
 -i-

Data mining software

management

Maria Vasileiou

SID: 3308210048

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

JANUARY 2023

THESSALONIKI – GREECE

 -ii-

Data mining software

management

Maria Vasileiou

SID: 3308210048

Supervisor: Prof. Christos Tjortjis

Supervising Committee

Members:

Dr Berberidis

Dr Koukaras

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

JANUARY 2023

THESSALONIKI – GREECE

 -iii-

Acknowledgements

I would like to express my deepest gratitude to Professor Christos Tjortjis for his support

and guidance as well as for the time he devoted to me for the preparation of this disserta-

tion. Finally, I would like to thank my family for their support and the trust they showed

me as well as my friends for their support during my studies.

 -i-

Abstract

With the continuous technological evolution, the amount of software that is implemented

is constantly increasing. Also, due to the fact that electronic devices are nowadays a sig-

nificant part of people’s lives, there is a need for the software to become increasingly

better. As the demand grows so does the need to produce new software and improve the

existing one. In order to achieve the upgrade of the existing software as quickly as possi-

ble while remaining on budget, in this dissertation, a number of data mining techniques

were used. Many techniques have been used in previous research for software defect de-

tection. In this dissertation, some of those techniques were applied in data extracted from

the source code of notepad++ to find bugs and defects. Finally, the results of these tech-

niques will be validated using the actual changes that have been made in the next release

of the chosen application and the purpose is to examine and compare the results of the

algorithms that were used.

Keywords: Data mining, software defect detection, software management, machine

learning

Maria Vasileiou

07/01/2023

 -iii-

Contents

ACKNOWLEDGEMENTS .. III

ABSTRACT ... I

CONTENTS ... III

1 INTRODUCTION .. 1

2 BACKGROUND ... 3

2.1 LITERATURE REVIEW .. 3

2.1.1 Software defect detection ... 3

2.1.2 Data Mining ... 4

2.1.3 Data Mining Algorithms Selection .. 4

2.2 RELATED WORK .. 6

2.2.1 Using Classifiers for Software Defect Detection 6

2.2.2 Data mining techniques for software defect detection 7

3 DATA AND METHODOLOGY ... 9

3.1 DATA PREPARATION ... 9

3.2 METHODOLOGY .. 11

3.3 EVALUATION METRICS .. 13

4 RESULTS .. 15

4.1 RESULTS FROM THE EXPERIMENTS’ PERSPECTIVE ... 15

4.2 RESULTS FROM THE MODELS’ PERSPECTIVE .. 24

5 DISCUSSION .. 29

5.1 THREATS TO VALIDITY .. 29

6 CONCLUSIONS AND FURTHER WORK ... 31

6.1 CONCLUSIONS ... 31

6.2 FURTHER WORK .. 32

BIBLIOGRAPHY ... 33

 -1-

1 Introduction

As the need for software-based solutions increases so does the need to create maintainable

and extendable code. Regardless of the size of a project, software maintenance can be a

very difficult goal to achieve, and it requires a lot of time, effort and human resources [1].

Due to this, the cost of software maintenance is also significantly high so it is crucial to

find suitable methods in order to detect software defects in an early stage.

Predicting software components that are prone to defects is a key objective in software

engineering. This would make it possible to allocate testing resources effectively and

make better-informed choices regarding the caliber of releases [2]. Consequently, there

are numerous studies on software quality and software defect prediction [17],[18],[19].

Metrics can be used to analyze code quality and maintainability and to assess the charac-

teristics of software. Then data mining can be used to extract information and find hidden

patterns in data, enabling the analysis of software metrics for maintenance reasons. Data

mining is seen as a good solution for huge, unfamiliar software systems since it can handle

massive volumes of data without any prior subject expertise [3].

In this dissertation, research has been conducted in order to find the defective files using

a dataset produced from the source code of notepad++. This dataset has been produced

by extracting some metrics from the source files of twenty-six releases of the open-source

program notepad++. After the files of each of those releases had been classified to defec-

tive or non-defective, various data mining techniques were applied to this data in order to

classify either a subset of these files or the files of the last release of notepad++, which at

the time that this dissertation is conducted is the 8.4.5 release. During this research eight

different experiments have been conducted, each with a different combination of training

and test dataset.

The purpose of this dissertation is to compare various data mining techniques by applying

to a portion of the whole dataset and to the data of the newest release of notepad++ and

evaluate those results using the data of the next release of the application.

The results of this dissertation shows that the combination of the defective and non-de-

fective samples in the training set can significantly affect the produced metrics of all the

 -2-

models. Also, it is observed that in the case that an extremely highly uneven dataset is

used as training set and the dataset of the last release of the application as test set, the ML

algorithm that was affected the most was Support Vector Machine (SVM). Finally, when

the dataset consists of the same number of defective and non-defective samples and 20%

of that is used as test data the models give the best results in terms of precision, recall and

f1-score.

The remaining of this dissertation is organized as follows: Chapter 2 introduces key con-

cepts on software defect detection and data mining and briefly describes related work that

have been done in the past. Chapter 3 discusses the dataset that is used during this disser-

tation and the methodology that were used. Chapter 4 presents experimental results. Fi-

nally, Chapter 5 discusses these results and evaluates threats to validity and Chapter 6

concludes this dissertation with the conclusions that can be extracted from the results and

with directions for further work.

 -3-

2 Background

In this chapter related work that was conducted in the past as well as some important

definitions used in this dissertation are presented.

2.1 Literature review

2.1.1 Software defect detection

The main elements influencing software quality are software defects. Several things can

lead to software defects. The main determinants of the factors are the features of the soft-

ware itself and the technical implementation, such as the scale and complexity of the

software, the developers' comprehension of the client's requirements, the grammar and

algorithms employed during project development, and the degree of teamwork. Software

defects are mostly caused by coding mistakes [5].

Software defect prediction is an active research topic in the field of computer science.

Predictions might be dynamic or static when it comes to software defects. The majority

of dynamic software defect prediction relies on empirical or statistical methods to esti-

mate the allocation of software defects throughout the course of the software's life cycle.

On the other hand, static software defect prediction develops a model for forecasting the

number and the allocation of defects in undisclosed modules based on software defect

metrics. Despite the fact that several software defect prediction approaches have been

suggested, the technology is still regarded as imprecise [5].

As it is referred above static software defect detection is depending on software metrics.

Software metrics are indices and parameters that characterize the properties of software

products and offer a measure of software quality. The McCabe, Halstead, Childamber

Kemerer, and complexity metrics are current software metrics, which are widely used in

software defect prediction [5].

The subset of software metrics that is called software quality metrics is concerned with

the project, process, and product quality. Product metrics are used to define a product's

attributes, such as its size, complexity, design characteristics, efficiency, and degree of

quality. To improve software development and maintenance, process metrics can be used,

 -4-

such as the effectiveness of defect removal during development, the pattern of testing

fault arrival, and consequently the reaction time of the fix process. The number of soft-

ware engineers, the pattern of staffing over the course of the software life cycle, cost,

timeline, and efficiency are only a few examples of the project features and execution that

are described by project metrics [6].

The objectives of existing metrics-based software defect prediction solutions may be es-

sentially separated into two categories: ranking and categorization. The former seeks to

forecast the quantity of problems in software modules, while the latter seeks to forecast

if the module includes defects at all. Both of the preceding methodologies, which have

been investigated for decades, assist developers in efficiently deploying resources [5].

Akiyama developed the Akiyama model, which is a relationship between the number of

defects and lines of code (LOC). Following that, Arthur, Ottensteln, and Lipow hypothe-

sized a relationship between defect count and complexity measures. These models just

have one variable, such as LOC. With the increasing diversity of metrics, several regres-

sion approaches, such as multiple linear regression, negative binomial regression (NBR),

SVMs, and random forest algorithms, are employed to describe the relationship between

metrics and the number of errors. Several classification techniques have been employed

concurrently to build software defect prediction models for completing a classification

task [5].

2.1.2 Data Mining

The process of extracting implicit, previously undiscovered, and possibly beneficial in-

formation from data is known as data mining. It involves looking for patterns in vast

quantities of data using methods like classification, association rule mining, and cluster-

ing [1]. Various of those techniques as well as some combinations of them have been

used for software defect detection. In this dissertation, only classification methods have

been used.

2.1.3 Data Mining Algorithms Selection

As it is mentioned above from all the different data mining techniques that can be used

for software defect detection in this dissertation only classification techniques have been

used. More specifically for the experiments that have been conducted during this disser-

tation five Machine Learning (ML) models have been used. Those models are SVMs,

Naïve Bayes, Logistic regression, Random Forest and k-Nearest Neighbors (kNN).

 -5-

2.1.3.1 Support vector machine description

SVMs are a group of associated supervised learning techniques applied to regression and

classification problems. SVMs are systems that use the hypothesis space of a linear func-

tion in a high-dimensional feature space and are trained using an optimization theory-

based learning algorithm that incorporates a learning bias [7].

2.1.3.2 Naïve Bayes description

One of the best and most productive classification methods is naive Bayes. A learner

attempts to build a classifier from a set of training examples with class labels in classifi-

cation learning tasks [8].

The simplest type of Bayesian network is a naive bayes network, in which all character-

istics are independent of one another regardless of the value of the class variable. This is

known as conditional independence. It is clear that most real-world applications rarely

satisfy the conditional independence assumption. Extending the structure of naive Bayes

to explicitly indicate attribute dependencies is an easy way to get around this disadvantage

[9].

2.1.3.3 Logistic regression description

Logistic regression models are statistical models that describe the relationship between a

qualitative dependent variable (that is, one that can only take particular discrete values)

and an independent variable.

To investigate the influence of predictor variables on categorical outcomes, logistic re-

gression models are used. When the outcome is typically binary, such as the existence or

absence of an illness, binary logistic model is used. A logistic regression model is referred

to as simple logistic regression when it has just one predictor variable. The model is

known as a multiple or multivariable logistic regression when there are numerous predic-

tors, including categorical and continuous variables as predictors [10].

2.1.3.4 Random Forest description

Random forest is a supervised learning approach that follows the straightforward yet pow-

erful "divide and conquer" principle: sample subsets of the data, generate a random tree

predictor on each tiny piece, then combine these predictors [11].

The fact that forests may be used to solve a variety of prediction issues and only require

a small number of tuning parameters has tremendously boosted their popularity. The ap-

proach is well known for its accuracy, minimal sample sizes, and high-dimensional

 -6-

feature spaces in addition to being straightforward to apply. It also has the ability to han-

dle big real-world systems because it is quickly parallelizable [11].

2.1.3.5 k-Nearest Neighbors (kNN) description

In classification issues, kNN has been widely employed. KNN is built on a distance func-

tion, which calculates how different or similar two instances are. The distance function is

frequently the typical Euclidean distance d(x, y) between two instances, x and y [12].

KNN determines the most prevalent class of an instance x's k nearest neighbors for an

instance x. Also, KNN is a case of lazy learning. Lazy learning merely saves training data

at the time of training and postpones learning until the time of categorization. While eager

learning creates an explicit model during training [12].

2.2 Related work

2.2.1 Using Classifiers for Software Defect Detection

One of the related studies that have been conducted in the past is the work by Perreault et

al. In this study, the performance of five classifiers is assessed in the context of software

defect detection. Those classifiers are naive Bayes, neural networks, support vector ma-

chines (SVM), logistic regression, and k-nearest neighbor (kNN). For the assertion of

each of those classifiers five datasets from the NASA metrics data program repository

were used. Regarding the evaluation of those models, accuracy and F1-score were used

to assess performance, while an ANOVA was used to assess significance [4].

The objective of this study was to ascertain whether or not the classifier that is used mat-

ters while attempting to forecast and detect software defects. This is tested by putting a

number of classifier models into practice and evaluate how well they perform on datasets

for defect detection [4].

The datasets targeted for defect detection in this work are those where each datapoint

corresponds to a snapshot of the underlying source code. Each datapoint's properties are

designed to give a clue as to whether or not the code is flawed [4].

In this study, two simultaneous sets of experiments were conducted using several metrics

in order to prevent biasing one particular metric. The null hypothesis for the accuracy

experiments asserts that there is no change in classification accuracy depending on the

classifier selected. Similar to this, the null hypothesis for the F1 experiments is that there

is no variation in the F1 measure between classifiers. These hypotheses are intended to

 -7-

provide a response to the query of which classifier, if any, should be used for defect pre-

diction in software systems [4].

By analyzing the results, it is observed that in every instance, there is little to no difference

between using accuracy and F1 as a response variable. Despite how intriguing this mate-

rial is, no conclusions can be made from it that are not reliant on intuition. Also, results

reveal that all models, albeit being unsophisticated, can reliably identify software flaws

using static program properties. Finally, it becomes apparent that for some datasets, the

remaining methods outperformed Bayes and SVMs [4].

2.2.2 Data mining techniques for software defect detection

Different data mining techniques have been used over the years in order to detect software

defects. One of those is the self-organizing data mining method (SODM). The fundamen-

tal component of this method is the group method of data handling (GMDH), which di-

vides the data into training and test sets. The exterior criterion is used to choose the inte-

rior candidate model in the training set, and the interior criterion is used to estimate the

parameters. Until the external criterion value is no longer improved, this process is re-

peated. This termination rule provides plausible predictions at a specific degree of noise

and ensures the accuracy of data fitting, resulting in a complexity model with ideal bal-

ance [5].

Another widely used method is regression. Regression is a statistical method for assessing

the connection between several variables. It examines the connection between independ-

ent or predictor variables and the dependent or response variable. A mathematical equa-

tion that predicts the response variable as a linear function of the predictor variable rep-

resents the connection [6].

In addition, association rule mining is an approach for locating intriguing connections

between variables in huge databases. Finding associations or connections between groups

of elements or objects in a database is the objective. Finding rules that can anticipate the

occurrence of an item based on the occurrence of other things is basically its main purpose

[6].

Clustering is the process of organizing a group of objects into groups or clusters whose

members share some characteristics. It involves clustering a collection of things so that

they are similar to one another and different from those in other clusters [6].

 -8-

Classification is another technique that has been used which entails foreseeing a specific

consequence of a given input. The input data for a classification approach, sometimes

referred to as a training set, contains all the objects that have previously been assigned

class labels. The goal of a classification algorithm is to study the training data set, learn

from it, and create a model. The classification of test data for which the class labels are

unknown is then performed using this model. Some widely known classification tech-

niques are: Neural Networks, Decision Trees, Naive Bayes, SVMs, Case Based Reason-

ing.

 -9-

3 Data and methodology

3.1 Data Preparation

The first step of this dissertation was the creation of the dataset that were used later on in

the experiments that were conducted. The program that was examined was notepad++

and in order to examine this program and find which of its files will be defective in the

next release, a dataset with the metrics of each of the examined files of this program

needed to be created. For this purpose, the LocMetrics program was used. This is a soft-

ware tool that was used in order to extract metrics from some of the releases of notepad++.

LocMetrics extracts metrics on file, folder and function level but in this dissertation, the

reports on a file level will be used.

Using this program, twenty-six reports have been generated one for each of the 8.0, 8.1,

8.1.1, 8.1.2, 8.1.3, 8.1.4, 8.1.5, 8.1.6, 8.1.7, 8.1.8, 8.1.9, 8.1.9.1, 8.1.9.2, 8.1.9.3, 8.2,

8.2.1, 8.3, 8.3.1, 8.3.2, 8.3.3, 8.4, 8.4.1, 8.4.2, 8.4.3, 8.4.4 and 8.4.5 of the notepad++

releases.

The reports that have been generated are referring to all the files of the source code of

each release that have either of the following types: *.cpp, *.h, *.hpp. The columns of the

dataset that was created and their meaning are shown in Table 1 below:

LOC Lines of Code

SLOC-P Source Lines of Code-Physical: Physically

executable source lines of code

SLOC-L Source Lines of Code-Logical: Logically ex-

ecutable source lines of code

MVG McCabe's VG Cyclomatic Complexity: A

measure of the decision complexity of the

functions which make up the program. The

number of linearly independent paths across

a directed acyclic graph, which depicts the

 -10-

control flow of a subprogram, is the precise

definition of this metric. The analyzer counts

this by recording the number of distinct deci-

sion outcomes contained within each func-

tion, which yields a good approximation to

the formally defined version of the measure.

BLOC Blank Lines of Code

C&SLOC Code and Comment lines of code

CLOC Comment only lines of code

CWORD Commentary Words

HCLOC Header Comment Lines of code

HCWORD Header Commentary Words

Table 1. The metrics of the notepad++ generated dataset.

In addition to all of the above metrics in each report on a file level that have been gener-

ated two additional columns have been added. The first column that was added includes

the release in which each file and its corresponding metrics belong, and the second col-

umn consists of true of false depending on if the corresponding file is considered defective

or not. As the code of the notepad++ is available online it is more optimal to compare the

branch of each release with its next and find the files that have been changed and marked

them as defective while all the others will be marked as non-defective. More specifically

in this dataset a file is consider as defective if it has been edited in any way during a

commit that declares that is fixing something. If a file is not edited in a commit with the

word “fix” in its title or description is marked as non-defective.

For the creation of the dataset that was used in this dissertation all the LocMetrics reports

on file level that have been generated for all of the above releases except from release

8.4.5 were added in a common csv file. The data for the 8.4.5 release were excluded in

order to be used as test data in some of the experiments that were conducted during this

dissertation.

The dataset that is created has thirteen columns-attributes and 14038 samples, 13752 of

which are non-defective and 286 defective.

In order to use those data as input in various ML algorithms some preprocessing needed

to be performed. The first step was to observe if there are any null values in the dataset.

 -11-

After the usage of the appropriate python code, it is observed that this dataset does not

contain any null values. The next step was to remove the “File” column that contains the

file names and the “RELEASE” column that contains the release in which each file be-

longs, as those are both objects and cannot be used to train the model. The final step was

to transform the values of “DEFECTS” column to integers, so that the true becomes one

(1) and the false zero (0). Then the transformed values of the “DEFECTS” column were

removed from the dataset and added to a new variable as this column contains the results.

3.2 Methodology

In order to perform software defect detection on the data described in the previous section

various ML models have been used.

The ML models that were applied were Support Vector Machines (SVMs), Naïve Bayes,

Logistic regression, Random Forest and k-Nearest Neighbors (kNN). Those algorithms

have been used to conduct eight different experiments. These experiments differ from

each other in terms of the training set and the test set of the ML algorithms that are used

in them, as it is shown in figure 3.1.

Figure 3.1. Methodology as a diagram.

In the first experiment, the dataset that was used for each of those models were only part

of the original dataset. More specifically, the dataset used in this experiment consists of

 -12-

50% non-defective samples and 50% defective. This subset of the original dataset is cho-

sen in order to train and test the models using a balanced dataset.

In order to create this dataset, the number of the defective samples of the original dataset

needed to be found. As the defective samples were found to be 286, this number was used

in order to randomly extract an equal number of samples from the 13752 samples of the

subset of the non-defective samples. Then by combining those two subsets the new da-

taset that were used in this experiment were created.

The need to create this balanced dataset with only part of the original dataset has been

created due to the fact that the original dataset is highly imbalanced. The original dataset

contains 14038 samples, 13752 of which have been declared as non-defective and only

286 of them as defective. This imbalance between the samples of these two categories

was expected as it is normal for a project to have more non-defective files than defective

ones. In the first experiment that was conducted 20% of the dataset that was used was

randomly selected in order to be used as test dataset. Then all the ML algorithms that is

mentioned above have been used with the 80% of the new dataset as training set and with

20% of it as test dataset.

During the second experiment the same algorithms were used but this time the dataset

that was used consisted of 90% non-defective samples and 10% defective. This new da-

taset was acquired in a similar way with the dataset of the first experiment. More specif-

ically, given that the 10% of the new dataset needed to be the 286 defective samples, the

size of the new dataset was calculated to be 2860. Then a subset of 2860*0.9=2574 sam-

ples was randomly extracted from the subset of the non-defective samples. The defective

and non-defective samples that were extracted were added in the same dataset which is

the dataset that was used in this experiment. Finally, 80% of this dataset were used to

train the chosen models and 20% of this were used to test them.

The third experiment is similar to the second but in this experiment the dataset that was

used included 80% of non-defective samples and 20% of defective ones. In order to create

this dataset, the same methodology as in the second experiment were used. The difference

is that in this case given that the 286 defective samples should be the 20% of the new

dataset, the size of the new dataset was calculated to be 1430. As a result, 1430*0.8=1144

of the non-defective samples were extracted to be used in the new dataset. After the de-

fective and non-defective subsets are added to the new dataset, 80% of this dataset is used

to train the models and 20% of it is used to test them.

 -13-

The fourth experiment were the one where the whole dataset was used. In this experiment

the initial imbalanced dataset was used without any alteration and more precisely 80% of

it was used as training dataset and 20% of it as test dataset for all models as in the previous

experiments

The fifth experiment differed from the previous ones as in this the whole dataset was used

as training data and the data that were extracted from the release 8.4.5 -final release from

which data could be extracted was used as test data.

The other three experiments that were conducted were similar to the fifth as they also had

the data that were extracted from the release 8.4.5 as test data but the training dataset

differed in each one of them.

More specifically, in the sixth experiment the training dataset is the one that consists of

90% non-defective and 10% defective samples, in the seventh experiment the training

dataset is the one that consists of 80% non-defective and 20% defective samples and fi-

nally, in the eighth experiment the training dataset is the one that consists of 50% non-

defective and 50% defective samples.

3.3 Evaluation metrics

Each of the models that were used, produce some metrics that will be used afterwards for

their comparison. Those metrics are accuracy, precision, recall and f1-score.

Accuracy is defined as the percentage of the correctly classified units and is calculated

by dividing the summary of true positives (TP) and true negatives (TN), with the sum-

mary of all samples [2],[13]. In this dissertation, true positives are the samples that were

defective and were predicted as defective and true negatives are the samples that were

non-defective and were predicted as non-defective.

Precision, or the caliber of a successful prediction made by the model, is another measure

of the model's performance. Precision is calculated by dividing the proportion of true

positives by the total number of positive predictions [14].

The recall is determined as the proportion of positive samples that were correctly identi-

fied as positive to all positive samples. Recall measures the model's ability to recognize

positive samples. The recall increases as more positive samples are found [15].

 -14-

The F1 score is defined as the harmonic mean of recall and precision. It can receive a

minimum score of 0 and a maximum score of 1 (perfect recall and precision). Overall, it

is an indicator of how accurate and reliable the model is [16].

A Confusion Matrix displays all of those metrics. An evaluation tool for classification

models is a condensed table known as a confusion matrix, sometimes known as an error

matrix. The number of accurate and incorrect predictions for each class is expressed using

count values [16]. An example of a confusion matrix is shown in figure 3.2.

Figure 3.2. Example of a confusion matrix [2]

 -15-

4 Results

4.1 Results from the experiments’ perspective

Experiment 1

As it is mentioned above in every experiment five ML methods have been applied. From

the results of the first experiment where only 286 samples for each category (defective

and non-defective) were used, the metrics that were described in the previous chapter for

each model are generated and are shown in Table 2 and in Figure 4.1.

models accuracy precision recall f1-score

SVM 80 86,207 76,923 81,301

Logistic Regression 80,87 90,566 73,846 81,356

Naive Bayes 68,696 87,179 52,308 65,385

Random Forest 79,13 83,607 78,462 80,952

KNeighbors 82,609 80,822 90,769 85,507

Table 2. Metrics of all models when applied to a dataset with 50% non-defective and 50%

defective samples.

 -16-

Figure 4.1. Metrics of all models when applied to a dataset with 50% non-defective and

50% defective samples.

From the above results it is apparent that the ML algorithm with the best accuracy is k-

nearest neighbor, while the algorithm with the worst accuracy is Naïve Bayes. The lo-

gistic regression algorithm is also the one with the best precision while k-nearest neighbor

has the worst one. However, k-nearest neighbor has also the best recall and f1 score where

Naïve Bayes has the least optimal results for both of those metrics.

Experiment 2

In the second experiment in which 90% of the dataset that were used was non-defective

and only 10% defective the results seem to differ. As it is shown in Table 3 and Figure

4.2 in this experiment the best results seem to be those of logistic regression regarding

accuracy and precision and those of random forest regarding recall and f1 score. The less

accurate results seem to be those of k-nearest neighbor as it has the smallest accuracy and

precision and those of support vector machine as it has the smallest recall and f1 score.

models accuracy precision recall f1-score

SVM 91,259 68,75 19,643 30,556

Logistic Regression 91,958 72,727 28,571 41,026

 -17-

Naive Bayes 90,734 54,545 32,143 40,449

Random Forest 90,734 53,488 41,071 46,465

KNeighbors 90,909 56,25 32,143 40,909

Table 3. Metrics of all models when applied to a dataset with 90% non-defective and 10%

defective samples.

Figure 4.2. Metrics of all models when applied to a dataset with 90% non-defective and

10% defective samples.

Experiment 3

The results of the third experiment where the 80% of the samples were non-defective and

only 20% defective are shown in Table 4 and Figure 4.3. In this experiment Naïve Bayes

has given the best accuracy while support vector machine has given the best precision.

The most optimal results regarding the recall and the f1-score were those of random for-

est, while logistic regression had the less optimal results in all metrics.

models accuracy precision recall f1-score

SVM 86,014 83,333 35,714 50

 -18-

Logistic Regression 83,217 63,333 33,929 44,186

Naive Bayes 86,364 81,481 39,286 53,012

Random Forest 85,664 67,442 51,786 58,586

KNeighbors 84,965 65,854 48,214 55,67

Table 4. Metrics of all models when applied to a dataset with 80% non-defective and 20%

defective samples.

Figure 4.3. Metrics of all models when applied to a dataset with 80% non-defective and

20% defective samples.

Experiment 4

The fourth experiment that was conducted -the one where the whole dataset was used-

resulted in the metrics that are shown in Table 5 and Figure 4.4.

models accuracy precision recall f1-score

SVM 97,899 50 3,39 6,349

Logistic Regression 97,187 16,667 8,475 11,236

Naive Bayes 96,296 21,519 28,814 24,638

 -19-

Random Forest 97,685 37,5 15,254 21,687

KNeighbors 97,792 38,462 8,475 13,889

Table 5. Metrics of all models when applied to the whole dataset.

Figure 4.4. Metrics of all models when applied to the whole dataset.

In this figure is apparent that the model with the bigger accuracy and precision was the

support vector machine. On the other hand, support vector machine had the smallest recall

and f1 score while the naïve bayes was the model with the bigger ones.

Experiment 5

The fifth experiment that was conducted was the one where the whole dataset was used

as training data while the data from the last release 8.4.5 was used as the test data. The

results of this experiment are shown in Table 6 and Figure 4.5. From the figure it is ap-

parent that the experiment gave the less optimal results regarding the other experiments.

The accuracy is high for all algorithms, but the other metrics seem to be small. The algo-

rithm with the less optimal results in this case is support vector machine as aside from the

 -20-

accuracy all the other metrics are zero. Random forest has the best accuracy and precision

and naïve bayes has the best recall and f1 score.

models accuracy precision recall f1-score

SVM 97,007 0 0 0

Logistic Regression 96,655 20 6,25 9,524

Naive Bayes 95,423 25 31,25 27,778

Random Forest 97,183 50 18,75 27,273

KNeighbors 97,007 40 12,5 19,048

Table 6. Metrics of all models when applied to a dataset with the last release’s data as test

data.

Figure 4.5. Metrics of all models when applied to a dataset with the last release’s data as

test data.

Experiment 6

The results of the sixth experiment where the test dataset were the data from the 8.4.5

release and as training data were a dataset with 90% non-defective and 10% defective

samples are shown in the Table 7 and the Figure 4.6 below.

 -21-

models accuracy precision recall f1-score

SVM 96,831 33,333 12,5 18,182

Logistic Regression 95,951 29,412 31,25 30,303

Naive Bayes 94,718 20,833 31,25 25

Random Forest 96,479 40 50 44,444

KNeighbors 95,775 30 37,5 33,333

Table 7. Metrics of all models when applied to a dataset with the last release’s data as test

data and trained with 90 and 10 percent of non-defective – defective samples, respec-

tively.

Figure 4.6. Metrics of all models when applied to a dataset with the last release’s data as

test data and trained with 90 and 10 percent of non-defective – defective samples, respec-

tively.

From the above results it is obvious that support vector machine is the algorithm with the

best accuracy when random forest is the algorithm with the best precision, recall and f1-

 -22-

score. The least accurate results belong to naïve bayes in terms of accuracy and precision

and to the support vector machine algorithm in terms of recall and f1-score.

Experiment 7

In the seventh experiment where the test data were the last release’s data and the training

data included 80% of non-defective and 20% of defective samples, support vector ma-

chine has the best accuracy while random forest has the best precision and f1-score. The

best recall is the one of kNN. The results for this experiment are shown in Table 8 and

Figure 4.7 below. The least accurate precision, recall and f1-score belong to logistic re-

gression.

 accuracy precision recall f1-score

SVM 94,542 20 31,25 24,39

Logistic Regression 94,014 17,857 31,25 22,727

Naive Bayes 94,014 17,857 31,25 22,727

Random Forest 92,782 22,222 62,5 32,787

KNeighbors 90,845 18,966 68,75 29,73

Table 8. Metrics of all models when applied to a dataset with the last release’s data as test

data and trained with 80 and 20 percent of non-defective – defective samples.

 -23-

Figure 4.7. Metrics of all models when applied to a dataset with the last release’s data as

test data and trained with 80 and 20 percent of non-defective – defective samples.

Experiment 8

In the eighth experiment where the test data were the last release’s data and the training

data included 50% of non-defective and 50% of defective samples, naïve bayes had the

best accuracy, precision and f1-score when kNN had the best recall. Also, kNN algorithm

had the least accurate results in terms of accuracy, precision and f1-score. The results of

this experiment are shown in Table 9 and Figure 4.8 below.

models accuracy precision recall f1-score

SVM 86,444 10,39 50 17,204

Logistic Regression 86,092 12,048 62,5 20,202

Naive Bayes 92,077 16,279 43,75 23,729

Random Forest 82,394 10,377 68,75 18,033

KNeighbors 76,937 9,22 81,25 16,561

Table 9. Metrics of all models when applied to a dataset with the last release’s data as test

data and trained with 50 and 50 percent of non-defective – defective samples.

 -24-

Figure 4.8. Metrics of all models when applied to a dataset with the last release’s data as

test data and trained with 50 and 50 percent of non-defective – defective samples.

4.2 Results from the models’ perspective

In the previous section the results of all models are displayed grouped by the experiment

in which they were created. As it is also interesting to see those results from the models’

perspective, in this section the results of all models in every experiment will be shown

grouped by model.

Support vector machine

The first algorithm that was applied in every experiment that was conducted was support

vector machine (SVM). The results of this algorithm for each of the experiments in which

it was used differ significantly and the evaluation metrics (accuracy, precision, recall and

f1-score) of this model are shown in the Table 10 below:

Experiments Accuracy Precision Recall F1-score

Experiment 1 80 86,207 76,923 81,301

Experiment 2 91,259 68,75 19,643 30,556

Experiment 3 86,014 83,333 35,714 50

Experiment 4 97,899 50 3,39 6,349

Experiment 5 97,007 0 0 0

Experiment 6 96,831 33,333 12,5 18,182

Experiment 7 94,542 20 31,25 24,39

Experiment 8 86,444 10,39 50 17,204

Table 10. Metrics of Support vector machine model for all experiments

From the table 10 above it is observed that the best result of the support vector machine

algorithm regarding precision, recall and f1-score was achieved in the first experiment

where the data that were used consisted of 50% defective samples and 50% non-defective

samples and 20% of those samples were used as test data. However, the best results

 -25-

regarding the accuracy of the model were achieved during the fourth experiment where

the whole original dataset was used for the training and the testing of the models.

Regarding the experiments where the dataset of release 8.4.5 was used, the fifth experi-

ment where the whole dataset where used had the best accuracy, the sixth experiment

where the dataset consists of 90% non-defective and 10% defective samples had the best

precision and f1 score and the eighth experiment where the dataset consists of 50% non-

defective and 50% defective samples had the best recall.

Logistic Regression

The second algorithm that was applied in every experiment that was conducted was lo-

gistic regression. The results of this algorithm for each of the experiments regarding the

evaluation metrics (accuracy, precision, recall and f1-score) of this model are shown in

the Table 11 below:

Experiments Accuracy Precision Recall F1-score

Experiment 1 80,87 90,566 73,846 81,356

Experiment 2 91,958 72,727 28,571 41,026

Experiment 3 83,217 63,333 33,929 44,186

Experiment 4 97,187 16,667 8,475 11,236

Experiment 5 96,655 20 6,25 9,524

Experiment 6 95,951 29,412 31,25 30,303

Experiment 7 94,014 17,857 31,25 22,727

Experiment 8 86,092 12,048 62,5 20,202

Table 11. Metrics of Logistic Regression model for all experiments

From the table 11 above it is observed that the best result of the logistic regression algo-

rithm regarding precision, recall and f1-score was achieved in the first experiment where

the data that were used consisted of 50% defective samples and 50% non-defective sam-

ples and 20% of those samples were used as test data. However, the best results regarding

the accuracy of the model were achieved during the fourth experiment.

 -26-

Also, similarly with the SVM among the experiments that use the dataset of release 8.4.5

as test data, experiment 5 had the best accuracy, experiment 6 had the best precision and

f1-score and experiment 8 had the best recall.

Naive Bayes

Every experiment that was conducted used naive bayes as the third algorithm. The eval-

uation metrics (accuracy, precision, recall, and f1-score) for this model are presented in

Table 12 below. It is observed that the outcomes of this approach for each experiment in

which it was applied vary greatly.

Experiments Accuracy Precision Recall F1-score

Experiment 1 68,696 87,179 52,308 65,385

Experiment 2 90,734 54,545 32,143 40,449

Experiment 3 86,364 81,481 39,286 53,012

Experiment 4 96,296 21,519 28,814 24,638

Experiment 5 95,423 25 31,25 27,778

Experiment 6 94,718 20,833 31,25 25

Experiment 7 94,014 17,857 31,25 22,727

Experiment 8 92,077 16,279 43,75 23,729

Table 12. Metrics of Naïve Bayes model for all experiments

The first experiment, in which the data utilized consisted of 50% defective samples and

50% non-defective samples and 20% of those samples were used as test data, produced

the best results for the naive bayes algorithm in terms of precision, recall, and f1-score.

However, the fourth experiment where the whole original dataset was used produced the

best outcome in terms of the model's accuracy.

Regarding the experiments 5-8 where the data of the last release where used as test data,

experiment 5 had the best accuracy, precision and f1-score, while experiment 8 had the

best recall.

Random Forest

The fourth method, random forest, was also employed in all experiments. Table 13 below

lists the model's evaluation metrics (accuracy, precision, recall, and f1-score). For each

 -27-

experiment in which this method was used, it has been noticed that the results varied

substantially.

Experiments Accuracy Precision Recall F1-score

Experiment 1 79,13 83,607 78,462 80,952

Experiment 2 90,734 53,488 41,071 46,465

Experiment 3 85,664 67,442 51,786 58,586

Experiment 4 97,685 37,5 15,254 21,687

Experiment 5 97,183 50 18,75 27,273

Experiment 6 96,479 40 50 44,444

Experiment 7 92,782 22,222 62,5 32,787

Experiment 8 82,394 10,377 68,75 18,033

Table 13. Metrics of Random Forest model for all experiments

From the results of the above table, it is apparent that random forest such as the previous

models has a better accuracy score in the fourth experiment and a better score regarding

the precision, the recall and the f1-score in the first experiment. The first experiment is

the one where the data utilized consisted of 50% defective samples and 50% non-defec-

tive samples and 20% of those samples were used as test data. The fourth experiment was

the experiment where the whole dataset was used and 80% of this dataset were used to

train the models and 20% of it were used in order to test them.

From the results of the experiments where the test dataset is the data of the last release, it

is observed that experiment 5 had the best accuracy and precision, experiment 6 had the

best f1-score and experiment 8 had the best recall.

k-nearest neighbors

In all experiments, the fifth and final technique that were used is kNN. Metrics for eval-

uating the model are listed in Table 14 below. It has been noted that the outcomes for

every experiment in which this method was applied differed greatly.

Experiments Accuracy Precision Recall F1-score

Experiment 1 82,609 80,822 90,769 85,507

Experiment 2 90,909 56,25 32,143 40,909

 -28-

Experiment 3 84,965 65,854 48,214 55,67

Experiment 4 97,792 38,462 8,475 13,889

Experiment 5 97,007 40 12,5 19,048

Experiment 6 95,775 30 37,5 33,333

Experiment 7 90,845 18,966 68,75 29,73

Experiment 8 76,937 9,22 81,25 16,561

Table 14 Metrics of kNN model for all experiments

From the findings in the table above, it is clear that kNN, like the previous models, per-

formed better in terms of accuracy in the fourth experiment and precision, recall, and f1-

score in the first experiment.

Among the experiments where the data of release 8.4.5 were used as test data, experiment

5 had the best accuracy and precision, experiment 6 had the best f1-score and experiment

8 had the best recall.

 -29-

5 Discussion

The results of the experiments that were conducted shows that there is not one ML algo-

rithm that has given the best result in all four metrics in any of the conducted experiments.

However, there were experiments where there was one algorithm that had three out of the

four metrics better that the other models. Those models are kNN in terms of accuracy,

recall and f1-score in Experiment 1, Random Forest in terms of precision, recall and f1-

score in Experiment 6 and Naïve Bayes in terms of accuracy, precision and f1-score in

Experiment 8. It is apparent that even in the experiments that one algorithm has the best

results in the majority of the metrics it is not the same algorithm in more than one exper-

iment.

Moreover, the results of this dissertation show that the SVM model is the one that is

affected the most by the major imbalance of the non-defective and the defective samples

in the dataset as it seems from the results of SVM in the experiment that the whole dataset

was used. In this experiment the results of SVM were significantly worse that those of

the other models.

Similarly with the results of the work by Perreault et al in this dissertation there is not

one classifier that gives the best results in all the experiments but also the is not one

classifier that gives the worst.

The current dissertation has many similarities with the work by Perreault et al, but it also

has some differences. The most significant difference is regarding the datasets used. The

datasets used in the study by Perreault et al. were from the NASA metrics data program

repository while the dataset in this dissertation have been extracted from the source code

of an existing program and instead of comparing the results of different datasets, in this

dissertation variations of the same dataset were used [4].

5.1 Threats to validity

One threat to validity is the metrics that were used to evaluate the results of the models

in each experiment. The metrics that were used in this dissertation are accuracy, precision,

recall and F1-score. Those metrics are commonly used to evaluate models that were used

 -30-

in software defect detection. However, there are also other metrics that could have been

used in the same case, some of them are F2-score and F0.5-score.

Another threat to validity is the admission that all the files that are part of the commit that

has in the title the word “fix” are defective. Although this is a valid admission it is possible

that not all of the files that are involved in these commits are defective. However, even in

this case as the purpose is to find the defective files in the application it is better to have

classify a file as defective even if it is not than classified it as non-defective in case it is

defective.

 -31-

6 Conclusions and further work

6.1 Conclusions

In this dissertation various ML techniques have been applied to a dataset extracted from

the source code of notepad++. This dataset was used in eight experiments. The ML algo-

rithms used in all experiments were SVM, Naive Bayes, Random Forest, kNN and logistic

regression. Those experiments differ regarding the consistency of defective and non-de-

fective samples in the training dataset as well as regarding the data that were used as a

test dataset. For the evaluation of the ML models in each of those experiments four met-

rics were used. Those metrics were accuracy, precision, recall and f1-score. From the

results of those experiments, it is apparent that none of those algorithms has given the

best results regarding all the metrics for all experiments, but in each experiment, there is

one that is better regarding one or more metrics. What can be concluded from all of those

experiments is that the consistency of the training data in defective and non-defective

results has a major impact on the results of all models. Also, the best results for all metrics

seem to be in the experiment where the dataset that was used consisted of 50% defective

and 50% non-defective results and where 80% of this dataset was used as training data

and 20% of it as test data.

Moreover, regarding the results from the models’ perspective, it can be concluding that

all the ML models that were used in this dissertation have their best accuracy score in the

fourth experiment. This is the experiment where the whole dataset was used and 80% of

that was used for the training and 20% for the testing. In addition, all the models had their

best precision, recall and f1-score in the first experiment. The first experiment is the one

where the dataset used consisted of equal number of defective and non-defective samples

when 20% of them were used for testing the models.

More generally, it is observed that all the models have better results in the experiments

where 80% of the dataset is used as training data and 20% of the dataset as test data. Also,

in those experiments the accuracy for all the models is better in the Experiment 4 where

the whole dataset was used, while precision, recall and f1-score are better in Experiment

 -32-

1 where the dataset that was used consisted of 50% non-defective and 50% defective

samples.

6.2 Further work

There are several ways that this dissertation can be expanded in the future. Firstly, it

would be interesting to see the results of the same models with other hyperparameters in

order to examine if a better result can be achieved. Also new models can be used in the

same variations of the dataset and the produced results can be compared to the existing

ones.

Moreover, other experiments can be added where the dataset that will be used will consist

of other combinations of defective and non-defective samples of the existing dataset.

These experiments can be conducted with the same models that were used in this disser-

tation or in all these experiments more models can be added. For example, two more

models that could be added are Neural Network and Decision tree algorithms.

Furthermore, the dataset used can be expanded by adding data from more versions of

notepad++ or data from another program can be used with the same techniques in order

to see how the change of the dataset impacts the results of the models used in this disser-

tation.

Finally, using the results of this dissertation another research can be conducted one where

the input features that are more likely to determine the result can be found.

 -33-

Bibliography

[1] Antonellis, P., Antoniou, D., Kanellopoulos, Y., Makris, C., Theodoridis, E.,

Tjortjis, C., & Tsirakis, N. (2009). Clustering for Monitoring Software Systems

Maintainability Evolution. Electronic Notes in Theoretical Computer Sci-

ence, 233, 43-57.

[2] Shepperd, M., Bowes, D., & Hall, T. (2014). Researcher bias: The use of machine

learning in software defect prediction. IEEE Transactions on Software Engineer-

ing, 40(6), 603-616.

[3] Arshad, S., & Tjortjis, C. (2016, May). Clustering software metric values ex-

tracted from c# code for maintainability assessment. In Proceedings of the 9th

Hellenic Conference on Artificial Intelligence (pp. 1-4).

[4] Perreault, L., Berardinelli, S., Izurieta, C., & Sheppard, J. (2017, October). Using

classifiers for software defect detection. In 26th International Conference on Soft-

ware Engineering and Data Engineering (pp. 2-4).

[5] Ren, J. H., & Liu, F. (2019). Predicting Software Defects Using Self-Organizing

Data Mining. IEEE Access, 7, 122796-122810.

[6] Prasad, M. C., Florence, L., & Arya, A. (2015). A study on software metrics based

software defect prediction using data mining and machine learning tech-

niques. International Journal of Database Theory and Application, 8(3), 179-190.

[7] Jakkula, V. (2006). Tutorial on support vector machine (svm). School of EECS,

Washington State University, 37(2.5), 3.

[8] Zhang, H., & Su, J. (2004, September). Naive bayesian classifiers for ranking.

In European conference on machine learning (pp. 501-512). Springer, Berlin,

Heidelberg.

[9] Zhang, H. (2004). The optimality of naive Bayes. Aa, 1(2), 3.

[10] Nick, T. G., & Campbell, K. M. (2007). Logistic regression. Topics in biosta-

tistics, 273-301.

[11] Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-

227.

 -34-

[12] Jiang, L., Cai, Z., Wang, D., & Jiang, S. (2007, August). Survey of improving

k-nearest-neighbor for classification. In Fourth international conference on fuzzy

systems and knowledge discovery (FSKD 2007) (Vol. 1, pp. 679-683). IEEE.

[13] Space, T. (2006). J. Han and M. Kamber, Data Mining: Concepts and Tech-

niques. Morgan Kaufmann, 9, 918-929.

[14] «Precision» [Online]. Available: https://c3.ai/glossary/machine-learning/pre-

cision/

[15] «Precision and Recall in Machine Learning» [Online]. Available:

https://www.javatpoint.com/precision-and-recall-in-machine-learning

[16] «Understanding the Confusion Matrix and How to Implement it in Python,»

[Online]. Available: https://towardsdatascience.com/understanding-the-confu-

sion-matrix-and-how-to-implement-it-in-python-319202e0fe4d

[17] Tjortjis, C. (2020). Mining Association Rules from Code (MARC) to support

legacy software management. Software Quality Journal, 28(2), 633-662.

[18] Papas, D., & Tjortjis, C. (2014, May). Combining clustering and classification

for software quality evaluation. In Hellenic Conference on Artificial Intelligence

(pp. 273-286). Springer, Cham.

[19] Kanellopoulos, Y., Antonellis, P., Tjortjis, C., Makris, C., & Tsirakis, N.

(2011). k-Attractors: a partitional clustering algorithm for numeric data analysis.

Applied Artificial Intelligence, 25(2), 97-115.

https://towardsdatascience.com/understanding-the-confusion-matrix-and-how-to-implement-it-in-python-319202e0fe4d
https://towardsdatascience.com/understanding-the-confusion-matrix-and-how-to-implement-it-in-python-319202e0fe4d

