 0.695 0.7273

0.9 0.4286 0.9333 0.2857 0.6167 0.5556 0.7 0.4444 0.875 0.7778 0.8083 0.6667 0.65 0.25 0.6 0.25

0.85 0.9 0.925 1 0.75 0.5833 0.765 0.75 0.735 0.8333 0.84 0.8333 0.84 0.6364 0.82 0.7273

0.7867 0.8571 0.8233 0.8571 0.8833 0.9333 0.85 1 0.9 0.875 0.8667 0.8125 0.6905 0.75 0.7405 0.6875

0.905 0.9167 0.865 0.8333 0.88 0.8 0.8767 0.7333 0.9333 1 0.9167 0.9333 0.77 0.7857 0.8 0.7857

0.7417 0.6667 0.8417 0.8889 0.8583 0.6667 0.7917 0.6667 0.8167 0.2222 0.7833 0.7778 0.8167 0.5556 0.8167 0.6667

0.85 0.1429 0.9 0.4286 0.825 0.5556 0.7333 0.6667 0.8667 0.4444 0.8333 0.5556 0.7833 0.5 0.7167 0.5

0.81 0.5385 0.9 0.4286 0.675 0.8 0.7333 0.6667 0.8667 0.4444 0.8333 0.5556 0.7833 0.5 0.7167 0.5

Average 0.84585 0.799623 0.845258 0.781731 0.824623 0.752285 0.822769 0.778054 0.876996 0.799819 0.861858 0.807446 0.805512 0.755727 0.785569 0.740062

Sensor 31

Sensor 33

Sensor 36

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 9

Sensor 10

Sensor 12

LR RF LR RF
Sensors

RF LR RF

3-month 2-class

01.08.19-31.10.19 07--10 12--15 15--18 19--22

LR

Sensor 7

Sensor 8

 -81-

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.8767 0.7857 0.87 0.8571 0.8405 0.7647 0.7643 0.7647 0.9262 0.875 0.9095 0.875 0.8167 0.6875 0.8167 0.6875

0.82 0.7857 0.8333 0.7143 0.8262 0.7059 0.7762 0.8235 0.8595 0.875 0.8738 0.875 0.85 0.75 0.85 0.6875

0.8133 0.7857 0.76 0.8571 0.8071 0.7647 0.7619 0.7647 0.9214 0.875 0.8881 0.875 0.85 0.5625 0.8667 0.625

0.8286 0.7222 0.8286 0.8333 0.7643 0.9444 0.7911 0.7778 0.7714 0.5556 0.6714 0.8333 0.7857 0.6111 0.7429 0.5

0.91 0.7857 0.8533 0.8571 0.5643 0.3529 0.6095 0.5294 0.7143 0.6875 0.7 0.8125 0.85 0.875 0.7833 0.6875

0.8161 0.8333 0.8304 0.8889 0.8482 0.8889 0.75 0.8333 0.8 0.7778 0.7286 0.6667 0.7286 0.6111 0.7286 0.5556

0.8429 0.8333 0.8286 0.8333 0.8321 0.8333 0.7321 0.8333 0.8286 0.5 0.7286 0.6667 0.7286 0.7222 0.7571 0.5556

0.86 0.8571 0.87 0.7857 0.7976 0.7647 0.7643 0.7647 0.9429 0.8125 0.9095 0.875 0.8 0.6875 0.8167 0.6875

0.7833 0.6667 0.7833 0.7222 0.6571 0.5556 0.6143 0.3889 0.8232 0.6316 0.8232 0.6316 0.8536 0.7778 0.8089 0.7778

0.9067 0.7143 0.8467 0.8571 0.7929 0.7059 0.7619 0.8824 0.8429 0.875 0.7929 0.875 0.8 0.8667 0.7333 0.8

0.7857 0.6111 0.8143 0.8333 0.8464 0.8889 0.7482 0.7778 0.7857 0.5556 0.7571 0.7778 0.7286 0.6667 0.7286 0.5

0.8143 0.8333 0.8 0.8889 0.6821 0.6667 0.65 0.7778 0.7571 0.6667 0.8286 0.7778 0.7571 0.5556 0.7429 0.7222

0.8589 0.8333 0.8161 0.7778 0.7643 0.6667 0.7518 0.7222 0.7714 0.5556 0.7714 0.8333 0.7429 0.7778 0.7143 0.7222

0.89 0.8571 0.8533 0.7857 0.8381 0.8235 0.7333 0.8235 0.9262 0.875 0.9095 0.875 0.8 0.6875 0.8167 0.6875

0.8367 0.6429 0.8 0.7143 0.8548 0.7059 0.7619 0.7059 0.9262 0.875 0.8762 0.875 0.7833 0.6875 0.7833 0.6875

0.8633 0.8571 0.85 0.9286 0.7571 0.7059 0.7881 0.7647 0.7952 0.8125 0.7762 0.875 0.7167 0.6667 0.7 0.7333

0.8133 0.7143 0.8367 0.7857 0.7643 0.7059 0.719 0.8824 0.8595 0.875 0.8595 0.875 0.85 0.6875 0.85 0.8125

0.8161 0.8333 0.8304 0.8889 0.7929 0.8947 0.7089 0.9474 0.7857 0.6111 0.7286 0.7778 0.6429 0.5556 0.6429 0.5

0.9067 0.7143 0.89 0.8571 0.6643 0.5882 0.6524 0.5882 0.8405 0.75 0.8262 0.9375 0.9 0.8125 0.85 0.75

0.89 0.8571 0.8733 0.8571 0.6952 0.5882 0.6857 0.7647 0.8524 0.8125 0.7762 0.875 0.9 0.8125 0.85 0.75

0.89 0.8571 0.8733 0.8571 0.6857 0.5294 0.6857 0.7647 0.8357 0.8125 0.7905 0.9375 0.9 0.8125 0.85 0.75

0.8589 0.8333 0.8161 0.7778 0.7661 0.6667 0.7518 0.7222 0.7714 0.5556 0.7714 0.8333 0.7429 0.7778 0.7143 0.7222

0.9033 0.7857 0.8467 0.8571 0.7952 0.6471 0.7619 0.8235 0.8429 0.875 0.7738 0.875 0.75 0.6875 0.7667 0.6875

0.8 0.7222 0.8 0.7778 0.8321 0.8889 0.7607 0.8333 0.8 0.6111 0.7714 0.7778 0.7429 0.5556 0.7286 0.5

0.8733 0.7857 0.87 0.7143 0.8262 0.8235 0.7786 0.8824 0.9238 0.875 0.9238 0.875 0.8333 0.6875 0.8333 0.6875

0.8767 0.7857 0.8367 0.7857 0.8405 0.8235 0.7333 0.8235 0.9429 0.875 0.9095 0.875 0.8 0.6875 0.8167 0.6875

Average 0.851338 0.780508 0.835042 0.818973 0.774446 0.726719 0.73065 0.767958 0.840269 0.748392 0.810596 0.832254 0.794377 0.702681 0.780481 0.671688

Sensor 36

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 33

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 26

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 20

Sensor 8

Sensor 9

Sensor 10

Sensor 12

Sensor 13

Sensor 14

RF LR RF LR

Sensor 7

15--18 19--22

Sensors
RF LR RF LR

01.11.19-31.01.20 07--10 12--15

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.781 0.9412 0.731 1 0.8262 0.7778 0.8405 0.7222 0.8875 0.7778 0.8429 0.7778 0.8667 0.8824 0.8238 0.8235

0.8214 1 0.8619 0.9412 0.7976 0.8333 0.7952 0.7778 0.8732 0.8333 0.8714 0.7778 0.8643 0.7647 0.8095 0.7647

0.7595 0.9412 0.7333 1 0.8405 0.7778 0.8405 0.8333 0.8607 0.7778 0.8589 0.7778 0.8667 0.8235 0.85 0.8824

0.8667 0.8333 0.8667 0.8333 0.8161 0.7778 0.775 0.8333 0.7732 0.6667 0.8 0.7778 0.8446 0.7778 0.8 0.7222

0.8643 0.9412 0.8786 0.9412 0.7786 0.8333 0.8214 0.8333 0.8143 0.7778 0.7875 0.7778 0.8667 0.8235 0.8524 0.7059

0.8714 0.8889 0.8405 0.8333 0.8893 0.8333 0.9036 0.8333 0.8036 0.7778 0.7589 0.8333 0.7589 0.7778 0.7732 0.7778

0.881 0.8889 0.8667 0.8889 0.85 0.8333 0.8375 0.7778 0.7875 0.6667 0.7857 0.7778 0.7875 0.7778 0.8 0.7222

0.7929 0.8824 0.7762 0.8824 0.8119 0.7778 0.8405 0.7222 0.9 0.7222 0.8429 0.7778 0.8524 0.7647 0.8238 0.7059

0.8952 0.8889 0.9095 0.8333 0.8286 0.8889 0.8286 0.7778 0.8071 0.7778 0.8054 0.7222 0.7964 0.8333 0.8232 0.8889

0.6976 1 0.7738 0.8824 0.75 0.8235 0.75 0.9412 0.8875 0.8333 0.8161 0.7778 0.8548 0.8824 0.8238 0.8235

0.869 0.8824 0.8238 0.8824 0.8304 0.7778 0.8589 0.8333 0.7446 0.6667 0.8 0.7778 0.8018 0.7222 0.8 0.7222

0.8571 0.6111 0.8548 0.7778 0.8036 0.8333 0.8036 0.8333 0.8589 0.7778 0.8589 0.7778 0.8161 0.8889 0.8143 0.7778

0.8381 0.8333 0.8238 0.8333 0.8321 0.7222 0.8607 0.7778 0.8321 0.8333 0.8161 0.8889 0.8607 0.6667 0.8036 0.7222

0.7595 0.8824 0.7476 0.8824 0.8119 0.7778 0.8262 0.7778 0.8446 0.8333 0.8714 0.7778 0.8381 0.7059 0.8524 0.7647

0.7786 0.8824 0.7381 0.8824 0.869 0.8889 0.8405 0.7778 0.8464 0.7778 0.875 0.7778 0.7952 0.8824 0.8071 0.8235

0.7119 1 0.7286 0.9412 0.7357 0.8824 0.75 0.9412 0.8732 0.8333 0.7875 0.7778 0.8262 0.7647 0.8238 0.7647

0.7762 0.9412 0.8048 0.9412 0.8429 0.8333 0.8262 0.8333 0.8875 0.8333 0.8304 0.8333 0.85 0.7059 0.8238 0.7059

0.869 0.8333 0.8381 0.8333 0.8036 0.6667 0.8036 0.6667 0.8 0.6667 0.7714 0.7222 0.7893 0.8889 0.7732 0.8333

0.8333 0.9412 0.8476 0.8824 0.8071 0.8333 0.8381 0.8333 0.8143 0.8889 0.7875 0.8889 0.8238 0.7059 0.8214 0.7059

0.8071 0.9412 0.819 0.8824 0.7786 0.8889 0.8405 0.8333 0.7875 0.7222 0.7875 0.8889 0.7929 0.7059 0.781 0.7647

0.7905 0.9412 0.819 0.8824 0.7667 0.8889 0.8405 0.8333 0.7875 0.7222 0.7875 0.8889 0.7929 0.7059 0.781 0.7647

0.8381 0.8333 0.8238 0.8333 0.8321 0.8333 0.8607 0.7778 0.8321 0.8333 0.8161 0.8889 0.8607 0.7222 0.8036 0.7222

0.7286 1 0.7286 0.7647 0.7643 0.8824 0.7643 0.9412 0.8875 0.8333 0.8161 0.7778 0.8548 0.8824 0.8238 0.8235

0.8952 0.8333 0.8952 0.8333 0.8179 0.7778 0.8179 0.8333 0.7589 0.7778 0.8 0.7778 0.7875 0.7778 0.8 0.7222

0.7881 0.8824 0.7476 0.9412 0.7357 0.7778 0.7667 0.7778 0.9 0.7778 0.8857 0.7778 0.8548 0.8824 0.7952 0.8824

0.7595 0.8824 0.731 0.8824 0.8119 0.8889 0.8095 0.7778 0.8857 0.7778 0.8857 0.7222 0.8381 0.8235 0.8381 0.7059

Average 0.812723 0.897196 0.808062 0.881235 0.808935 0.819635 0.820796 0.811585 0.835977 0.775642 0.821019 0.797019 0.828535 0.789981 0.812385 0.770108

Sensor 31

Sensor 33

Sensor 36

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

LR

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 12

LR RF LR RF
Sensors

RF LR RF

01.02.20-30.04.20 07--10 12--15 15--18 19--22

-82-

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.8405 0.8889 0.8548 0.8889 0.8179 0.7778 0.8196 0.7778 0.8732 0.8333 0.9018 0.8333 0.7548 0.7222 0.7833 0.6667

0.8786 0.7778 0.8786 0.7778 0.8732 0.7778 0.8732 0.7778 0.8732 0.8333 0.8875 0.7778 0.8 0.5 0.7548 0.5

0.9119 0.8333 0.8976 0.8333 0.8875 0.8889 0.8732 0.8889 0.8589 0.7778 0.8589 0.7778 0.8405 0.7222 0.8119 0.7222

0.8643 0.8889 0.8667 0.8333 0.9 0.8889 0.9 0.8889 0.9018 0.8333 0.9304 0.8333 0.8857 0.8333 0.8857 0.8333

0.8548 0.7778 0.8548 0.7778 0.7214 0.6667 0.7339 0.5556 0.8893 0.8889 0.8893 0.8889 0.8548 0.9444 0.8119 0.9444

0.9095 0.7778 0.8952 0.7778 0.9304 0.8333 0.9161 0.8333 0.9571 0.8333 0.9161 0.8333 0.869 0.7778 0.869 0.7778

0.8952 0.8889 0.8952 0.8889 0.9018 0.8889 0.9018 0.8889 0.8446 0.8333 0.9143 0.8333 0.869 0.7778 0.869 0.7778

0.869 0.8333 0.869 0.8333 0.8607 0.7222 0.8607 0.7222 0.9018 0.7778 0.9161 0.7778 0.7833 0.7778 0.7833 0.7222

0.9095 0.9444 0.8952 0.9444 0.8589 0.8889 0.8446 0.8889 0.8714 0.6667 0.9 0.6667 0.9143 0.8333 0.9 0.8333

0.8643 0.7778 0.8357 0.7778 0.8875 0.8333 0.8732 0.8333 0.8893 0.7778 0.8893 0.7778 0.8262 0.7778 0.7548 0.7222

0.8976 0.8889 0.8833 0.8889 0.9 0.8889 0.9 0.8889 0.8875 0.8889 0.9018 0.8889 0.8857 0.8333 0.8857 0.8333

0.8833 0.9444 0.869 0.9444 0.9161 0.7778 0.9018 0.7778 0.8857 0.9444 0.8714 0.8889 0.869 0.8889 0.869 0.8889

0.9143 0.8333 0.9286 0.8333 0.9286 0.8889 0.9018 0.8333 0.8464 0.7222 0.8732 0.8333 0.8262 0.8889 0.8714 0.7778

0.869 0.8889 0.8548 0.8889 0.8464 0.7778 0.8607 0.7778 0.9143 0.8333 0.9286 0.8333 0.7976 0.7222 0.7833 0.7222

0.8857 0.8889 0.8857 0.8889 0.8339 0.7778 0.8482 0.7778 0.8589 0.7778 0.8875 0.7778 0.7976 0.6667 0.8 0.6667

0.8643 0.8333 0.8643 0.8333 0.875 0.8333 0.8607 0.8333 0.9036 0.7778 0.8893 0.7778 0.8405 0.7778 0.8262 0.6667

0.8643 0.7222 0.8357 0.7222 0.8732 0.7778 0.8732 0.7778 0.8446 0.7778 0.8446 0.7778 0.7857 0.6111 0.7571 0.6667

0.9095 0.8889 0.881 0.8889 0.9143 0.8333 0.9143 0.8333 0.9018 0.8333 0.9018 0.8333 0.869 0.7778 0.869 0.7778

0.8548 0.8889 0.8548 0.8333 0.8036 0.5556 0.775 0.6667 0.8893 0.8889 0.9179 0.8333 0.8548 0.9444 0.8119 0.9444

0.8833 0.8889 0.8833 0.8889 0.8161 0.5 0.7893 0.6111 0.8893 0.9444 0.9036 0.8889 0.8548 0.8889 0.8119 0.9444

0.8833 0.8889 0.8833 0.8889 0.8161 0.4444 0.7893 0.6111 0.9018 0.9444 0.9179 0.8889 0.869 0.8889 0.8119 0.9444

0.9143 0.8333 0.9286 0.8333 0.9286 0.8889 0.9018 0.8889 0.8464 0.7222 0.8732 0.8333 0.8262 0.8889 0.8571 0.7778

0.8643 0.7778 0.8357 0.7778 0.8875 0.8333 0.8732 0.8333 0.8893 0.7778 0.8893 0.7778 0.8262 0.7778 0.7548 0.7222

0.8976 0.8333 0.8833 0.8889 0.9 0.8889 0.9 0.8889 0.8875 0.8889 0.9018 0.8889 0.8857 0.8333 0.8857 0.8333

0.8667 0.8889 0.8524 0.8889 0.9018 0.7778 0.8875 0.7778 0.8732 0.8333 0.8857 0.8333 0.8429 0.5 0.8119 0.5

0.8548 0.8889 0.8548 0.8889 0.8054 0.7778 0.8482 0.7778 0.9 0.8333 0.9286 0.8333 0.7857 0.6667 0.769 0.6111

Average 0.88095 0.852562 0.8739 0.850423 0.868688 0.784192 0.862358 0.792738 0.883854 0.824777 0.896919 0.822646 0.839008 0.777777 0.823062 0.760677

Sensor 36

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 33

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 26

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 20

Sensor 8

Sensor 9

Sensor 10

Sensor 12

Sensor 13

Sensor 14

RF LR RF LR

Sensor 7

15--18 19--22

Sensors
RF LR RF LR

01.05.20-31.07.20 07--10 12--15

4-month results:

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.7976 0.8125 0.781 0.75 0.7875 0.85 0.775 0.75 0.85 0.8 0.825 0.8 0.825 0.8421 0.7304 0.8421

0.7619 0.5 0.7238 0.875 0.75 0.7 0.8 0.85 0.8625 0.8 0.8625 0.8 0.7964 0.7895 0.7696 0.7895

0.7933 0.6429 0.7567 0.6429 0.7976 0.5882 0.7476 0.7647 0.8357 0.7647 0.8524 0.8235 0.7333 0.4375 0.75 0.875

0.9567 1 0.9467 0.9583 0.9256 0.875 0.9256 0.7917 0.9478 0.8 0.9378 0.84 0.96 0.88 0.94 0.88

0.7633 0.8667 0.7633 0.6 0.6786 0.5556 0.5821 0.4444 0.7089 0.8889 0.7893 0.6667 0.681 0.7647 0.7119 0.7647

0.9478 1 0.9278 0.9583 0.9356 0.9583 0.9144 0.875 0.9367 0.84 0.9478 0.88 0.9189 0.92 0.8989 0.88

0.9467 0.9583 0.9267 0.9583 0.9367 0.9583 0.9267 0.9167 0.9589 0.84 0.9589 0.88 0.9289 0.88 0.9189 0.88

0.85 0.8421 0.8393 0.8947 0.8633 0.9583 0.8833 0.9167 0.9167 0.9583 0.9278 0.9583 0.9 0.913 0.8889 0.913

0.9333 0.8696 0.9556 0.8696 0.6667 0.7917 0.6978 0.7917 0.9189 0.92 0.9189 0.88 0.8778 0.88 0.8678 0.84

0.8786 0.85 0.8411 0.9 0.8622 0.875 0.84 0.875 0.9389 0.9167 0.9289 0.9167 0.8181 0.8636 0.7833 0.9091

0.9467 0.9583 0.9267 0.9583 0.9467 0.9583 0.9367 0.9583 0.9589 0.8333 0.9589 0.875 0.94 0.88 0.91 0.88

0.9567 1 0.9567 0.9583 0.9044 0.8333 0.9033 0.9167 0.97 0.88 0.96 0.96 0.9278 0.92 0.8878 0.92

0.8944 0.9167 0.8644 0.8333 0.8178 0.875 0.8489 0.8333 0.9789 0.88 0.9589 0.92 0.8356 0.84 0.8056 0.84

0.8964 0.8421 0.8964 0.7368 0.8911 0.9167 0.8911 0.8333 0.9356 0.9167 0.9044 0.9167 0.9 0.9091 0.8889 0.8636

0.75 0.8125 0.781 0.6875 0.7 0.8 0.7875 0.75 0.7625 0.8 0.7875 0.9 0.7982 0.7368 0.7429 0.6842

0.75 0.7333 0.6833 0.6 0.7786 0.5263 0.8339 0.6316 0.7554 0.7895 0.7714 0.7895 0.6643 0.7059 0.7048 0.7059

0.87 0.75 0.785 0.75 0.7833 0.7857 0.8233 0.6429 0.8533 0.7857 0.8233 0.6429 0.72 0.8462 0.7 0.8462

0.9267 0.9583 0.9067 1 0.9156 0.9167 0.9267 0.9167 0.9589 0.84 0.9489 0.84 0.8489 0.76 0.87 0.76

0.8 0.7143 0.78 0.5714 0.6429 0.6471 0.6167 0.7059 0.6905 0.8235 0.7667 0.8235 0.7071 0.8125 0.7048 0.8125

0.785 0.75 0.775 0.8333 0.6333 0.6429 0.69 0.8571 0.7767 0.6429 0.7767 0.7143 0.8 0.6154 0.74 0.6923

0.9167 1 0.9333 1 0.7548 0.6471 0.6905 0.8235 0.7619 0.8889 0.7976 0.9444 0.8667 0.6875 0.85 0.75

0.7964 0.7 0.7607 0.9 0.8597 0.8571 0.8708 0.7619 0.7958 0.8182 0.7514 0.7727 0.7667 0.6364 0.7417 0.6818

0.8429 0.8824 0.7786 0.8824 0.85 0.8 0.85 0.85 0.8875 0.7619 0.8625 0.8571 0.8375 0.7368 0.8125 0.7368

0.8233 0.6429 0.84 0.6429 0.8233 0.7333 0.7167 0.7333 0.7733 0.6 0.8067 0.8 0.7767 0.8 0.74 0.8

0.805 0.5 0.825 0.5 0.7633 0.6429 0.8 0.6429 0.7567 0.6429 0.78 0.7143 0.875 0.6154 0.725 0.6154

0.7 0.625 0.7333 0.625 0.7083 0.5556 0.6833 1 0.8417 0.5556 0.8 0.7778 0.7667 0.5 0.7667 0.25

Average 0.849592 0.812612 0.834158 0.803319 0.806804 0.778785 0.806227 0.801281 0.858946 0.807219 0.8617 0.834362 0.825792 0.775862 0.801938 0.785081

4-month 2-class

Sensor 30

Sensor 31

Sensor 33

Sensor 36

Sensor 24

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 18

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

RF LR

Sensor 7

Sensor 8

Sensor 9

Sensor 10

RF LR RF LR

01.08.19-30.11.19 07--10 12--15 15--18 19--22

Sensors
RF LR

 -83-

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.8375 0.9524 0.825 0.9524 0.7789 0.913 0.8011 0.913 0.9208 0.8696 0.9097 0.8696 0.8278 0.8182 0.8375 0.8182

0.8375 0.9048 0.8125 0.9048 0.8356 1 0.8356 1 0.8736 0.8696 0.8847 0.8696 0.8056 0.7727 0.8153 0.7727

0.9125 0.9524 0.85 0.9524 0.8122 0.913 0.8233 0.913 0.9083 0.8696 0.8986 0.8696 0.8236 0.7273 0.8486 0.6818

0.8278 0.7917 0.8078 0.9167 0.8756 0.875 0.8744 0.7917 0.8956 0.9167 0.9067 0.9167 0.8311 0.7083 0.82 0.75

0.9 1 0.8 0.9524 0.68 0.6522 0.67 0.6957 0.7514 0.7391 0.7403 0.6087 0.7694 0.8636 0.8194 0.7273

0.8278 0.875 0.8178 0.9167 0.8756 0.875 0.8644 0.7917 0.8844 0.9167 0.8644 0.8333 0.8489 0.75 0.83 0.75

0.8367 0.7917 0.7856 0.9167 0.8656 0.88 0.8756 0.92 0.8956 0.875 0.8967 0.875 0.7533 0.7083 0.7844 0.7917

0.85 0.9524 0.825 0.9524 0.8011 0.913 0.8344 0.7826 0.9208 0.8696 0.8986 0.7826 0.8278 0.8182 0.8375 0.8182

0.9244 0.875 0.83 0.875 0.7789 0.625 0.7344 0.625 0.8967 0.88 0.8856 0.88 0.8978 0.7917 0.8633 0.7917

0.8875 0.85 0.8232 0.85 0.8244 0.9565 0.8356 1 0.8986 0.913 0.8986 0.913 0.8611 0.6364 0.85 0.5909

0.8567 0.913 0.8244 0.9565 0.8544 0.92 0.8644 0.92 0.8956 0.9167 0.8967 0.9167 0.8178 0.75 0.8089 0.7083

0.9044 0.875 0.8078 0.9583 0.8222 0.875 0.8222 0.875 0.9167 0.8333 0.9078 0.875 0.84 0.9167 0.84 0.875

0.8811 0.9167 0.8167 0.9167 0.8878 0.875 0.8644 0.875 0.83 0.8333 0.8544 0.8333 0.86 0.625 0.8489 0.7083

0.85 0.9524 0.825 0.9524 0.8122 0.913 0.8122 0.8261 0.9097 0.8696 0.8986 0.8696 0.85 0.7727 0.8597 0.7727

0.875 0.9524 0.8 0.9048 0.8011 0.7826 0.8122 0.7826 0.9083 0.8696 0.8986 0.8696 0.7903 0.7273 0.7917 0.8182

0.8857 0.9 0.8107 0.9 0.7811 1 0.8033 1 0.8514 0.6957 0.8514 0.913 0.8722 0.7273 0.8611 0.6364

0.875 0.9048 0.825 0.8571 0.8689 0.9565 0.8467 0.913 0.9097 0.8696 0.9097 0.8696 0.8486 0.6818 0.8611 0.7273

0.9022 0.875 0.8167 0.875 0.8722 0.88 0.8722 0.88 0.8856 0.875 0.8967 0.8333 0.7667 0.75 0.7889 0.7083

0.85 0.9524 0.8 0.9524 0.7367 0.8261 0.7256 0.6522 0.8556 0.6957 0.8097 0.8261 0.7694 0.9545 0.8194 0.7273

0.8625 1 0.8 0.9524 0.77 0.8696 0.7922 0.8696 0.7958 0.6957 0.775 0.913 0.8264 0.8182 0.8347 0.7727

0.85 0.9524 0.8 0.9524 0.77 0.8696 0.7922 0.8696 0.7958 0.6957 0.775 0.913 0.8264 0.8182 0.8347 0.7727

0.8811 0.9167 0.8167 0.9167 0.8878 0.875 0.8644 0.875 0.83 0.8333 0.8544 0.8333 0.86 0.625 0.8489 0.7083

0.9 0.9 0.8232 0.85 0.8356 1 0.8356 0.9565 0.8764 0.913 0.8986 0.913 0.8292 0.8182 0.8292 0.7727

0.8278 0.8333 0.8078 0.875 0.8744 0.875 0.8622 0.7917 0.8956 0.875 0.8756 0.9167 0.8311 0.7083 0.82 0.75

0.8625 0.9524 0.825 0.9524 0.8011 0.9565 0.8233 0.8696 0.8875 0.913 0.8875 0.913 0.9056 0.7727 0.8722 0.7273

0.8875 0.9524 0.8625 0.9524 0.7689 0.913 0.8011 0.8261 0.8986 0.8696 0.8986 0.8696 0.8153 0.8182 0.8042 0.7727

Average 0.868969 0.911319 0.816862 0.919769 0.818165 0.884215 0.820885 0.854412 0.876465 0.845104 0.872008 0.865227 0.829054 0.764569 0.831908 0.748104

Sensor 33

Sensor 36

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 12

Sensor 13

RF LR RF LR

12--15 15--18 19--22

Sensors
RF LR RF LR

01.12.19-31.03.20 07--10

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.8778 0.6522 0.8778 0.6522 0.8856 0.9167 0.8689 0.8333 0.9178 0.9583 0.9178 0.9583 0.8178 0.6957 0.7844 0.8261

0.8667 0.913 0.8778 0.913 0.9467 0.9167 0.9378 0.875 0.8844 0.875 0.8333 0.9167 0.8122 0.6522 0.7711 0.6522

0.8778 0.8261 0.8778 0.8261 0.9167 0.875 0.9278 0.875 0.8778 0.9167 0.8778 0.9583 0.8267 0.8261 0.8067 0.8261

0.9233 0.9583 0.9344 0.9583 0.93 0.9583 0.92 0.9583 0.93 1 0.93 1 0.9056 0.8333 0.8844 0.875

0.8444 0.7826 0.8444 0.7826 0.7967 0.8333 0.7956 0.7917 0.8678 0.8333 0.8867 0.875 0.8578 1 0.8367 0.8696

0.9233 0.9583 0.9133 0.9583 0.94 0.9167 0.94 0.9167 0.93 0.9583 0.93 1 0.8 0.7083 0.78 0.9167

0.9144 0.875 0.9244 0.875 0.9289 0.9167 0.9289 0.9167 0.93 1 0.93 1 0.8633 0.75 0.82 0.875

0.8444 0.7826 0.8556 0.7391 0.8844 0.875 0.8856 0.875 0.9289 0.9583 0.9289 0.9583 0.8156 0.7391 0.7956 0.7826

0.9256 0.913 0.9367 0.9565 0.8956 0.9167 0.9056 0.9167 0.93 1 0.93 1 0.9267 1 0.9167 1

0.8556 0.913 0.8556 0.913 0.9378 0.8333 0.9378 0.875 0.8744 0.9167 0.8567 0.9583 0.7822 0.7826 0.7611 0.7391

0.9244 0.875 0.9022 0.9167 0.94 0.9167 0.94 0.9167 0.93 1 0.93 1 0.8956 0.8333 0.8422 0.875

0.9144 0.9167 0.9133 0.9583 0.94 0.9167 0.94 0.9167 0.94 0.9167 0.94 0.9583 0.84 0.7917 0.8433 0.8333

0.8489 0.8333 0.7833 0.9167 0.8244 0.8333 0.7589 0.875 0.8111 0.875 0.7556 0.875 0.8522 0.7083 0.7111 0.7083

0.8333 0.8261 0.8556 0.8261 0.8844 0.875 0.8856 0.875 0.9178 0.9583 0.9178 0.9583 0.8478 0.6087 0.8156 0.7826

0.8889 0.7826 0.8889 0.7826 0.8522 0.9167 0.8644 0.875 0.9067 0.9167 0.9067 0.9167 0.8289 0.8696 0.7956 0.913

0.8333 0.8696 0.8444 0.8696 0.9378 0.875 0.9378 0.875 0.8878 0.9583 0.8767 0.9583 0.8156 0.7826 0.74 0.6957

0.8444 0.8696 0.8444 0.913 0.9567 0.875 0.9378 0.875 0.8944 0.875 0.8333 0.9167 0.8122 0.6522 0.7711 0.6522

0.9133 0.875 0.9244 0.9583 0.95 0.875 0.95 0.875 0.93 1 0.93 1 0.8744 0.875 0.8856 0.875

0.9 0.8261 0.8444 0.8696 0.8722 0.8333 0.8822 0.8333 0.9389 0.9167 0.9389 0.9583 0.8456 0.913 0.8356 0.8696

0.9 0.8696 0.8667 0.7826 0.9056 0.875 0.9156 0.875 0.9267 0.9167 0.9178 0.9583 0.8467 0.913 0.8267 0.9565

0.9 0.8696 0.8667 0.7826 0.9056 0.875 0.9156 0.875 0.9267 0.9167 0.9178 0.9583 0.8356 0.9565 0.8267 0.9565

0.8489 0.8333 0.7833 0.9167 0.8233 0.8333 0.7589 0.875 0.8011 0.875 0.7556 0.875 0.8522 0.7083 0.7111 0.7083

0.8556 0.8696 0.8556 0.913 0.9378 0.8333 0.9378 0.875 0.8744 0.9167 0.8567 0.9583 0.7922 0.7391 0.75 0.7391

0.9133 0.875 0.9022 0.9167 0.94 0.9167 0.94 0.9167 0.93 0.9583 0.93 1 0.8856 0.875 0.8422 0.875

0.8556 0.8261 0.8556 0.8261 0.9167 0.9167 0.9067 0.9167 0.8733 0.9583 0.8744 0.9583 0.8711 0.7391 0.8167 0.8261

0.8667 0.8696 0.8667 0.8696 0.8633 0.8333 0.8756 0.875 0.9178 0.9583 0.9178 0.9583 0.8467 0.7391 0.7944 0.7826

Average 0.88055 0.856188 0.872904 0.868935 0.904323 0.883015 0.899804 0.883019 0.902992 0.935896 0.893088 0.955115 0.844242 0.795838 0.806331 0.823508

Sensor 33

Sensor 36

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 18

Sensor 19

RF LR

Sensor 7

Sensor 8

Sensor 9

Sensor 10

19--22

Sensors
RF LR RF LR RF LR

01.04.20-31.07.20 07--10 12--15 15--18

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

-84-

Lockdown results:

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.925 0.9091 0.925 0.8182 0.885 0.7273 0.905 0.6364 0.79 0.9091 0.82 1 0.85 0.5455 0.825 0.7273

0.88 0.7273 0.88 0.7273 0.815 0.5455 0.835 0.7273 0.89 0.8182 0.865 0.8182 0.825 0.7273 0.8 0.7273

0.925 0.8182 0.925 0.8182 0.88 0.7273 0.88 0.7273 0.815 0.7273 0.82 0.9091 0.775 0.7273 0.825 0.8182

0.82 0.7273 0.815 0.8182 0.79 0.8333 0.83 1 0.865 0.9091 0.915 1 0.77 1 0.795 1

0.925 0.7273 0.9 0.7273 0.635 0.5455 0.68 0.7273 0.835 0.9091 0.865 0.8182 0.8 0.6364 0.825 0.7273

0.81 0.8182 0.785 0.9091 0.84 1 0.83 0.9167 0.89 0.8182 0.865 1 0.795 0.9091 0.84 0.8182

0.815 0.8182 0.815 0.8182 0.81 1 0.83 1 0.925 0.7273 0.91 0.9091 0.795 0.9091 0.79 0.8182

0.925 0.9091 0.925 0.8182 0.885 0.7273 0.885 0.7273 0.795 0.8182 0.82 1 0.825 0.5455 0.8 0.7273

0.905 0.9091 0.855 0.9091 0.795 0.5455 0.765 0.6364 0.925 0.8333 0.925 0.9167 0.885 0.6667 0.88 0.8333

0.8 0.8182 0.8 0.8182 0.815 0.7273 0.765 0.7273 0.89 0.8182 0.89 0.7273 0.775 0.8182 0.75 0.8182

0.805 0.8182 0.85 0.8182 0.86 0.9167 0.86 0.9167 0.865 0.9091 0.865 1 0.8 0.9091 0.795 0.9091

0.78 0.8182 0.855 1 0.825 0.9167 0.8 0.9167 0.91 1 0.89 1 0.82 1 0.815 0.8182

0.79 0.9091 0.78 0.9091 0.875 0.9167 0.85 0.9167 0.845 0.6364 0.795 0.6364 0.84 0.9091 0.775 0.7273

0.925 0.9091 0.9 0.8182 0.91 0.6364 0.885 0.6364 0.77 1 0.82 1 0.775 0.6364 0.825 0.7273

0.925 0.8182 0.925 0.8182 0.885 0.8182 0.835 0.6364 0.84 0.9091 0.89 1 0.825 0.2727 0.85 0.7273

0.85 0.9091 0.85 0.9091 0.75 0.7273 0.7 0.8182 0.89 0.8182 0.865 0.8182 0.775 0.4545 0.75 0.7273

0.9 0.7273 0.9 0.7273 0.875 0.6364 0.875 0.6364 0.89 0.8182 0.865 0.8182 0.825 0.9091 0.8 0.7273

0.76 0.9091 0.785 0.9091 0.84 0.9167 0.86 0.9167 0.93 0.9091 0.885 0.9091 0.825 0.8182 0.845 0.8182

0.9 0.7273 0.9 0.8182 0.68 0.7273 0.65 0.8182 0.88 0.9091 0.855 0.9091 0.825 0.8182 0.85 0.8182

0.875 0.8182 0.88 0.7273 0.79 0.6364 0.765 0.5455 0.88 0.9091 0.885 0.9091 0.825 0.8182 0.85 0.8182

0.875 0.8182 0.9 0.7273 0.81 0.6364 0.765 0.5455 0.88 0.9091 0.885 0.9091 0.825 0.8182 0.85 0.8182

0.79 0.9091 0.78 0.9091 0.855 0.9167 0.85 0.9167 0.845 0.6364 0.795 0.6364 0.84 0.9091 0.775 0.7273

0.8 0.9091 0.775 0.9091 0.8 0.8182 0.765 0.7273 0.89 0.8182 0.89 0.7273 0.725 0.7273 0.75 0.8182

0.84 0.7273 0.815 0.8182 0.86 0.9167 0.86 0.9167 0.845 1 0.865 1 0.775 0.9091 0.795 0.9091

0.925 0.6364 0.9 0.8182 0.835 0.4545 0.835 0.4545 0.89 0.9091 0.865 0.8182 0.85 0.7273 0.775 0.8182

0.925 0.9091 0.925 0.8182 0.84 0.6364 0.84 0.6364 0.77 1 0.82 1 0.8 0.7273 0.825 0.7273

Average 0.861346 0.825192 0.859423 0.832185 0.824615 0.754104 0.815385 0.760808 0.863077 0.860735 0.862692 0.891912 0.809423 0.763419 0.809808 0.794308

Sensor 31

Sensor 33

Sensor 36

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 9

Sensor 10

Sensor 12

LR RF LR RF
Sensors

RF LR RF

covid 2-class

pre-lockdown 27.01-

22.03.20 07--10 12--15 15--18 19--22

LR

Sensor 7

Sensor 8

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.805 0.5455 0.805 0.4545 0.88 0.6364 0.855 0.5455 0.73 0.5455 0.755 0.7273 0.855 0.6364 0.83 0.6364

0.86 0.5455 0.76 0.6364 0.845 0.4545 0.82 0.4545 0.725 0.8182 0.675 0.8182 0.815 0.7273 0.765 0.4545

0.735 0.6364 0.68 0.8182 0.81 0.6364 0.81 0.6364 0.735 0.9091 0.75 0.8182 0.785 0.6364 0.79 0.6364

0.73 0.7273 0.725 0.7273 0.77 1 0.8 0.7273 0.815 0.8333 0.77 0.8333 0.625 0.75 0.67 0.5833

0.705 0.7273 0.69 0.8182 0.66 0.7273 0.69 0.7273 0.605 0.7273 0.72 0.7273 0.81 0.6364 0.83 0.6364

0.705 0.6364 0.71 0.7273 0.79 0.9091 0.79 0.9091 0.77 0.9167 0.765 0.75 0.755 0.6667 0.735 1

0.8 0.6364 0.795 0.6364 0.77 1 0.775 0.9167 0.785 0.8333 0.765 0.75 0.735 0.5833 0.785 0.8333

0.83 0.4545 0.755 0.5455 0.88 0.6364 0.83 0.5455 0.71 0.4545 0.73 0.7273 0.855 0.6364 0.83 0.6364

0.89 0.7273 0.815 0.7273 0.755 0.8333 0.745 0.9167 0.675 0.6667 0.7 0.6667 0.61 0.6667 0.72 0.6667

0.66 0.7273 0.725 0.8182 0.785 0.6364 0.76 0.6364 0.665 0.9091 0.75 0.8182 0.885 0.7273 0.79 0.7273

0.77 0.7273 0.785 0.6364 0.76 1 0.815 0.9167 0.815 0.6667 0.77 0.8333 0.675 0.8333 0.74 0.8333

0.75 0.7273 0.76 0.7273 0.64 0.9091 0.655 0.9091 0.815 0.8333 0.765 0.8333 0.74 0.6667 0.785 0.6667

0.745 0.7273 0.74 0.7273 0.775 0.7273 0.79 0.9091 0.74 0.9167 0.86 1 0.775 1 0.8 1

0.755 0.7273 0.755 0.7273 0.795 0.6364 0.81 0.6364 0.735 0.3636 0.755 0.7273 0.83 0.7273 0.805 0.7273

0.805 0.7273 0.775 0.6364 0.815 0.7273 0.81 0.6364 0.65 0.9091 0.75 0.8182 0.855 0.6364 0.81 0.6364

0.74 0.7273 0.67 0.7273 0.74 0.7273 0.76 0.6364 0.665 0.9091 0.75 0.8182 0.79 0.6364 0.77 0.6364

0.81 0.7273 0.715 0.7273 0.845 0.3636 0.82 0.4545 0.775 0.8182 0.675 0.8182 0.86 0.6364 0.79 0.8182

0.795 0.6364 0.84 0.6364 0.79 0.9091 0.835 0.9091 0.79 0.75 0.79 0.75 0.745 0.75 0.76 0.8333

0.74 0.4545 0.685 0.7273 0.715 0.6364 0.715 0.5455 0.635 0.7273 0.72 0.7273 0.81 0.6364 0.83 0.6364

0.765 0.5455 0.785 0.7273 0.755 0.6364 0.805 0.7273 0.69 0.7273 0.745 0.5455 0.73 0.6364 0.78 0.6364

0.79 0.8182 0.785 0.7273 0.755 0.6364 0.805 0.7273 0.69 0.8182 0.745 0.5455 0.755 0.6364 0.78 0.6364

0.74 0.8182 0.78 0.7273 0.775 0.7273 0.765 0.7273 0.74 0.9167 0.86 1 0.775 1 0.8 1

0.72 0.7273 0.705 0.7273 0.74 0.7273 0.76 0.6364 0.645 0.9091 0.75 0.8182 0.855 0.6364 0.79 0.7273

0.77 0.6364 0.785 0.6364 0.775 0.9091 0.775 0.8182 0.835 0.6667 0.765 0.75 0.7 0.8333 0.74 0.8333

0.78 0.5455 0.735 0.7273 0.81 0.6364 0.84 0.6364 0.77 0.7273 0.73 0.8182 0.785 0.6364 0.79 0.6364

0.78 0.5455 0.78 0.6364 0.87 0.5455 0.835 0.5455 0.73 0.8182 0.725 0.7273 0.835 0.6364 0.835 0.6364

Average 0.768269 0.660865 0.751538 0.695831 0.780769 0.727873 0.787308 0.707192 0.728269 0.772738 0.751346 0.775654 0.778654 0.700196 0.782692 0.719419

Sensor 36

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 33

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 26

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 20

Sensor 8

Sensor 9

Sensor 10

Sensor 12

Sensor 13

Sensor 14

RF LR RF LR

Sensor 7

15--18 19--22

Sensors
RF LR RF LR

lockdown 23.03-

17.05.20 07--10 12--15

 -85-

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.735 0.7273 0.78 0.6364 0.69 0.5455 0.69 0.6364 0.745 0.6364 0.715 0.8182 0.725 0.9091 0.55 0.7273

0.8 0.7273 0.78 0.8182 0.665 0.7273 0.715 0.7273 0.81 0.7273 0.695 0.7273 0.765 0.9091 0.65 0.7273

0.83 0.8182 0.83 0.7273 0.69 0.5455 0.74 0.5455 0.74 0.6364 0.695 0.6364 0.715 0.7273 0.65 0.7273

0.76 0.7273 0.79 0.7273 0.765 0.5455 0.855 0.7273 0.805 0.7273 0.765 0.9091 0.765 0.6364 0.715 0.5455

0.76 0.7273 0.735 0.9091 0.645 0.4545 0.685 0.5455 0.675 0.7273 0.705 0.7273 0.765 0.7273 0.65 0.7273

0.805 0.7273 0.76 0.7273 0.81 0.4545 0.695 0.5455 0.785 0.7273 0.76 0.6364 0.77 0.5455 0.745 0.4545

0.735 0.7273 0.78 0.6364 0.765 0.6364 0.79 0.8182 0.8 0.7273 0.715 0.8182 0.745 0.5455 0.74 0.4545

0.78 0.6364 0.83 0.7273 0.725 0.5455 0.65 0.6364 0.725 0.6364 0.715 0.8182 0.815 0.6364 0.7 0.6364

0.825 0.8182 0.9 0.8182 0.645 0.9091 0.585 0.5455 0.77 0.6364 0.765 0.5455 0.69 0.7273 0.735 0.6364

0.78 0.7273 0.73 0.7273 0.79 0.7273 0.795 0.7273 0.76 0.7273 0.765 0.6364 0.705 0.9091 0.68 0.7273

0.665 0.9091 0.76 0.8182 0.765 0.6364 0.88 0.7273 0.8 0.9091 0.72 0.9091 0.745 0.7273 0.72 0.5455

0.855 0.6364 0.905 0.6364 0.755 0.7273 0.665 0.5455 0.855 0.8182 0.785 0.7273 0.745 0.7273 0.745 0.6364

0.79 0.7273 0.79 0.7273 0.77 0.8182 0.74 0.7273 0.795 0.6364 0.765 0.6364 0.675 0.8182 0.705 0.6364

0.76 0.6364 0.76 0.6364 0.68 0.4545 0.715 0.6364 0.715 0.7273 0.715 0.8182 0.775 0.6364 0.65 0.7273

0.805 0.6364 0.75 0.8182 0.675 0.5455 0.695 0.5455 0.77 0.5455 0.74 0.7273 0.74 0.8182 0.665 0.7273

0.8 0.6364 0.66 0.7273 0.785 0.6364 0.735 0.7273 0.76 0.7273 0.765 0.6364 0.655 0.9091 0.68 0.7273

0.825 0.8182 0.805 0.7273 0.71 0.5455 0.715 0.8182 0.725 0.8182 0.715 0.8182 0.765 0.8182 0.65 0.7273

0.76 0.8182 0.79 0.7273 0.765 0.5455 0.855 0.7273 0.85 0.7273 0.77 0.5455 0.725 0.7273 0.72 0.7273

0.74 0.6364 0.685 0.7273 0.8 0.7273 0.775 0.7273 0.745 0.8182 0.775 0.7273 0.83 0.7273 0.76 0.7273

0.735 0.7273 0.685 0.7273 0.74 0.6364 0.775 0.9091 0.75 0.7273 0.73 0.8182 0.86 0.6364 0.835 0.6364

0.735 0.7273 0.68 0.9091 0.74 0.6364 0.775 0.9091 0.73 0.7273 0.685 0.7273 0.86 0.6364 0.835 0.6364

0.79 0.7273 0.79 0.7273 0.77 0.8182 0.74 0.7273 0.795 0.6364 0.765 0.6364 0.675 0.8182 0.705 0.6364

0.78 0.7273 0.73 0.7273 0.81 0.6364 0.815 0.7273 0.76 0.7273 0.765 0.6364 0.655 0.9091 0.68 0.7273

0.655 0.7273 0.76 0.8182 0.765 0.5455 0.855 0.6364 0.8 0.7273 0.74 0.8182 0.695 0.6364 0.695 0.5455

0.825 0.6364 0.875 0.8182 0.74 0.6364 0.785 0.7273 0.75 0.7273 0.765 0.5455 0.755 0.8182 0.705 0.7273

0.805 0.7273 0.805 0.7273 0.76 0.5455 0.74 0.6364 0.72 0.7273 0.715 0.8182 0.72 0.6364 0.67 0.7273

Average 0.774423 0.723804 0.774808 0.748277 0.739231 0.622404 0.748462 0.688842 0.766731 0.716812 0.738846 0.723804 0.743654 0.741285 0.701346 0.660865

Sensor 31

Sensor 33

Sensor 36

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

LR

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 12

LR RF LR RF
Sensors

RF LR RF

post-lockdown

18.05-12.07.20 07--10 12--15 15--18 19--22

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.8628 0.9688 0.8224 0.9375 0.8769 0.9394 0.8615 0.9091 0.9236 0.9091 0.9236 0.9091 0.8333 0.875 0.7846 0.8438

0.8942 0.9062 0.9032 0.8438 0.8994 0.8485 0.8994 0.8485 0.8934 0.8485 0.878 0.8788 0.8173 0.8438 0.7769 0.8125

0.8808 0.9688 0.8647 0.9375 0.884 0.8788 0.884 0.9091 0.8934 0.9394 0.8857 0.9394 0.8006 0.8438 0.7929 0.9062

0.9532 0.8485 0.9532 0.8485 0.939 0.8235 0.9236 0.8235 0.9011 0.9394 0.9016 0.9091 0.8698 0.8485 0.8698 0.8182

0.8801 0.875 0.8801 0.875 0.8442 0.697 0.8058 0.8485 0.9005 0.9091 0.8929 0.9091 0.866 0.9062 0.866 0.9062

0.9385 0.875 0.9385 0.875 0.9242 0.8824 0.9159 0.8529 0.894 0.9394 0.8934 0.9394 0.8401 0.8485 0.8626 0.7879

0.9378 0.8485 0.9378 0.8485 0.9319 0.8235 0.9319 0.8235 0.9011 0.9091 0.9016 0.9394 0.8621 0.7879 0.8467 0.8485

0.8558 0.9688 0.8301 0.9375 0.8686 0.9394 0.9071 0.9394 0.939 0.9091 0.939 0.9091 0.8494 0.8125 0.7846 0.8438

0.9462 0.7812 0.9462 0.7812 0.8698 0.9091 0.8857 0.8182 0.9099 0.8529 0.8945 0.8529 0.9236 0.8485 0.9236 0.8485

0.9109 0.8438 0.9032 0.8125 0.866 0.9697 0.8583 0.9697 0.9088 0.9091 0.9088 0.9091 0.8083 0.8438 0.8006 0.8438

0.9276 0.9062 0.9276 0.9062 0.9319 0.8235 0.9319 0.8235 0.9088 0.8788 0.9016 0.9394 0.8698 0.8485 0.8544 0.8182

0.9378 0.9375 0.9378 0.9375 0.9236 0.8235 0.9308 0.8235 0.9093 0.9091 0.8934 0.9394 0.8626 0.9091 0.8396 0.9091

0.8577 0.875 0.8827 0.75 0.8258 0.8824 0.8181 0.9118 0.8258 0.8485 0.8258 0.8182 0.7637 0.6667 0.7637 0.6364

0.9032 0.9062 0.8712 0.9062 0.9 0.8788 0.8923 0.8485 0.9313 0.9394 0.9313 0.9394 0.834 0.8438 0.7929 0.8438

0.8712 0.9375 0.8385 0.9375 0.9 0.8485 0.8846 0.8788 0.8934 0.9394 0.8857 0.9394 0.841 0.7188 0.7853 0.8438

0.9103 0.75 0.9032 0.7812 0.9071 0.8182 0.8994 0.8485 0.9088 0.9091 0.9088 0.9091 0.816 0.75 0.8244 0.8438

0.8628 0.9062 0.8872 0.8438 0.8917 0.8485 0.8994 0.8485 0.8934 0.8788 0.878 0.8788 0.825 0.8125 0.8013 0.8125

0.9224 0.875 0.9224 0.875 0.939 0.7941 0.9313 0.7941 0.894 0.9697 0.9088 0.9091 0.8473 0.8182 0.839 0.8788

0.8571 0.8438 0.8564 0.8438 0.8288 0.8182 0.7904 0.9091 0.8929 0.9394 0.8929 0.9091 0.8583 0.9375 0.8423 0.9375

0.8641 0.875 0.8558 0.7812 0.8442 0.7576 0.8141 0.9091 0.8929 0.9091 0.8929 0.9091 0.8737 0.9688 0.8423 0.9375

0.8564 0.875 0.8564 0.8438 0.8442 0.7576 0.8141 0.9091 0.8929 0.9091 0.8929 0.9091 0.8814 0.9375 0.8423 0.9375

0.8577 0.8438 0.8827 0.75 0.8258 0.8824 0.8181 0.9118 0.833 0.8485 0.8258 0.8182 0.7637 0.6667 0.7637 0.6364

0.9109 0.8438 0.9032 0.8125 0.8583 0.9697 0.8583 0.9697 0.9088 0.9091 0.9088 0.9091 0.809 0.875 0.7923 0.8438

0.9449 0.8485 0.9372 0.8485 0.9236 0.8529 0.9236 0.8529 0.9165 0.9394 0.9016 0.9091 0.8621 0.8182 0.8544 0.8182

0.8878 0.9375 0.8641 0.9062 0.9224 0.8788 0.8994 0.8788 0.8934 0.9697 0.8934 0.9697 0.825 0.9062 0.841 0.9062

0.9032 0.9062 0.8712 0.9062 0.8846 0.9091 0.8846 0.8788 0.9159 0.9394 0.9159 0.9394 0.834 0.8438 0.7846 0.8438

Average 0.897515 0.882762 0.891423 0.858715 0.886731 0.855965 0.879369 0.874573 0.899073 0.9116 0.895258 0.909269 0.839888 0.837685 0.821992 0.842565

Sensor 14

Sensor 15

Sensor 16

pre_until_post

lockdown

27.01.2020-

12.07.2020 07--10 12--15 15--18 19--22

Sensors
RF LR RF LR RF LR RF LR

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 33

Sensor 36

Sensor 17

Sensor 18

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 12

Sensor 13

Grouped results:

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

whole 01.08.19-31.08.20 0.876 0.873 0.859 0.857 0.854 0.847 0.845 0.845 0.882 0.854 0.872 0.850 0.822 0.804 0.811 0.802

4-month 01.08.19-30.11.19 0.850 0.813 0.834 0.803 0.807 0.779 0.806 0.801 0.859 0.807 0.862 0.834 0.826 0.776 0.802 0.785

01.12.19-31.03.20 0.869 0.911 0.817 0.920 0.818 0.884 0.821 0.854 0.876 0.845 0.872 0.865 0.829 0.765 0.832 0.748

01.04.20-31.07.20 0.881 0.856 0.873 0.869 0.904 0.883 0.900 0.883 0.903 0.936 0.893 0.955 0.844 0.796 0.806 0.824

3-month 01.08.19-31.10.19 0.846 0.800 0.845 0.782 0.825 0.752 0.823 0.778 0.877 0.800 0.862 0.807 0.806 0.756 0.786 0.740

01.11.19-31.01.20 0.851 0.781 0.835 0.819 0.774 0.727 0.731 0.768 0.840 0.748 0.811 0.832 0.794 0.703 0.780 0.672

01.02.20-30.04.20 0.813 0.897 0.808 0.881 0.809 0.820 0.821 0.812 0.836 0.776 0.821 0.797 0.829 0.790 0.812 0.770

01.05.20-31.07.20 0.881 0.853 0.874 0.850 0.869 0.784 0.862 0.793 0.884 0.825 0.897 0.823 0.839 0.778 0.823 0.761

lockdown

pre_lockdown 27.01-

22.03.20 0.861 0.825 0.859 0.832 0.825 0.754 0.815 0.761 0.863 0.861 0.863 0.892 0.809 0.763 0.810 0.794

lockdown 23.03-17.05.20 0.768 0.661 0.752 0.696 0.781 0.728 0.787 0.707 0.728 0.773 0.751 0.776 0.779 0.700 0.783 0.719
post-lockdown 18.05-

12.07.20 0.774 0.724 0.775 0.748 0.739 0.622 0.748 0.689 0.767 0.717 0.739 0.724 0.744 0.741 0.701 0.661

pre_until_post lockdown

27.01.2020-12.07.2020 0.898 0.883 0.891 0.859 0.887 0.856 0.879 0.875 0.899 0.912 0.895 0.909 0.840 0.838 0.822 0.843

Grouped results 2-class

Period

LRLR

12--15 15--18 19--22

LR RFRF

07--10

RF LR RF

-86-

Appendix F: Results 3-classes

Model evolution results:

OLD STATUS WEEKENDS FINAL OLD STATUS WEEKENDS FINAL OLD STATUS WEEKENDS FINAL OLD STATUS WEEKENDS FINAL

0.5406 0.568 0.8263 0.8302 0.5119 0.53 0.8021 0.7881 0.5661 0.577 0.8352 0.8495 0.4791 0.5014 0.6724 0.6803

0.5102 0.5222 0.8012 0.8132 0.5092 0.5335 0.7315 0.7456 0.5589 0.5771 0.8242 0.828 0.4608 0.49 0.7358 0.7209

0.5252 0.5413 0.814 0.8305 0.5061 0.5689 0.7846 0.8034 0.5664 0.5823 0.8338 0.857 0.504 0.5317 0.6254 0.656

0.5971 0.6177 0.8286 0.839 0.5565 0.6252 0.7762 0.796 0.5516 0.5748 0.7541 0.7408 0.5282 0.5649 0.6544 0.7043

0.51 0.5505 0.7457 0.7702 0.4767 0.5347 0.5738 0.5923 0.4688 0.5462 0.6825 0.6899 0.4712 0.4902 0.6439 0.667

0.5771 0.5905 0.839 0.8525 0.5463 0.5994 0.7928 0.7895 0.5448 0.5882 0.7806 0.7808 0.4949 0.5848 0.7176 0.7408

0.5869 0.6108 0.8318 0.8353 0.5705 0.6267 0.7738 0.7938 0.5614 0.5782 0.774 0.7839 0.4982 0.5315 0.6808 0.694

0.5117 0.5346 0.8433 0.8395 0.4734 0.493 0.7637 0.7734 0.526 0.498 0.8054 0.802 0.4712 0.5137 0.6872 0.6589

0.5579 0.5787 0.8268 0.8539 0.5725 0.6323 0.6726 0.7025 0.5968 0.6068 0.7667 0.7834 0.4997 0.559 0.7133 0.7527

0.5437 0.5359 0.8479 0.8558 0.4964 0.5301 0.7568 0.7667 0.5324 0.5463 0.7883 0.8017 0.5198 0.5336 0.6472 0.6469

0.5643 0.5784 0.8275 0.8379 0.6032 0.623 0.7632 0.7931 0.5233 0.5467 0.7433 0.7567 0.5152 0.5451 0.6413 0.6973

0.5838 0.5772 0.8523 0.8523 0.5134 0.5827 0.7301 0.7366 0.5014 0.5548 0.7606 0.7573 0.4814 0.5014 0.7672 0.7605

0.4695 0.4898 0.6441 0.688 0.4108 0.4934 0.5655 0.6213 0.4053 0.4651 0.5581 0.6144 0.4056 0.4488 0.5348 0.558

0.5712 0.5674 0.8333 0.8296 0.4849 0.5092 0.7792 0.7957 0.548 0.5516 0.8151 0.8356 0.4558 0.5195 0.6956 0.7028

0.5529 0.5723 0.8303 0.834 0.5151 0.5334 0.7809 0.7703 0.5519 0.5807 0.8316 0.8495 0.5279 0.5315 0.6692 0.6655

0.5593 0.5873 0.8085 0.8445 0.4894 0.5948 0.7648 0.7831 0.561 0.5791 0.8089 0.8238 0.5744 0.5779 0.6266 0.6342

0.5562 0.5647 0.8509 0.8681 0.5392 0.5663 0.7598 0.7642 0.5615 0.5845 0.8005 0.8162 0.4982 0.5258 0.7225 0.7142

0.5801 0.6003 0.8117 0.8154 0.5657 0.6086 0.7697 0.7926 0.5317 0.5881 0.7208 0.7406 0.5347 0.5552 0.6377 0.6875

0.5123 0.5242 0.77 0.7862 0.4741 0.5037 0.5667 0.5852 0.4387 0.4952 0.611 0.6295 0.4485 0.4945 0.6498 0.6657

0.4833 0.5219 0.7502 0.7668 0.4548 0.4935 0.5366 0.5989 0.3805 0.4383 0.6406 0.6522 0.3935 0.4062 0.639 0.6513

0.5178 0.5265 0.7577 0.7697 0.4829 0.5237 0.55 0.6126 0.4477 0.4736 0.6614 0.6761 0.426 0.4729 0.6394 0.6665

0.4622 0.5015 0.701 0.7223 0.459 0.4867 0.579 0.6162 0.4083 0.4775 0.6058 0.6506 0.4361 0.4876 0.5118 0.5704

0.5258 0.5654 0.8248 0.8328 0.5214 0.5532 0.7409 0.7445 0.5714 0.5786 0.8143 0.8321 0.5222 0.5481 0.6185 0.6259

0.5851 0.5851 0.8526 0.8722 0.5702 0.6345 0.762 0.8195 0.5632 0.5865 0.7207 0.7356 0.5403 0.5748 0.6516 0.7125

0.5699 0.5868 0.837 0.8623 0.5217 0.5485 0.8251 0.8328 0.55 0.5335 0.8618 0.8697 0.4557 0.5288 0.7295 0.7297

0.547 0.5556 0.8104 0.8292 0.5063 0.5406 0.8111 0.8067 0.5263 0.5389 0.7911 0.8168 0.5032 0.5123 0.7389 0.7342

Average 0.54235 0.559792308 0.80641923 0.820438 0.512754 0.556523077 0.719711538 0.739408 0.5209 0.547984615 0.753476923 0.768219 0.486376923 0.520430769 0.663515385 0.680692

Sensor 36

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 33

Sensor 21

Sensor 9

Sensor 10

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 20

Sensor 7

Sensor 8

Sensors
LR SCORE

whole dataset 3-class

01.08.19-31.08.20 07--10 12--15 15--18 19--22

Whole dataset (01.08.2019-31.08.20) results:

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.8342 0.7778 0.8302 0.7937 0.7915 0.7887 0.7881 0.7746 0.8495 0.7571 0.8495 0.7429 0.7024 0.6324 0.6803 0.6176

0.8171 0.8889 0.8132 0.873 0.7525 0.7465 0.7456 0.7465 0.8388 0.7714 0.828 0.7857 0.7246 0.6324 0.7209 0.6029

0.8347 0.918 0.8305 0.918 0.8071 0.7647 0.8034 0.7794 0.8531 0.7463 0.857 0.7612 0.6718 0.7188 0.656 0.6875

0.8422 0.9067 0.839 0.84 0.7961 0.8026 0.796 0.7895 0.7505 0.75 0.7408 0.7237 0.7138 0.7237 0.7043 0.7105

0.7778 0.7903 0.7702 0.8387 0.5927 0.5362 0.5923 0.5797 0.7011 0.5882 0.6899 0.6029 0.6746 0.5909 0.667 0.5909

0.8525 0.9067 0.8525 0.88 0.793 0.8289 0.7895 0.8026 0.7939 0.8158 0.7808 0.75 0.7475 0.7237 0.7408 0.6842

0.8453 0.9067 0.8353 0.88 0.81 0.8312 0.7938 0.8182 0.7705 0.7895 0.7839 0.7632 0.6808 0.6974 0.694 0.6711

0.8434 0.8333 0.8395 0.8182 0.7734 0.8267 0.7734 0.8133 0.7986 0.8649 0.802 0.8784 0.666 0.7606 0.6589 0.6901

0.827 0.7838 0.8539 0.7973 0.6658 0.7368 0.7025 0.7237 0.7929 0.7403 0.7834 0.7792 0.7592 0.7368 0.7527 0.6711

0.8672 0.8636 0.8558 0.803 0.7667 0.7432 0.7667 0.7297 0.8054 0.8919 0.8017 0.9054 0.6292 0.6197 0.6469 0.6338

0.838 0.8933 0.8379 0.88 0.8031 0.8182 0.7931 0.8182 0.7533 0.75 0.7567 0.7763 0.6973 0.7237 0.6973 0.6974

0.859 0.8667 0.8523 0.8667 0.7437 0.7237 0.7366 0.6974 0.7473 0.7763 0.7573 0.7763 0.7739 0.7632 0.7605 0.7237

0.6945 0.8 0.688 0.6933 0.6713 0.6447 0.6213 0.5921 0.6513 0.6184 0.6144 0.6447 0.608 0.5526 0.558 0.4868

0.8484 0.8788 0.8296 0.8485 0.8094 0.7973 0.7957 0.7568 0.8254 0.9054 0.8356 0.8514 0.7101 0.7606 0.7028 0.7183

0.8418 0.8413 0.834 0.8413 0.7775 0.7324 0.7703 0.7042 0.8388 0.7286 0.8495 0.7286 0.6876 0.6471 0.6655 0.6324

0.8445 0.8548 0.8445 0.8548 0.8012 0.6377 0.7831 0.6522 0.8386 0.7971 0.8238 0.7681 0.6348 0.6061 0.6342 0.6364

0.8639 0.7797 0.8681 0.7797 0.7951 0.6923 0.7642 0.7692 0.82 0.8594 0.8162 0.875 0.7145 0.6613 0.7142 0.6613

0.8154 0.8933 0.8154 0.84 0.7958 0.7532 0.7926 0.7143 0.7439 0.7763 0.7406 0.7632 0.6977 0.7237 0.6875 0.7105

0.7823 0.8033 0.7862 0.8525 0.6074 0.6471 0.5852 0.6324 0.645 0.6119 0.6295 0.597 0.6889 0.6 0.6657 0.6

0.7754 0.7966 0.7668 0.7966 0.6143 0.4923 0.5989 0.5385 0.7075 0.5781 0.6522 0.5938 0.6682 0.6393 0.6513 0.623

0.786 0.8226 0.7697 0.8226 0.6053 0.5441 0.6126 0.5735 0.695 0.6567 0.6761 0.6119 0.6783 0.6308 0.6665 0.6462

0.7724 0.6901 0.7223 0.7183 0.6232 0.6164 0.6162 0.6438 0.6681 0.6575 0.6506 0.6849 0.6228 0.6301 0.5704 0.589

0.8406 0.9683 0.8328 0.9365 0.7483 0.8451 0.7445 0.8028 0.8321 0.8429 0.8321 0.8143 0.6259 0.7353 0.6259 0.6471

0.8682 0.7846 0.8722 0.7846 0.8231 0.7463 0.8195 0.7164 0.7316 0.7727 0.7356 0.8182 0.7239 0.6818 0.7125 0.6364

0.8623 0.8305 0.8623 0.8305 0.8328 0.8154 0.8328 0.8154 0.8697 0.8125 0.8697 0.8125 0.7338 0.7049 0.7297 0.7049

0.8383 0.8182 0.8292 0.7818 0.8109 0.85 0.8067 0.85 0.7955 0.8814 0.8168 0.8814 0.7346 0.6842 0.7342 0.6667

Average 0.825862 0.842227 0.820438 0.8296 0.746585 0.729296 0.739408 0.7244 0.773746 0.759254 0.768219 0.757315 0.691162 0.676196 0.680692 0.651531

15--18 19--22

Sensors
RF LR RF RF LR LRRF

01.08.19-31.08.20

Sensor 13

Sensor 14

Sensor 15

07--10 12--15

Sensor 12

LR

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 16

Sensor 17

Sensor 30

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 18

Sensor 31

Sensor 33

Sensor 36

whole dataset 3-class

 -87-

3-month results:

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.735 0.5 0.715 0.1667 0.69 0.4667 0.69 0.7333 0.7933 0.7333 0.7933 0.6667 0.54 0.7143 0.43 0.6429

0.77 0.5455 0.795 0.5455 0.76 0.6 0.7433 0.6 0.71 0.6 0.7433 0.7333 0.7933 0.7143 0.7533 0.6429

0.5417 0.5556 0.4167 0.3333 0.71 0.8333 0.69 0.6667 0.77 0.75 0.67 0.8333 0.535 0.7273 0.38 0.6364

0.9036 0.9474 0.8893 0.9474 0.7446 0.6667 0.6893 0.7222 0.6536 0.6316 0.7232 0.7368 0.6446 0.5263 0.7518 0.4737

0.55 0.6 0.55 0.4 0.42 0.5385 0.41 0.4615 0.55 0.4615 0.5433 0.4615 0.625 0.5833 0.685 0.5833

0.9018 0.9474 0.9018 0.9474 0.7321 0.7222 0.7214 0.6667 0.7661 0.7895 0.7804 0.7895 0.7071 0.4737 0.6786 0.3684

0.8911 0.9474 0.9036 0.9474 0.7036 0.7368 0.6768 0.7368 0.6804 0.7895 0.6946 0.7368 0.7107 0.6842 0.7071 0.4211

0.7267 0.7857 0.71 0.7143 0.7196 0.6316 0.7179 0.6316 0.7393 0.7895 0.7679 0.7895 0.6405 0.6667 0.6548 0.5556

0.8714 0.8889 0.9 0.9444 0.5929 0.4737 0.6071 0.5789 0.7946 0.7368 0.7518 0.6316 0.7821 0.7895 0.7268 0.4737

0.7567 0.8 0.79 0.9333 0.7375 0.5789 0.7375 0.5789 0.7536 0.7895 0.7679 0.7895 0.6405 0.4444 0.6095 0.7222

0.9036 0.9474 0.9036 0.9474 0.7179 0.7895 0.7196 0.7895 0.6625 0.5789 0.6911 0.7368 0.6839 0.4737 0.75 0.3684

0.9 0.8947 0.8714 0.8947 0.6946 0.6667 0.65 0.7222 0.7679 0.7895 0.7643 0.7368 0.7964 0.5789 0.8071 0.6842

0.8732 0.7368 0.8464 0.8421 0.6786 0.4444 0.6107 0.7222 0.7375 0.6842 0.7661 0.7368 0.5589 0.6842 0.5071 0.6316

0.7633 0.7857 0.73 0.7857 0.6946 0.8889 0.6929 0.8333 0.775 0.7368 0.8036 0.7895 0.5905 0.6667 0.5333 0.6111

0.685 0.3333 0.75 0.1667 0.7633 0.4667 0.7067 0.6667 0.7767 0.6667 0.76 0.6667 0.4633 0.5 0.4267 0.7143

0.575 0.6 0.525 0.9 0.75 0.5 0.77 0.5714 0.7567 0.5714 0.7533 0.6429 0.61 0.5385 0.51 0.5385

0.55 0.1429 0.6333 0.2857 0.7833 0.5556 0.7 0.5556 0.625 0.5556 0.6917 0.5556 0.575 0.5 0.5333 0.75

0.875 1 0.8893 0.9474 0.7446 0.6667 0.6893 0.6111 0.6679 0.5789 0.6679 0.6842 0.6411 0.4737 0.7339 0.3158

0.6417 0.7 0.6583 0.7 0.49 0.4167 0.415 0.0833 0.585 0.5 0.525 0.5 0.59 0.3636 0.63 0.6364

0.5667 0.8571 0.5333 0 0.5417 0.2222 0.4917 0.3333 0.6667 0.2222 0.6583 0.2222 0.6167 0.25 0.55 0.375

0.9 0.6 0.85 0.6 0.515 0.5 0.575 0.6667 0.67 0.5833 0.755 0.5 0.705 0.3636 0.655 0.4545

0.77 0.7143 0.76 0.7857 0.8167 0.8 0.9 0.8 0.7881 0.875 0.7881 0.75 0.7048 0.5625 0.5905 0.4375

0.735 0.75 0.69 0.9167 0.7133 0.6667 0.7267 0.7333 0.7 0.8 0.7 0.9333 0.6633 0.5 0.6167 0.5

0.6083 0.5556 0.6333 0.5556 0.7333 0.6667 0.7667 0.6667 0.7333 0.5556 0.7583 0.6667 0.6 0.5556 0.6083 0.6667

0.6 0.5556 0.6083 0.6667 0.85 0.4444 0.7667 0.6667 0.775 0.5556 0.7667 0.5556 0.6667 0.25 0.6333 0.25

0.6667 0.25 0.6333 0.25 0.775 0.5556 0.7667 0.5556 0.85 0.4444 0.7667 0.6667 0.6083 0.5556 0.6333 0.5556

Average 0.740827 0.69005 0.734112 0.658619 0.695085 0.596123 0.678115 0.629008 0.721085 0.644973 0.725069 0.67355 0.6420269 0.543869 0.619054 0.538838

LR RF LR RF LR

3-month 3-class

Sensor 36

Sensor 30

Sensor 31

Sensor 24

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 33

Sensor 21

Sensor 22

Sensor 23

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 9

Sensor 10

Sensor 18

Sensor 19

Sensor 20

01.08.19-31.10.19 07--10 12--15

Sensors

Sensor 7

Sensor 8

15--18 19--22

RF LR RF

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.68 0.7143 0.6233 0.6429 0.6643 0.5294 0.6048 0.4706 0.6929 0.8125 0.6738 0.875 0.7167 0.6875 0.7167 0.5625

0.73 0.5 0.71 0.4286 0.631 0.4706 0.531 0.5294 0.7429 0.875 0.7429 0.8125 0.6 0.6875 0.6667 0.625

0.7467 0.5714 0.7 0.3571 0.6071 0.6471 0.6381 0.7647 0.6976 0.6875 0.7286 0.6875 0.7 0.875 0.7 0.6875

0.7 0.5 0.7143 0.7222 0.6357 0.7778 0.5964 0.7778 0.6714 0.4444 0.6714 0.3889 0.6857 0.5 0.6286 0.5

0.7733 0.5714 0.8033 0.4286 0.5405 0.4706 0.5405 0.3529 0.5167 0.3125 0.5476 0.5625 0.6167 0.5625 0.5333 0.5625

0.7464 0.5 0.7054 0.5556 0.6518 0.8889 0.6518 0.8333 0.6857 0.6667 0.6571 0.6111 0.6143 0.2222 0.6 0.5556

0.7286 0.5556 0.7143 0.6111 0.6786 0.9444 0.6536 0.8889 0.6857 0.6111 0.6571 0.7778 0.5857 0.5556 0.5429 0.4444

0.7333 0.5 0.7 0.5 0.6643 0.4706 0.5833 0.5294 0.6452 0.75 0.6619 0.75 0.7 0.625 0.7 0.625

0.6976 0.6667 0.681 0.6667 0.5429 0.3889 0.5 0.2778 0.6304 0.6842 0.6286 0.6316 0.7643 0.6111 0.7375 0.5556

0.67 0.6429 0.6667 0.6429 0.6786 0.5882 0.6524 0.5294 0.7119 0.75 0.7286 0.75 0.5667 0.6 0.55 0.7333

0.7286 0.6667 0.7429 0.6111 0.6946 0.8889 0.625 0.8333 0.6714 0.7222 0.6571 0.6111 0.6429 0.4444 0.5714 0.2778

0.6571 0.5556 0.5643 0.5556 0.6554 0.7222 0.625 0.7778 0.6857 0.5556 0.7286 0.7222 0.7714 0.3889 0.7286 0.4444

0.7589 0.6667 0.7179 0.6111 0.6536 0.6667 0.5821 0.6667 0.6571 0.5556 0.5286 0.3889 0.6429 0.4444 0.6857 0.5

0.7367 0.5 0.7867 0.4286 0.6643 0.4706 0.6238 0.5882 0.7095 0.75 0.7119 0.75 0.75 0.625 0.7667 0.5625

0.7467 0.5 0.7367 0.5714 0.7024 0.5294 0.5786 0.6471 0.7 0.75 0.6476 0.8125 0.65 0.75 0.6667 0.5

0.72 0.6429 0.64 0.5714 0.6476 0.8235 0.7167 0.7647 0.6 0.5625 0.631 0.6875 0.6 0.6667 0.6 0.6667

0.73 0.5714 0.6967 0.2143 0.6167 0.5294 0.531 0.5294 0.7286 0.75 0.8071 0.75 0.7167 0.625 0.6833 0.625

0.775 0.6667 0.7339 0.7222 0.7393 0.8421 0.6554 0.8947 0.6286 0.4444 0.6286 0.5 0.5429 0.3889 0.4714 0.5

0.7733 0.4286 0.7467 0.2857 0.5738 0.4118 0.4976 0.4706 0.5095 0.5625 0.4833 0.6875 0.7333 0.5 0.5167 0.5

0.7 0.5714 0.6933 0.3571 0.5 0.5294 0.5238 0.5294 0.4667 0.375 0.4667 0.8125 0.5833 0.875 0.5167 0.625

0.7 0.5714 0.7133 0.2857 0.5238 0.3529 0.5405 0.5882 0.4667 0.375 0.4667 0.8125 0.5833 0.875 0.5167 0.625

0.7589 0.6667 0.7179 0.6111 0.6536 0.6667 0.5821 0.6667 0.6571 0.5556 0.5286 0.3889 0.6429 0.4444 0.6857 0.5

0.67 0.6429 0.6333 0.6429 0.681 0.5294 0.6524 0.5882 0.7119 0.75 0.7286 0.75 0.5833 0.625 0.5333 0.6875

0.7143 0.6667 0.7429 0.6111 0.6643 0.8889 0.625 0.7778 0.6857 0.6667 0.6714 0.6111 0.6857 0.2778 0.6143 0.2778

0.6433 0.5 0.5533 0.6429 0.669 0.5882 0.6524 0.7647 0.7143 0.8125 0.7262 0.75 0.7167 0.75 0.7167 0.8125

0.7033 0.5 0.7333 0.4286 0.6786 0.5882 0.5 0.7059 0.7095 0.8125 0.7262 0.8125 0.7333 0.6875 0.7167 0.6875

Average 0.720077 0.578462 0.6989 0.527173 0.638954 0.623262 0.594742 0.644138 0.653181 0.638231 0.647531 0.680542 0.6587962 0.588246 0.629473 0.563196

RF LR

Sensor 36

01.11.19-31.01.20 07--10 12--15 15--18 19--22

Sensors

Sensor 33

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 12

Sensor 13

RF LR RF LR RF LR

-88-

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.8476 0.9412 0.831 0.9412 0.8833 0.6667 0.9119 0.6667 0.8732 0.7778 0.8857 0.8333 0.7929 0.7647 0.7929 0.7647

0.8333 0.9412 0.8643 0.9412 0.8119 0.8333 0.8548 0.8333 0.8768 0.8333 0.8911 0.8333 0.7119 0.7059 0.7429 0.7059

0.9119 0.8824 0.8976 0.8235 0.8381 0.7222 0.8667 0.7222 0.8446 0.7778 0.8446 0.7778 0.8048 0.7647 0.7952 0.7059

0.8714 0.8889 0.8571 1 0.75 0.6667 0.7482 0.7222 0.8018 0.7778 0.8304 0.8889 0.7607 0.7222 0.7464 0.7222

0.8214 0.8824 0.7429 0.7059 0.6476 0.5 0.7095 0.5556 0.7054 0.6111 0.7196 0.6667 0.7548 0.7647 0.6929 0.7647

0.8548 1 0.8976 1 0.8607 0.7222 0.8893 0.7778 0.8857 0.7222 0.8179 0.8333 0.7893 0.7222 0.7768 0.6667

0.8857 1 0.8857 1 0.8589 0.6111 0.8179 0.6667 0.8179 0.8333 0.8179 0.8889 0.6893 0.6111 0.6893 0.6667

0.8762 0.9412 0.8286 0.9412 0.8833 0.6667 0.8976 0.7222 0.8732 0.7222 0.8857 0.7778 0.6929 0.7647 0.7071 0.7647

0.8833 0.8889 0.9119 0.8889 0.7286 0.6111 0.7429 0.7222 0.7661 0.6667 0.6821 0.7222 0.8179 0.5556 0.8054 0.8333

0.8952 0.8824 0.8476 0.9412 0.8095 0.8824 0.8238 0.8824 0.8732 0.7778 0.8607 0.6667 0.7476 0.6471 0.7476 0.6471

0.9119 0.8235 0.9405 0.8824 0.8607 0.6111 0.8321 0.6667 0.775 0.7778 0.8161 0.8333 0.775 0.6667 0.7321 0.6667

0.8833 0.8889 0.869 0.8889 0.7036 0.5 0.7339 0.7222 0.7607 0.6667 0.7732 0.8333 0.8732 0.6667 0.8732 0.7778

0.7952 0.7222 0.65 0.8333 0.7036 0.6111 0.6321 0.6111 0.7018 0.5 0.7179 0.5556 0.4893 0.4444 0.4643 0.6111

0.8952 0.8235 0.8786 0.8824 0.8833 0.6667 0.9119 0.7222 0.8857 0.7778 0.8857 0.7778 0.7333 0.8235 0.6929 0.7059

0.8952 0.8235 0.8452 0.8824 0.8548 0.7778 0.8548 0.7778 0.8732 0.7222 0.8446 0.7222 0.7357 0.7647 0.7071 0.7647

0.8667 0.9412 0.8619 0.9412 0.781 0.7647 0.8238 0.8824 0.8732 0.7778 0.8607 0.7222 0.7333 0.6471 0.7476 0.6471

0.85 0.8824 0.8667 0.8824 0.8405 0.8333 0.8548 0.8333 0.875 0.8889 0.8911 0.8333 0.7786 0.7059 0.75 0.7059

0.8548 1 0.8976 1 0.8357 0.7222 0.8339 0.7778 0.7875 0.6111 0.7875 0.8889 0.7196 0.7778 0.7036 0.7222

0.8857 0.9412 0.8524 1 0.7214 0.5 0.7381 0.6111 0.7625 0.6111 0.7911 0.6667 0.781 0.7647 0.7643 0.7647

0.8857 0.9412 0.8524 1 0.7333 0.5556 0.7238 0.6111 0.8018 0.6667 0.7893 0.7222 0.8238 0.8235 0.8095 0.7647

0.8857 0.9412 0.8524 1 0.7333 0.5556 0.7381 0.6111 0.8161 0.6111 0.7893 0.7222 0.8238 0.8235 0.8095 0.7647

0.7952 0.6667 0.65 0.8333 0.6893 0.5556 0.6321 0.6111 0.7018 0.5 0.7179 0.5556 0.45 0.5556 0.4643 0.6111

0.9095 0.8824 0.8476 0.9412 0.8238 0.8824 0.8238 0.8824 0.8732 0.7778 0.8607 0.6667 0.7476 0.6471 0.7476 0.6471

0.8571 1 0.8857 1 0.75 0.6667 0.7321 0.7778 0.775 0.7222 0.8161 0.8333 0.7625 0.6111 0.7321 0.6667

0.8976 0.8824 0.8667 0.9412 0.8667 0.7222 0.881 0.7778 0.9 0.7778 0.9036 0.7222 0.8214 0.7647 0.7929 0.7059

0.8476 0.9412 0.831 0.9412 0.8833 0.7778 0.8976 0.7778 0.8857 0.8333 0.8857 0.8333 0.75 0.7059 0.7643 0.7647

Average 0.869123 0.898081 0.846615 0.924346 0.797546 0.676354 0.804096 0.727885 0.821773 0.720088 0.821777 0.760681 0.7446231 0.700608 0.732762 0.712804

LR RF LR

Sensor 36

Sensors
RF LR RF LR RF

01.02.20-30.04.20 07--10 12--15 15--18 19--22

Sensor 30

Sensor 31

Sensor 33

Sensor 24

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 18

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.6857 0.6111 0.7357 0.5556 0.7232 0.6111 0.7107 0.5556 0.7071 0.5 0.7518 0.6111 0.7232 0.6111 0.7262 0.4444

0.7524 0.7222 0.6786 0.5556 0.7232 0.6111 0.7286 0.6667 0.7071 0.5 0.6929 0.5556 0.7071 0.5 0.6952 0.5

0.7524 0.6667 0.6762 0.7222 0.7018 0.5 0.7268 0.5556 0.7054 0.5556 0.8036 0.5556 0.7119 0.4444 0.6976 0.6111

0.7214 0.5556 0.6929 0.5556 0.7768 0.6667 0.7589 0.7778 0.8321 0.7222 0.6625 0.6667 0.669 0.6111 0.6833 0.6111

0.7048 0.6667 0.6167 0.5 0.5839 0.5 0.5821 0.4444 0.6518 0.6667 0.7321 0.6111 0.7 0.7222 0.6667 0.5556

0.7357 0.5556 0.6452 0.8333 0.6107 0.7222 0.6375 0.6111 0.7768 0.5556 0.7893 0.6111 0.7262 0.5 0.681 0.4444

0.6786 0.5 0.7619 0.7778 0.7625 0.7222 0.7482 0.8889 0.7911 0.7222 0.7786 0.6111 0.6548 0.3889 0.6667 0.5556

0.7024 0.8333 0.7786 0.5556 0.7232 0.6111 0.7071 0.5 0.7107 0.5 0.7339 0.6111 0.6857 0.5 0.6357 0.6667

0.719 0.7778 0.75 0.6111 0.7071 0.5 0.6946 0.5 0.7357 0.6111 0.7357 0.5 0.6833 0.6111 0.6548 0.5556

0.8524 0.5556 0.7167 0.6111 0.7286 0.4444 0.7679 0.5556 0.75 0.4444 0.7875 0.5 0.6405 0.5556 0.7429 0.7222

0.7476 0.5556 0.6524 0.6111 0.7643 0.7222 0.7321 0.7778 0.8179 0.5 0.7607 0.5 0.7429 0.6111 0.6095 0.5

0.7905 0.3889 0.6452 0.7778 0.6929 0.5556 0.6804 0.6111 0.8036 0.7778 0.6393 0.5556 0.669 0.6111 0.681 0.3889

0.6476 0.6111 0.719 0.7222 0.7214 0.3889 0.6643 0.5 0.6679 0.5 0.7482 0.8333 0.6095 0.6667 0.669 0.4444

0.6762 0.7778 0.7976 0.6667 0.7089 0.6667 0.6839 0.6111 0.7482 0.5 0.7464 0.5556 0.6833 0.4444 0.6262 0.6111

0.7071 0.6111 0.75 0.6667 0.7089 0.5556 0.6946 0.6111 0.6768 0.6667 0.6946 0.6111 0.669 0.5 0.6214 0.5

0.8429 0.6667 0.7381 0.5556 0.7125 0.5 0.6964 0.4444 0.6946 0.7778 0.7089 0.5556 0.6143 0.5556 0.6976 0.6111

0.8119 0.6667 0.7214 0.7222 0.8232 0.5 0.7821 0.5 0.7375 0.6111 0.7196 0.5 0.6381 0.5 0.6857 0.6111

0.7643 0.6111 0.7167 0.6111 0.6821 0.6667 0.6357 0.5556 0.7911 0.6111 0.6768 0.5556 0.7571 0.6111 0.7262 0.6667

0.7762 0.7222 0.7167 0.6111 0.6696 0.5 0.6268 0.5556 0.6339 0.5 0.7089 0.6111 0.7143 0.6667 0.7119 0.6111

0.7476 0.6111 0.6524 0.6111 0.6964 0.6111 0.6839 0.6111 0.6375 0.3889 0.6964 0.6667 0.7143 0.5556 0.6095 0.5

0.7762 0.6111 0.7786 0.5556 0.7107 0.6111 0.6839 0.6111 0.6536 0.5556 0.6536 0.4444 0.7143 0.5556 0.6357 0.6111

0.6476 0.6111 0.7357 0.5556 0.7214 0.3889 0.6518 0.5 0.6661 0.5 0.7214 0.5556 0.6071 0.6111 0.6548 0.5556

0.8357 0.5 0.7476 0.6667 0.7 0.4444 0.7679 0.6111 0.7357 0.4444 0.8018 0.4444 0.6524 0.5556 0.7714 0.6111

0.7524 0.7222 0.6024 0.7222 0.7339 0.7222 0.7464 0.7778 0.8179 0.7222 0.7071 0.6667 0.7571 0.6667 0.6524 0.4444

0.8048 0.7778 0.8048 0.7778 0.7536 0.6667 0.7536 0.6111 0.7054 0.5556 0.7196 0.7222 0.7571 0.5556 0.7571 0.5556

0.6643 0.7222 0.6643 0.7222 0.6929 0.5556 0.6946 0.5 0.7196 0.4444 0.7214 0.4444 0.7119 0.5556 0.7119 0.5556

Average 0.742219 0.638896 0.711362 0.647446 0.712835 0.574788 0.701569 0.594023 0.725965 0.570515 0.726638 0.579065 0.6889769 0.564112 0.679669 0.555558

LR RF LR

Sensor 36

Sensors
RF LR RF LR RF

01.05.20-31.07.20 07--10 12--15 15--18 19--22

Sensor 33

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 12

Sensor 13

 -89-

4-month results:

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.6905 0.5625 0.5619 0.625 0.775 0.65 0.7625 0.7 0.775 0.65 0.7875 0.65 0.6357 0.5789 0.6339 0.5263

0.6952 0.625 0.6952 0.75 0.6125 0.55 0.7625 0.55 0.775 0.55 0.775 0.5 0.7 0.5789 0.6964 0.5789

0.6367 0.5714 0.6133 0.4286 0.719 0.7647 0.7024 0.8235 0.7024 0.4706 0.6667 0.4118 0.75 0.5625 0.6 0.5

0.8522 0.6667 0.8533 0.7083 0.7233 0.75 0.6922 0.75 0.7289 0.6 0.6944 0.64 0.6167 0.52 0.7089 0.56

0.5733 0.6 0.5733 0.6 0.4607 0.5 0.4268 0.4444 0.6536 0.3333 0.6643 0.2778 0.6048 0.4706 0.6238 0.4706

0.83 0.7083 0.82 0.6667 0.7 0.7917 0.6789 0.9167 0.7478 0.68 0.7389 0.64 0.66 0.6 0.6678 0.6

0.8522 0.7917 0.8411 0.7917 0.74 0.6667 0.6622 0.6667 0.7711 0.68 0.74 0.6 0.6078 0.52 0.6567 0.56

0.6232 0.7895 0.6089 0.5789 0.7844 0.625 0.7956 0.6667 0.8089 0.7083 0.8511 0.7083 0.6722 0.5652 0.6278 0.3043

0.8278 0.7391 0.8278 0.7391 0.6267 0.5417 0.6244 0.5417 0.7322 0.72 0.7622 0.68 0.7533 0.68 0.7133 0.56

0.7143 0.65 0.7 0.75 0.7622 0.6667 0.75 0.7083 0.7056 0.75 0.7389 0.7083 0.6125 0.5455 0.5792 0.5

0.8522 0.7083 0.81 0.7917 0.7278 0.7083 0.7067 0.7083 0.7278 0.7083 0.7578 0.625 0.6167 0.48 0.6911 0.48

0.8433 0.75 0.8556 0.75 0.6622 0.5833 0.6944 0.8333 0.7622 0.72 0.7111 0.8 0.7833 0.64 0.7211 0.64

0.8111 0.7083 0.8333 0.6667 0.6633 0.625 0.6989 0.75 0.7278 0.56 0.6956 0.56 0.6478 0.56 0.5967 0.44

0.8089 0.4737 0.7536 0.5263 0.7811 0.8333 0.7711 0.7917 0.7867 0.8333 0.7756 0.7917 0.6375 0.5909 0.6153 0.4545

0.6905 0.375 0.6286 0.3125 0.7375 0.6 0.7 0.65 0.825 0.65 0.825 0.65 0.5411 0.4737 0.5804 0.4211

0.6467 0.6 0.63 0.3333 0.6804 0.7368 0.6839 0.6842 0.7036 0.7368 0.7696 0.6842 0.6167 0.4118 0.5881 0.4706

0.775 0.5 0.735 0.5 0.6767 0.7143 0.64 0.5714 0.7 0.6429 0.6867 0.6429 0.64 0.4615 0.64 0.6154

0.8389 0.6667 0.85 0.6667 0.7233 0.7083 0.7244 0.625 0.7056 0.48 0.6233 0.56 0.5667 0.6 0.67 0.44

0.5933 0.5 0.5833 0.2857 0.4643 0.4706 0.5071 0.2941 0.5643 0.7059 0.5762 0.6471 0.6786 0.5 0.7071 0.5

0.67 0.6667 0.66 0.5 0.4933 0.5714 0.5133 0.5 0.5933 0.4286 0.6433 0.6429 0.61 0.4615 0.565 0.5385

0.7467 0.8667 0.7667 0.9333 0.619 0.4118 0.619 0.5294 0.6643 0.6111 0.6262 0.6111 0.6476 0.375 0.6452 0.4375

0.7446 0.65 0.7464 0.65 0.7347 0.6667 0.7569 0.6667 0.7625 0.8182 0.7986 0.7727 0.6403 0.5 0.6139 0.4545

0.719 0.5294 0.7786 0.5882 0.7875 0.7 0.7625 0.85 0.6625 0.6667 0.675 0.7619 0.6179 0.6316 0.5268 0.4211

0.6967 0.3571 0.6633 0.5714 0.8233 0.5333 0.7 0.6667 0.81 0.5333 0.7867 0.6 0.7333 0.4 0.7367 0.4667

0.73 0.5 0.69 0.1667 0.7233 0.5 0.78 0.5714 0.6767 0.6429 0.6267 0.5714 0.62 0.4615 0.62 0.3846

0.6667 0.75 0.6 0.75 0.6083 0.6667 0.6667 0.7778 0.6167 0.4444 0.65 0.4444 0.6667 0.625 0.7 0.375

Average 0.735731 0.627158 0.718431 0.601185 0.684992 0.636012 0.683938 0.663 0.718827 0.627869 0.717169 0.622365 0.649123 0.530542 0.643277 0.488446

4-month 3-class

Sensor 30

Sensor 31

Sensor 33

Sensor 36

Sensor 24

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 18

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 7

Sensor 8

Sensor 9

Sensor 10

RF LR RF LR

01.08.19-30.11.19 07--10 12--15 15--18 19--22

Sensors
RF LR RF LR

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.6625 0.7619 0.6125 0.7619 0.7033 0.4348 0.6589 0.4783 0.7722 0.6087 0.7153 0.7826 0.6875 0.4091 0.65 0.4091

0.7375 0.8571 0.5875 0.8095 0.6156 0.5652 0.6167 0.5217 0.7611 0.6087 0.7389 0.6087 0.7722 0.5909 0.7597 0.5909

0.65 0.8095 0.6 0.8095 0.7133 0.5652 0.6811 0.4783 0.6903 0.6087 0.625 0.7391 0.6167 0.5 0.6583 0.3636

0.7833 0.6667 0.7822 0.75 0.6111 0.5833 0.6744 0.625 0.7567 0.7083 0.7256 0.625 0.6656 0.5 0.6878 0.7083

0.7375 0.7619 0.6625 0.619 0.5478 0.4348 0.5367 0.3913 0.5931 0.6957 0.6069 0.6522 0.7347 0.5455 0.6528 0.4091

0.76 0.75 0.7044 0.7083 0.6489 0.625 0.6767 0.625 0.7144 0.625 0.6322 0.7917 0.6444 0.4167 0.5933 0.5

0.7711 0.5417 0.6633 0.8333 0.6556 0.68 0.6311 0.68 0.7544 0.5833 0.7344 0.5417 0.6344 0.4167 0.6333 0.375

0.6625 0.6667 0.6125 0.8571 0.6911 0.5652 0.6589 0.4783 0.7611 0.7391 0.7278 0.6957 0.7208 0.5909 0.6722 0.5

0.7078 0.7083 0.6633 0.7917 0.6344 0.4167 0.6333 0.5417 0.69 0.56 0.6911 0.6 0.6067 0.4167 0.6222 0.7083

0.7232 0.7 0.6732 0.8 0.5811 0.7391 0.6044 0.7391 0.6819 0.6522 0.6611 0.6087 0.6264 0.5 0.6625 0.4091

0.7456 0.7391 0.7144 0.8696 0.5922 0.68 0.6111 0.72 0.7111 0.5417 0.7033 0.5417 0.6644 0.4167 0.6778 0.7083

0.77 0.875 0.7378 0.8333 0.7378 0.5 0.7167 0.5833 0.7556 0.7917 0.7456 0.7917 0.7178 0.625 0.6544 0.6667

0.7189 0.875 0.7833 0.9167 0.7567 0.4583 0.7489 0.4583 0.7456 0.7917 0.7456 0.7917 0.6222 0.5417 0.6544 0.75

0.6625 0.6667 0.6 0.8095 0.7233 0.5217 0.6811 0.4348 0.75 0.6522 0.6944 0.7391 0.6375 0.5455 0.6819 0.3636

0.7625 0.8095 0.525 0.8571 0.7233 0.5217 0.7144 0.4783 0.7389 0.6957 0.7056 0.7826 0.65 0.4091 0.6361 0.3636

0.8232 0.8 0.6857 0.8 0.5989 0.6957 0.6222 0.8261 0.6708 0.6087 0.6611 0.5652 0.6958 0.4545 0.6694 0.4091

0.75 0.6667 0.575 0.8095 0.5933 0.6957 0.5833 0.6087 0.75 0.5652 0.7194 0.6522 0.7583 0.5455 0.7486 0.5909

0.7522 0.7083 0.7167 0.7917 0.6144 0.4 0.59 0.68 0.7222 0.5 0.6822 0.5417 0.6333 0.4583 0.6333 0.3333

0.775 0.7143 0.6875 0.7143 0.58 0.4783 0.6589 0.4348 0.6 0.6522 0.6264 0.5652 0.7 0.5455 0.6222 0.4545

0.725 0.7143 0.7 0.7619 0.5933 0.3913 0.6256 0.4348 0.6347 0.5652 0.6042 0.5652 0.7083 0.3636 0.6597 0.3636

0.725 0.7143 0.725 0.7619 0.6033 0.6522 0.6256 0.4348 0.6486 0.5217 0.6042 0.5652 0.7083 0.3636 0.6597 0.3636

0.7189 0.875 0.7833 0.9167 0.7367 0.4167 0.7489 0.4583 0.7456 0.7917 0.7456 0.7917 0.6422 0.4583 0.6656 0.7083

0.7607 0.75 0.6857 0.8 0.5811 0.6522 0.6489 0.6522 0.7042 0.6522 0.6736 0.6087 0.6667 0.5455 0.6472 0.4545

0.7611 0.625 0.75 0.75 0.6133 0.5417 0.6489 0.5417 0.7222 0.5417 0.6933 0.5417 0.6678 0.5833 0.6878 0.7083

0.8 0.6667 0.6125 0.8095 0.7022 0.6957 0.6589 0.6522 0.7486 0.6957 0.6486 0.6957 0.6708 0.5455 0.6583 0.5909

0.65 0.8571 0.6125 0.8095 0.7244 0.5217 0.6811 0.4783 0.75 0.6522 0.6944 0.7391 0.6819 0.5909 0.6625 0.4545

Average 0.734462 0.741569 0.671377 0.798135 0.649092 0.555085 0.651412 0.555204 0.714358 0.638815 0.684838 0.658608 0.674412 0.495346 0.661962 0.509888

Sensor 33

Sensor 36

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 12

Sensor 13

RF LR RF LR

12--15 15--18 19--22

Sensors
RF LR RF LR

01.12.19-31.03.20 07--10

-90-

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.8111 0.6522 0.7778 0.6522 0.7578 0.7083 0.7378 0.75 0.8089 0.75 0.8189 0.8333 0.7533 0.6957 0.7411 0.6957

0.7444 0.7826 0.7333 0.913 0.8189 0.7083 0.8189 0.7083 0.7889 0.7083 0.7889 0.7083 0.7044 0.5217 0.7267 0.4783

0.7444 0.6957 0.7778 0.7391 0.8089 0.6667 0.7989 0.6667 0.8111 0.75 0.8122 0.75 0.76 0.6957 0.7489 0.6957

0.8044 0.7917 0.8044 0.7917 0.7922 0.875 0.7922 0.875 0.8178 0.7917 0.83 0.75 0.8278 0.7917 0.8278 0.7917

0.7778 0.5217 0.7333 0.6087 0.4744 0.6667 0.5033 0.7083 0.7133 0.75 0.6822 0.75 0.7189 0.8696 0.7067 0.7826

0.7944 0.8333 0.8044 0.8333 0.8122 0.9167 0.7922 0.9167 0.83 0.75 0.8411 0.875 0.7656 0.7917 0.7122 0.7917

0.8167 0.8333 0.8156 0.8333 0.8333 0.8333 0.8222 0.8333 0.8322 0.7917 0.8189 0.75 0.7133 0.7917 0.7222 0.7917

0.8111 0.5217 0.7556 0.6522 0.7889 0.75 0.78 0.75 0.82 0.75 0.8189 0.8333 0.7644 0.7391 0.7633 0.7391

0.8244 0.913 0.8244 0.913 0.6878 0.5 0.6656 0.5833 0.7278 0.7917 0.7278 0.7083 0.7967 0.75 0.7978 0.7917

0.7444 0.6522 0.6889 0.6957 0.8189 0.7083 0.8178 0.6667 0.82 0.625 0.82 0.6667 0.7078 0.5652 0.7289 0.6087

0.8156 0.7917 0.8156 0.7917 0.8333 0.8333 0.8222 0.8333 0.83 0.875 0.84 0.875 0.7856 0.7917 0.7856 0.7917

0.8144 0.8333 0.8144 0.8333 0.6778 0.7083 0.6256 0.7917 0.8633 0.75 0.7789 0.7083 0.7733 0.7917 0.7733 0.7917

0.6622 0.7917 0.6844 0.6667 0.5822 0.75 0.6133 0.75 0.61 0.625 0.6544 0.5417 0.6689 0.75 0.6256 0.6667

0.8444 0.6522 0.8 0.6087 0.8089 0.75 0.7889 0.75 0.8089 0.7083 0.8511 0.7917 0.7433 0.6957 0.73 0.7826

0.8 0.6522 0.8111 0.5652 0.8011 0.75 0.8211 0.6667 0.7878 0.7083 0.81 0.7917 0.7633 0.6522 0.7633 0.6087

0.6889 0.6087 0.7 0.6522 0.8078 0.75 0.8178 0.7083 0.8211 0.625 0.8211 0.6667 0.6967 0.4348 0.7289 0.5652

0.7111 0.8261 0.6889 0.7391 0.8089 0.7083 0.8089 0.7083 0.7989 0.75 0.7889 0.7083 0.7156 0.5652 0.7256 0.6087

0.8244 0.8333 0.8256 0.7917 0.7922 0.875 0.7811 0.875 0.81 0.8333 0.81 0.8333 0.7778 0.7917 0.7444 0.7917

0.8222 0.7391 0.7889 0.7391 0.6089 0.7083 0.62 0.75 0.7244 0.75 0.7244 0.75 0.8156 0.6522 0.8056 0.6087

0.7667 0.6087 0.7667 0.8261 0.6622 0.6667 0.6944 0.625 0.7878 0.7917 0.7878 0.7917 0.7933 0.6087 0.7933 0.6522

0.7667 0.7391 0.7667 0.8261 0.6711 0.6667 0.6944 0.625 0.7878 0.7917 0.7878 0.7917 0.7933 0.6087 0.7833 0.5652

0.6522 0.75 0.6733 0.7083 0.5922 0.8333 0.6033 0.75 0.6211 0.6667 0.6322 0.5417 0.68 0.75 0.6256 0.6667

0.7778 0.7391 0.7111 0.6522 0.8189 0.7083 0.8178 0.6667 0.82 0.625 0.82 0.6667 0.6967 0.4783 0.7289 0.6087

0.8156 0.7917 0.8156 0.7917 0.8222 0.8333 0.8222 0.8333 0.84 0.8333 0.83 0.875 0.7956 0.7917 0.7956 0.7917

0.8222 0.7826 0.7556 0.8261 0.7789 0.7083 0.7789 0.7083 0.8311 0.8333 0.8556 0.8333 0.8233 0.6957 0.8122 0.6957

0.8 0.6957 0.7778 0.6522 0.7789 0.625 0.7789 0.4583 0.8089 0.75 0.8511 0.8333 0.7311 0.7391 0.7411 0.7391

Average 0.779135 0.732023 0.765815 0.742408 0.747646 0.738773 0.746835 0.729162 0.789273 0.745192 0.792392 0.754808 0.752523 0.692673 0.747612 0.696227

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 33

Sensor 36

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 26

Sensor 27

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 20

Sensor 21

Sensor 9

Sensor 10

Sensor 12

Sensor 13

Sensor 14

Sensor 15

LR RF LR

Sensor 7

Sensor 8

19--22

Sensors
RF LR RF LR RF

01.04.20-31.07.20 07--10 12--15 15--18

Lockdown results:

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.705 0.8182 0.735 0.7273 0.81 0.3636 0.81 0.2727 0.755 0.8182 0.68 0.8182 0.65 0.4545 0.65 0.8182

0.77 0.7273 0.76 0.7273 0.735 0.7273 0.74 0.7273 0.84 0.4545 0.755 0.6364 0.7 0.9091 0.725 0.8182

0.835 0.8182 0.835 0.8182 0.685 0.3636 0.66 0.4545 0.69 0.6364 0.63 0.6364 0.625 0.2727 0.45 0.8182

0.7 0.6364 0.655 0.7273 0.57 0.6667 0.515 0.8333 0.68 0.6364 0.635 0.6364 0.695 0.6364 0.655 0.7273

0.71 0.6364 0.755 0.5455 0.455 0.6364 0.505 0.4545 0.6 0.6364 0.535 0.6364 0.65 0.7273 0.625 1

0.69 0.6364 0.59 0.8182 0.555 0.8333 0.555 0.75 0.715 0.6364 0.645 0.6364 0.69 0.5455 0.67 0.5455

0.655 0.7273 0.59 0.5455 0.58 0.5833 0.655 0.6667 0.645 0.5455 0.625 0.7273 0.61 0.6364 0.66 0.6364

0.685 0.6364 0.755 0.7273 0.715 0.4545 0.74 0.3636 0.735 0.6364 0.66 0.7273 0.575 0.1818 0.5 0.8182

0.695 0.6364 0.67 0.6364 0.455 0.2727 0.455 0.7273 0.69 0.5 0.715 0.5 0.65 0.5833 0.56 0.5

0.775 0.7273 0.775 0.8182 0.765 0.4545 0.74 0.5455 0.74 0.6364 0.685 0.5455 0.55 0.5455 0.525 0.5455

0.69 0.8182 0.665 0.8182 0.66 0.8333 0.63 0.6667 0.625 0.5455 0.675 0.5455 0.61 0.5455 0.7 0.6364

0.74 0.6364 0.69 0.8182 0.66 0.6667 0.695 0.75 0.705 0.7273 0.62 0.6364 0.535 0.7273 0.55 0.1818

0.67 0.7273 0.59 0.6364 0.595 0.75 0.625 0.5833 0.735 0.7273 0.71 0.6364 0.625 0.6364 0.55 0.5455

0.71 0.7273 0.76 0.7273 0.76 0.4545 0.74 0.3636 0.725 0.8182 0.665 0.9091 0.625 0.2727 0.525 0.8182

0.81 0.8182 0.76 0.7273 0.76 0.4545 0.735 0.4545 0.69 0.7273 0.64 0.7273 0.425 0.2727 0.45 0.6364

0.75 0.7273 0.725 0.7273 0.665 0.3636 0.6 0.4545 0.735 0.6364 0.685 0.6364 0.6 0.1818 0.525 0.7273

0.73 0.8182 0.73 0.7273 0.665 0.5455 0.57 0.6364 0.84 0.4545 0.755 0.6364 0.675 0.8182 0.75 0.8182

0.695 0.6364 0.62 0.6364 0.6 0.75 0.65 0.6667 0.695 0.5455 0.595 0.5455 0.65 0.7273 0.685 0.5455

0.645 0.5455 0.745 0.6364 0.495 0.5455 0.53 0.5455 0.55 0.4545 0.515 0.7273 0.65 0.6364 0.6 0.8182

0.825 0.6364 0.825 0.7273 0.505 0.6364 0.525 0.6364 0.595 0.4545 0.45 0.9091 0.7 0.6364 0.6 0.8182

0.8 0.6364 0.825 0.7273 0.57 0.5455 0.545 0.5455 0.575 0.6364 0.52 0.8182 0.7 0.6364 0.6 0.8182

0.67 0.7273 0.59 0.6364 0.59 0.75 0.625 0.5833 0.735 0.7273 0.71 0.6364 0.625 0.6364 0.54 0.7273

0.825 0.6364 0.75 0.8182 0.785 0.4545 0.715 0.5455 0.715 0.6364 0.685 0.5455 0.55 0.6364 0.525 0.4545

0.75 0.7273 0.585 0.8182 0.66 0.8333 0.605 0.6667 0.58 0.3636 0.655 0.7273 0.635 0.6364 0.7 0.6364

0.735 0.8182 0.785 0.8182 0.835 0.4545 0.785 0.3636 0.73 0.6364 0.705 0.7273 0.525 0.2727 0.6 0.8182

0.73 0.8182 0.71 0.7273 0.735 0.4545 0.74 0.2727 0.735 0.7273 0.705 0.8182 0.5 0.2727 0.55 0.8182

Average 0.730577 0.709819 0.710577 0.723804 0.648654 0.571085 0.641923 0.558858 0.694423 0.613654 0.648269 0.6801 0.616346 0.539931 0.595 0.694077

LR RF LR

07--10 12--15 15--18 19--22

RF

Sensor 7

Sensor 8

Sensor 31

Sensor 33

Sensor 36

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

pre-lockdown 27.01-

22.03.20

covid 3-class

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 9

Sensor 10

Sensor 12

RF
Sensors

RF LR LR

 -91-

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.71 0.6364 0.54 0.4545 0.68 0.5455 0.67 0.5455 0.655 0.4545 0.625 0.5455 0.7 0.6364 0.53 0.5455

0.665 0.8182 0.69 0.6364 0.655 0.6364 0.68 0.6364 0.75 0.7273 0.695 0.8182 0.675 0.5455 0.465 0.5455

0.705 0.6364 0.57 0.4545 0.655 0.4545 0.6 0.4545 0.735 0.5455 0.66 0.9091 0.695 0.6364 0.56 0.1818

0.725 0.8182 0.75 0.8182 0.77 0.6364 0.745 0.6364 0.7 0.5833 0.72 0.6667 0.68 0.6667 0.6 0.5833

0.79 0.3636 0.67 0.3636 0.45 0.4545 0.425 0.3636 0.53 0.7273 0.385 0.7273 0.635 0.5455 0.58 0.5455

0.765 0.7273 0.735 0.7273 0.69 0.6364 0.69 0.5455 0.625 0.6667 0.62 0.5833 0.55 0.6667 0.525 0.3333

0.72 0.7273 0.695 0.8182 0.67 0.75 0.67 0.75 0.695 0.5 0.69 0.5 0.61 0.75 0.56 0.5

0.645 0.4545 0.6 0.4545 0.705 0.6364 0.655 0.6364 0.64 0.4545 0.665 0.6364 0.73 0.6364 0.5 0.1818

0.795 0.7273 0.825 0.7273 0.36 0.6667 0.44 0.5833 0.64 0.75 0.615 0.75 0.645 0.6667 0.53 0.6667

0.695 0.7273 0.72 0.7273 0.575 0.5455 0.57 0.7273 0.75 0.7273 0.665 0.7273 0.675 0.5455 0.66 0.5455

0.73 0.7273 0.725 0.6364 0.71 0.6667 0.755 0.8333 0.715 0.6667 0.69 0.5 0.665 0.6667 0.585 0.6667

0.68 0.6364 0.655 0.6364 0.555 0.9091 0.57 0.4545 0.745 0.5 0.715 0.5833 0.735 0.5 0.455 0.5833

0.65 0.4545 0.67 0.5455 0.565 0.3636 0.49 0.8182 0.57 0.6667 0.565 0.6667 0.435 0.75 0.425 0.6667

0.725 0.5455 0.725 0.6364 0.63 0.6364 0.67 0.6364 0.605 0.6364 0.475 0.2727 0.765 0.6364 0.515 0.2727

0.615 0.5455 0.615 0.6364 0.7 0.4545 0.63 0.4545 0.66 0.9091 0.635 0.9091 0.7 0.5455 0.58 0.5455

0.68 0.5455 0.755 0.6364 0.48 0.6364 0.5 0.7273 0.665 0.7273 0.615 0.8182 0.675 0.4545 0.635 0.5455

0.64 0.6364 0.735 0.9091 0.635 0.6364 0.68 0.6364 0.77 0.5455 0.725 0.7273 0.63 0.7273 0.51 0.6364

0.7 0.7273 0.765 0.7273 0.68 0.5455 0.7 0.6364 0.69 0.6667 0.645 0.6667 0.675 0.5833 0.535 0.5833

0.675 0.4545 0.655 0.5455 0.445 0.3636 0.425 0.3636 0.54 0.6364 0.435 0.7273 0.635 0.5455 0.61 0.4545

0.67 0.5455 0.62 0.4545 0.595 0.5455 0.595 0.6364 0.5 0.6364 0.46 0.6364 0.645 0.4545 0.595 0.4545

0.67 0.5455 0.62 0.5455 0.595 0.5455 0.595 0.6364 0.5 0.6364 0.465 0.5455 0.62 0.4545 0.595 0.4545

0.63 0.4545 0.67 0.5455 0.565 0.3636 0.49 0.8182 0.55 0.75 0.565 0.6667 0.44 0.75 0.45 0.6667

0.685 0.7273 0.72 0.7273 0.57 0.5455 0.57 0.7273 0.755 0.6364 0.66 0.7273 0.63 0.4545 0.66 0.5455

0.73 0.7273 0.75 0.6364 0.725 0.6364 0.775 0.5455 0.715 0.6667 0.69 0.5 0.64 0.6667 0.585 0.5833

0.665 0.6364 0.625 0.6364 0.7 0.4545 0.695 0.5455 0.595 0.5455 0.445 0.8182 0.67 0.5455 0.6 0.3636

0.645 0.4545 0.58 0.4545 0.7 0.6364 0.67 0.6364 0.565 0.6364 0.545 0.6364 0.725 0.5455 0.635 0.5455

Average 0.6925 0.6154 0.68 0.618896 0.617692 0.57315 0.613654 0.614815 0.648462 0.638423 0.602692 0.664062 0.649231 0.599085 0.556923 0.507581

Sensor 36

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 33

lockdown 23.03-

17.05.20 07--10 12--15 15--18 19--22

LR RF

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Sensor 26

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 19

Sensor 20

Sensor 8

Sensor 9

Sensor 10

Sensor 12

Sensor 13

Sensor 14

RF LR RFLR

Sensor 7

Sensors
RF LR

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.725 0.3636 0.75 0.3636 0.74 0.7273 0.615 0.7273 0.655 0.5455 0.625 0.3636 0.71 0.6364 0.55 0.3636

0.665 0.5455 0.64 0.6364 0.625 0.5455 0.65 0.5455 0.485 0.6364 0.445 0.6364 0.71 0.7273 0.65 0.6364

0.59 0.7273 0.64 0.7273 0.625 0.6364 0.45 0.5455 0.76 0.5455 0.665 0.6364 0.715 0.4545 0.67 0.4545

0.71 0.7273 0.67 0.7273 0.66 0.6364 0.62 0.6364 0.695 0.9091 0.67 0.9091 0.695 0.4545 0.57 0.4545

0.73 0.4545 0.75 0.5455 0.41 0.2727 0.385 0.0909 0.61 0.4545 0.54 0.6364 0.78 0.6364 0.695 0.5455

0.71 0.6364 0.71 0.6364 0.62 0.6364 0.62 0.9091 0.68 0.8182 0.635 0.7273 0.64 0.5455 0.585 0.9091

0.66 0.4545 0.71 0.7273 0.61 0.8182 0.61 0.8182 0.72 0.9091 0.655 0.9091 0.615 0.6364 0.67 0.6364

0.7 0.5455 0.675 0.4545 0.67 0.6364 0.635 0.7273 0.655 0.4545 0.695 0.6364 0.64 0.4545 0.55 0.2727

0.785 0.6364 0.705 0.6364 0.58 0.7273 0.54 0.4545 0.545 0.6364 0.605 0.8182 0.735 0.6364 0.665 0.7273

0.615 0.5455 0.615 0.7273 0.675 0.6364 0.605 0.5455 0.72 0.6364 0.65 0.6364 0.65 0.6364 0.7 0.5455

0.665 0.7273 0.78 0.7273 0.625 0.9091 0.585 1 0.67 0.9091 0.675 0.9091 0.595 0.6364 0.55 0.6364

0.645 0.4545 0.52 0.7273 0.625 0.5455 0.6 0.6364 0.645 0.7273 0.62 0.5455 0.675 0.7273 0.71 0.5455

0.765 0.6364 0.715 0.6364 0.675 0.8182 0.655 0.6364 0.62 0.5455 0.645 0.6364 0.77 0.7273 0.745 0.8182

0.725 0.5455 0.775 0.6364 0.68 0.7273 0.64 0.8182 0.68 0.6364 0.605 0.5455 0.735 0.5455 0.62 0.5455

0.725 0.6364 0.725 0.6364 0.65 0.6364 0.45 0.6364 0.7 0.4545 0.7 0.4545 0.605 0.6364 0.55 0.4545

0.61 0.3636 0.66 0.5455 0.615 0.7273 0.65 0.6364 0.675 0.5455 0.605 0.6364 0.675 0.6364 0.645 0.6364

0.61 0.7273 0.585 0.8182 0.635 0.4545 0.655 0.6364 0.65 0.6364 0.535 0.7273 0.655 0.5455 0.615 0.6364

0.685 0.7273 0.695 0.6364 0.51 0.8182 0.535 0.5455 0.7 0.7273 0.615 0.5455 0.63 0.5455 0.625 0.8182

0.71 0.5455 0.775 0.5455 0.475 0.5455 0.465 0.5455 0.635 0.7273 0.565 0.6364 0.785 0.7273 0.765 0.7273

0.76 0.5455 0.68 0.6364 0.57 0.4545 0.65 0.4545 0.675 0.6364 0.63 0.6364 0.755 0.6364 0.74 0.7273

0.705 0.4545 0.68 0.6364 0.57 0.4545 0.65 0.4545 0.675 0.6364 0.635 0.5455 0.755 0.6364 0.74 0.7273

0.765 0.6364 0.715 0.6364 0.675 0.8182 0.655 0.6364 0.62 0.5455 0.645 0.6364 0.77 0.7273 0.745 0.8182

0.635 0.7273 0.59 0.7273 0.68 0.6364 0.605 0.5455 0.72 0.6364 0.65 0.6364 0.65 0.6364 0.655 0.6364

0.74 0.7273 0.76 0.7273 0.625 0.9091 0.56 1 0.695 0.9091 0.65 0.8182 0.505 0.7273 0.525 0.5455

0.755 0.4545 0.75 0.4545 0.61 0.6364 0.555 0.6364 0.58 0.6364 0.55 0.5455 0.715 0.5455 0.58 0.6364

0.725 0.7273 0.725 0.5455 0.725 0.6364 0.705 0.7273 0.625 0.4545 0.63 0.5455 0.665 0.6364 0.57 0.6364

Average 0.696731 0.587427 0.692115 0.632892 0.621538 0.653865 0.590192 0.636385 0.657308 0.650369 0.620769 0.650377 0.685769 0.618908 0.641731 0.6189

post-lockdown

18.05-12.07.20 07--10 12--15 15--18 19--22

LR LR RF LR

Sensor 31

Sensor 33

Sensor 36

Sensor 25

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 17

Sensor 18

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 12

RF RF
Sensors

RF LR

-92-

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

0.7923 0.6875 0.8077 0.7812 0.7359 0.7879 0.7827 0.8788 0.7621 0.697 0.7632 0.697 0.7288 0.7812 0.6968 0.75

0.8013 0.875 0.8333 0.8438 0.791 0.8182 0.7756 0.8182 0.7698 0.7879 0.7401 0.8182 0.6628 0.75 0.6397 0.8438

0.7846 0.875 0.8071 0.8125 0.759 0.8485 0.7288 0.8485 0.7923 0.8182 0.7698 0.8182 0.7212 0.75 0.6801 0.75

0.7872 0.7576 0.8122 0.7576 0.7357 0.7647 0.75 0.8235 0.811 0.697 0.7951 0.6364 0.717 0.697 0.733 0.7879

0.6897 0.8438 0.7237 0.875 0.5885 0.4848 0.5885 0.5152 0.7258 0.8182 0.7033 0.8182 0.7333 0.8125 0.7173 0.8125

0.7974 0.7188 0.8205 0.8438 0.7588 0.7647 0.7736 0.7647 0.8418 0.697 0.8341 0.7273 0.7632 0.697 0.7401 0.697

0.7545 0.8485 0.7885 0.8182 0.767 0.7941 0.7445 0.7647 0.7885 0.697 0.7879 0.7273 0.6868 0.7273 0.7176 0.7879

0.8013 0.6875 0.8006 0.75 0.7744 0.8182 0.7904 0.8485 0.7775 0.7576 0.7703 0.7879 0.7218 0.7188 0.6737 0.7188

0.8365 0.7812 0.8436 0.8438 0.6374 0.7273 0.6736 0.6061 0.6879 0.7647 0.6945 0.7353 0.7104 0.5758 0.6951 0.6061

0.8237 0.7812 0.8154 0.7812 0.7282 0.7879 0.7359 0.8182 0.739 0.7879 0.7478 0.8485 0.7045 0.7812 0.6885 0.7812

0.7949 0.9062 0.8353 0.8438 0.7813 0.7059 0.8044 0.7353 0.8104 0.6061 0.7956 0.6364 0.7093 0.697 0.7484 0.7879

0.7968 0.8438 0.8288 0.9375 0.7203 0.5294 0.728 0.6471 0.8044 0.6364 0.7885 0.6667 0.8011 0.7273 0.7934 0.7576

0.7494 0.7812 0.7583 0.8125 0.6879 0.7059 0.6863 0.6471 0.7209 0.8485 0.7511 0.8485 0.7489 0.7273 0.7929 0.7273

0.8 0.7812 0.8071 0.8438 0.784 0.7576 0.791 0.7879 0.7786 0.7576 0.8011 0.7879 0.7615 0.7812 0.7128 0.75

0.7769 0.7188 0.7853 0.7812 0.7442 0.8485 0.7436 0.8485 0.7308 0.7576 0.7544 0.7273 0.6808 0.6875 0.6564 0.6562

0.8224 0.75 0.791 0.75 0.7603 0.697 0.7756 0.697 0.7775 0.697 0.7929 0.7576 0.6737 0.7188 0.6731 0.7188

0.7679 0.9688 0.8244 0.9062 0.7442 0.8788 0.7679 0.7273 0.7549 0.8182 0.7621 0.7879 0.6705 0.75 0.6647 0.7812

0.766 0.7812 0.8128 0.9062 0.7588 0.7353 0.7429 0.7353 0.7654 0.7273 0.75 0.697 0.7027 0.6364 0.7341 0.7273

0.7929 0.875 0.8013 0.8438 0.6263 0.5758 0.5724 0.6061 0.6945 0.8485 0.7022 0.8182 0.7705 0.8125 0.7545 0.9062

0.7679 0.875 0.7776 0.8438 0.6269 0.6667 0.6718 0.5758 0.7335 0.8788 0.7104 0.8485 0.7314 0.875 0.7 0.875

0.7763 0.875 0.7769 0.875 0.6346 0.5758 0.6801 0.5758 0.7335 0.8788 0.7104 0.8485 0.7308 0.875 0.7154 0.875

0.7487 0.7812 0.75 0.8125 0.6879 0.7059 0.6863 0.6471 0.7275 0.8485 0.7511 0.8485 0.7418 0.7273 0.8005 0.7273

0.8071 0.75 0.8071 0.7812 0.7276 0.697 0.7359 0.8182 0.7313 0.8182 0.7484 0.8485 0.7045 0.7812 0.6968 0.8125

0.7647 0.7879 0.8141 0.7273 0.7357 0.7059 0.7495 0.7353 0.8181 0.6364 0.7956 0.6667 0.7093 0.7273 0.7484 0.7879

0.8231 0.875 0.8237 0.875 0.7987 0.7879 0.7987 0.7576 0.7934 0.7576 0.7852 0.7879 0.7192 0.8438 0.6801 0.8438

0.8314 0.75 0.8154 0.7812 0.7833 0.7879 0.7904 0.8485 0.7929 0.7273 0.7709 0.7879 0.6897 0.6875 0.6974 0.75

Average 0.786727 0.806015 0.802373 0.824158 0.726073 0.729138 0.7334 0.733704 0.763973 0.760204 0.760615 0.768396 0.719058 0.744073 0.713492 0.769969

pre_until_post

lockdown

27.01.2020-

12.07.2020 07--10 12--15 15--18 19--22

Sensors
RF LR RF LR RF LR RF LR

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Sensor 26

Sensor 27

Sensor 28

Sensor 29

Sensor 30

Sensor 31

Sensor 33

Sensor 36

Sensor 17

Sensor 18

Sensor 19

Sensor 20

Sensor 21

Sensor 22

Sensor 23

Sensor 24

Sensor 25

Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy Score Accuracy

whole 01.08.19-31.08.20 0.826 0.842 0.820 0.830 0.747 0.729 0.739 0.724 0.774 0.759 0.768 0.757 0.691 0.676 0.681 0.652

4-month 01.08.19-30.11.19 0.736 0.627 0.718 0.601 0.685 0.636 0.684 0.663 0.719 0.628 0.717 0.622 0.649 0.531 0.643 0.488

01.12.19-31.03.20 0.734 0.742 0.671 0.798 0.649 0.555 0.651 0.555 0.714 0.639 0.685 0.659 0.674 0.495 0.662 0.510

01.04.20-31.07.20 0.779 0.732 0.766 0.742 0.748 0.739 0.747 0.729 0.789 0.745 0.792 0.755 0.753 0.693 0.748 0.696

3-month 01.08.19-31.10.19 0.741 0.690 0.734 0.659 0.695 0.596 0.678 0.629 0.721 0.645 0.725 0.674 0.642 0.544 0.619 0.539

01.11.19-31.01.20 0.720 0.578 0.699 0.527 0.639 0.623 0.595 0.644 0.653 0.638 0.648 0.681 0.659 0.588 0.629 0.563

01.02.20-30.04.20 0.869 0.898 0.847 0.924 0.798 0.676 0.804 0.728 0.822 0.720 0.822 0.761 0.745 0.701 0.733 0.713

01.05.20-31.07.20 0.742 0.639 0.711 0.647 0.713 0.575 0.702 0.594 0.726 0.571 0.727 0.579 0.689 0.564 0.680 0.556

lockdown

pre_lockdown 27.01-

22.03.20 0.731 0.710 0.711 0.724 0.649 0.571 0.642 0.559 0.694 0.614 0.648 0.680 0.616 0.540 0.595 0.694

lockdown 23.03-17.05.20 0.693 0.615 0.680 0.619 0.618 0.573 0.614 0.615 0.648 0.638 0.603 0.664 0.649 0.599 0.557 0.508
post-lockdown 18.05-

12.07.20 0.697 0.587 0.692 0.633 0.622 0.654 0.590 0.636 0.657 0.650 0.621 0.650 0.686 0.619 0.642 0.619

pre_until_post

lockdown 27.01.2020- 0.787 0.806 0.802 0.824 0.726 0.729 0.733 0.734 0.764 0.760 0.761 0.768 0.719 0.744 0.713 0.770

Grouped results 3-class

Period

07--10 12--15 15--18 19--22

RF LR RF LR RF LR RF LR

