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Abstract 

With the continuous technological evolution, the amount of software that is implemented 

is constantly increasing. Also, due to the fact that electronic devices are nowadays a sig-

nificant part of people’s lives, there is a need for the software to become increasingly 

better. As the demand grows so does the need to produce new software and improve the 

existing one. In order to achieve the upgrade of the existing software as quickly as possi-

ble while remaining on budget, in this dissertation, a number of data mining techniques 

were used. Many techniques have been used in previous research for software defect de-

tection. In this dissertation, some of those techniques were applied in data extracted from 

the source code of notepad++ to find bugs and defects. Finally, the results of these tech-

niques will be validated using the actual changes that have been made in the next release 

of the chosen application and the purpose is to examine and compare the results of the 

algorithms that were used. 
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1 Introduction 

As the need for software-based solutions increases so does the need to create maintainable 

and extendable code. Regardless of the size of a project, software maintenance can be a 

very difficult goal to achieve, and it requires a lot of time, effort and human resources [1]. 

Due to this, the cost of software maintenance is also significantly high so it is crucial to 

find suitable methods in order to detect software defects in an early stage. 

Predicting software components that are prone to defects is a key objective in software 

engineering. This would make it possible to allocate testing resources effectively and 

make better-informed choices regarding the caliber of releases [2]. Consequently, there 

are numerous studies on software quality and software defect prediction [17],[18],[19].  

Metrics can be used to analyze code quality and maintainability and to assess the charac-

teristics of software. Then data mining can be used to extract information and find hidden 

patterns in data, enabling the analysis of software metrics for maintenance reasons. Data 

mining is seen as a good solution for huge, unfamiliar software systems since it can handle 

massive volumes of data without any prior subject expertise [3].  

In this dissertation, research has been conducted in order to find the defective files using 

a dataset produced from the source code of notepad++. This dataset has been produced 

by extracting some metrics from the source files of twenty-six releases of the open-source 

program notepad++. After the files of each of those releases had been classified to defec-

tive or non-defective, various data mining techniques were applied to this data in order to 

classify either a subset of these files or the files of the last release of notepad++, which at 

the time that this dissertation is conducted is the 8.4.5 release. During this research eight 

different experiments have been conducted, each with a different combination of training 

and test dataset.  

The purpose of this dissertation is to compare various data mining techniques by applying 

to a portion of the whole dataset and to the data of the newest release of notepad++ and 

evaluate those results using the data of the next release of the application.  

The results of this dissertation shows that the combination of the defective and non-de-

fective samples in the training set can significantly affect the produced metrics of all the 
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models. Also, it is observed that in the case that an extremely highly uneven dataset is 

used as training set and the dataset of the last release of the application as test set, the ML 

algorithm that was affected the most was Support Vector Machine (SVM). Finally, when 

the dataset consists of the same number of defective and non-defective samples and 20% 

of that is used as test data the models give the best results in terms of precision, recall and 

f1-score. 

The remaining of this dissertation is organized as follows: Chapter 2 introduces key con-

cepts on software defect detection and data mining and briefly describes related work that 

have been done in the past. Chapter 3 discusses the dataset that is used during this disser-

tation and the methodology that were used. Chapter 4 presents experimental results. Fi-

nally, Chapter 5 discusses these results and evaluates threats to validity and Chapter 6 

concludes this dissertation with the conclusions that can be extracted from the results and 

with directions for further work. 
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2 Background 

In this chapter related work that was conducted in the past as well as some important 

definitions used in this dissertation are presented. 

2.1 Literature review 

2.1.1 Software defect detection 

The main elements influencing software quality are software defects. Several things can 

lead to software defects. The main determinants of the factors are the features of the soft-

ware itself and the technical implementation, such as the scale and complexity of the 

software, the developers' comprehension of the client's requirements, the grammar and 

algorithms employed during project development, and the degree of teamwork. Software 

defects are mostly caused by coding mistakes [5].  

Software defect prediction is an active research topic in the field of computer science. 

Predictions might be dynamic or static when it comes to software defects. The majority 

of dynamic software defect prediction relies on empirical or statistical methods to esti-

mate the allocation of software defects throughout the course of the software's life cycle. 

On the other hand, static software defect prediction develops a model for forecasting the 

number and the allocation of defects in undisclosed modules based on software defect 

metrics. Despite the fact that several software defect prediction approaches have been 

suggested, the technology is still regarded as imprecise [5].  

As it is referred above static software defect detection is depending on software metrics. 

Software metrics are indices and parameters that characterize the properties of software 

products and offer a measure of software quality. The McCabe, Halstead, Childamber 

Kemerer, and complexity metrics are current software metrics, which are widely used in 

software defect prediction [5].  

The subset of software metrics that is called software quality metrics is concerned with 

the project, process, and product quality. Product metrics are used to define a product's 

attributes, such as its size, complexity, design characteristics, efficiency, and degree of 

quality. To improve software development and maintenance, process metrics can be used, 
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such as the effectiveness of defect removal during development, the pattern of testing 

fault arrival, and consequently the reaction time of the fix process. The number of soft-

ware engineers, the pattern of staffing over the course of the software life cycle, cost, 

timeline, and efficiency are only a few examples of the project features and execution that 

are described by project metrics [6].  

The objectives of existing metrics-based software defect prediction solutions may be es-

sentially separated into two categories: ranking and categorization. The former seeks to 

forecast the quantity of problems in software modules, while the latter seeks to forecast 

if the module includes defects at all. Both of the preceding methodologies, which have 

been investigated for decades, assist developers in efficiently deploying resources [5].  

Akiyama developed the Akiyama model, which is a relationship between the number of 

defects and lines of code (LOC). Following that, Arthur, Ottensteln, and Lipow hypothe-

sized a relationship between defect count and complexity measures. These models just 

have one variable, such as LOC. With the increasing diversity of metrics, several regres-

sion approaches, such as multiple linear regression, negative binomial regression (NBR), 

SVMs, and random forest algorithms, are employed to describe the relationship between 

metrics and the number of errors. Several classification techniques have been employed 

concurrently to build software defect prediction models for completing a classification 

task [5]. 

2.1.2 Data Mining 

The process of extracting implicit, previously undiscovered, and possibly beneficial in-

formation from data is known as data mining. It involves looking for patterns in vast 

quantities of data using methods like classification, association rule mining, and cluster-

ing [1]. Various of those techniques as well as some combinations of them have been 

used for software defect detection. In this dissertation, only classification methods have 

been used. 

2.1.3 Data Mining Algorithms Selection 

As it is mentioned above from all the different data mining techniques that can be used 

for software defect detection in this dissertation only classification techniques have been 

used. More specifically for the experiments that have been conducted during this disser-

tation five Machine Learning (ML) models have been used. Those models are SVMs, 

Naïve Bayes, Logistic regression, Random Forest and k-Nearest Neighbors (kNN).  
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2.1.3.1 Support vector machine description 

SVMs are a group of associated supervised learning techniques applied to regression and 

classification problems. SVMs are systems that use the hypothesis space of a linear func-

tion in a high-dimensional feature space and are trained using an optimization theory-

based learning algorithm that incorporates a learning bias [7]. 

2.1.3.2 Naïve Bayes description 

One of the best and most productive classification methods is naive Bayes. A learner 

attempts to build a classifier from a set of training examples with class labels in classifi-

cation learning tasks [8]. 

The simplest type of Bayesian network is a naive bayes network, in which all character-

istics are independent of one another regardless of the value of the class variable. This is 

known as conditional independence. It is clear that most real-world applications rarely 

satisfy the conditional independence assumption. Extending the structure of naive Bayes 

to explicitly indicate attribute dependencies is an easy way to get around this disadvantage 

[9]. 

2.1.3.3 Logistic regression description 

Logistic regression models are statistical models that describe the relationship between a 

qualitative dependent variable (that is, one that can only take particular discrete values) 

and an independent variable. 

To investigate the influence of predictor variables on categorical outcomes, logistic re-

gression models are used. When the outcome is typically binary, such as the existence or 

absence of an illness, binary logistic model is used. A logistic regression model is referred 

to as simple logistic regression when it has just one predictor variable. The model is 

known as a multiple or multivariable logistic regression when there are numerous predic-

tors, including categorical and continuous variables as predictors [10]. 

2.1.3.4 Random Forest description 

Random forest is a supervised learning approach that follows the straightforward yet pow-

erful "divide and conquer" principle: sample subsets of the data, generate a random tree 

predictor on each tiny piece, then combine these predictors [11]. 

The fact that forests may be used to solve a variety of prediction issues and only require 

a small number of tuning parameters has tremendously boosted their popularity. The ap-

proach is well known for its accuracy, minimal sample sizes, and high-dimensional 
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feature spaces in addition to being straightforward to apply. It also has the ability to han-

dle big real-world systems because it is quickly parallelizable [11]. 

2.1.3.5 k-Nearest Neighbors (kNN) description 

In classification issues, kNN has been widely employed. KNN is built on a distance func-

tion, which calculates how different or similar two instances are. The distance function is 

frequently the typical Euclidean distance d(x, y) between two instances, x and y [12]. 

KNN determines the most prevalent class of an instance x's k nearest neighbors for an 

instance x. Also, KNN is a case of lazy learning. Lazy learning merely saves training data 

at the time of training and postpones learning until the time of categorization. While eager 

learning creates an explicit model during training [12]. 

2.2 Related work 

2.2.1 Using Classifiers for Software Defect Detection 

One of the related studies that have been conducted in the past is the work by Perreault et 

al. In this study, the performance of five classifiers is assessed in the context of software 

defect detection. Those classifiers are naive Bayes, neural networks, support vector ma-

chines (SVM), logistic regression, and k-nearest neighbor (kNN). For the assertion of 

each of those classifiers five datasets from the NASA metrics data program repository 

were used. Regarding the evaluation of those models, accuracy and F1-score were used 

to assess performance, while an ANOVA was used to assess significance [4]. 

The objective of this study was to ascertain whether or not the classifier that is used mat-

ters while attempting to forecast and detect software defects. This is tested by putting a 

number of classifier models into practice and evaluate how well they perform on datasets 

for defect detection [4]. 

The datasets targeted for defect detection in this work are those where each datapoint 

corresponds to a snapshot of the underlying source code. Each datapoint's properties are 

designed to give a clue as to whether or not the code is flawed [4]. 

In this study, two simultaneous sets of experiments were conducted using several metrics 

in order to prevent biasing one particular metric. The null hypothesis for the accuracy 

experiments asserts that there is no change in classification accuracy depending on the 

classifier selected. Similar to this, the null hypothesis for the F1 experiments is that there 

is no variation in the F1 measure between classifiers. These hypotheses are intended to 
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provide a response to the query of which classifier, if any, should be used for defect pre-

diction in software systems [4]. 

By analyzing the results, it is observed that in every instance, there is little to no difference 

between using accuracy and F1 as a response variable. Despite how intriguing this mate-

rial is, no conclusions can be made from it that are not reliant on intuition. Also, results 

reveal that all models, albeit being unsophisticated, can reliably identify software flaws 

using static program properties. Finally, it becomes apparent that for some datasets, the 

remaining methods outperformed Bayes and SVMs [4]. 

2.2.2 Data mining techniques for software defect detection 

Different data mining techniques have been used over the years in order to detect software 

defects. One of those is the self-organizing data mining method (SODM). The fundamen-

tal component of this method is the group method of data handling (GMDH), which di-

vides the data into training and test sets. The exterior criterion is used to choose the inte-

rior candidate model in the training set, and the interior criterion is used to estimate the 

parameters. Until the external criterion value is no longer improved, this process is re-

peated. This termination rule provides plausible predictions at a specific degree of noise 

and ensures the accuracy of data fitting, resulting in a complexity model with ideal bal-

ance [5].  

Another widely used method is regression. Regression is a statistical method for assessing 

the connection between several variables. It examines the connection between independ-

ent or predictor variables and the dependent or response variable. A mathematical equa-

tion that predicts the response variable as a linear function of the predictor variable rep-

resents the connection [6].  

In addition, association rule mining is an approach for locating intriguing connections 

between variables in huge databases. Finding associations or connections between groups 

of elements or objects in a database is the objective. Finding rules that can anticipate the 

occurrence of an item based on the occurrence of other things is basically its main purpose 

[6].  

Clustering is the process of organizing a group of objects into groups or clusters whose 

members share some characteristics. It involves clustering a collection of things so that 

they are similar to one another and different from those in other clusters [6].  
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Classification is another technique that has been used which entails foreseeing a specific 

consequence of a given input. The input data for a classification approach, sometimes 

referred to as a training set, contains all the objects that have previously been assigned 

class labels. The goal of a classification algorithm is to study the training data set, learn 

from it, and create a model. The classification of test data for which the class labels are 

unknown is then performed using this model. Some widely known classification tech-

niques are: Neural Networks, Decision Trees, Naive Bayes, SVMs, Case Based Reason-

ing. 
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3 Data and methodology  

3.1 Data Preparation 

The first step of this dissertation was the creation of the dataset that were used later on in 

the experiments that were conducted. The program that was examined was notepad++ 

and in order to examine this program and find which of its files will be defective in the 

next release, a dataset with the metrics of each of the examined files of this program 

needed to be created. For this purpose, the LocMetrics program was used. This is a soft-

ware tool that was used in order to extract metrics from some of the releases of notepad++. 

LocMetrics extracts metrics on file, folder and function level but in this dissertation, the 

reports on a file level will be used.  

Using this program, twenty-six reports have been generated one for each of the 8.0, 8.1, 

8.1.1, 8.1.2, 8.1.3, 8.1.4, 8.1.5, 8.1.6, 8.1.7, 8.1.8, 8.1.9, 8.1.9.1, 8.1.9.2, 8.1.9.3, 8.2, 

8.2.1, 8.3, 8.3.1, 8.3.2, 8.3.3, 8.4, 8.4.1, 8.4.2, 8.4.3, 8.4.4 and 8.4.5 of the notepad++ 

releases.  

The reports that have been generated are referring to all the files of the source code of 

each release that have either of the following types: *.cpp, *.h, *.hpp. The columns of the 

dataset that was created and their meaning are shown in Table 1 below: 

 

LOC Lines of Code 

SLOC-P Source Lines of Code-Physical: Physically 

executable source lines of code 

SLOC-L Source Lines of Code-Logical: Logically ex-

ecutable source lines of code 

MVG McCabe's VG Cyclomatic Complexity: A 

measure of the decision complexity of the 

functions which make up the program. The 

number of linearly independent paths across 

a directed acyclic graph, which depicts the 
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control flow of a subprogram, is the precise 

definition of this metric. The analyzer counts 

this by recording the number of distinct deci-

sion outcomes contained within each func-

tion, which yields a good approximation to 

the formally defined version of the measure. 

BLOC Blank Lines of Code 

C&SLOC Code and Comment lines of code 

CLOC Comment only lines of code 

CWORD Commentary Words 

HCLOC Header Comment Lines of code 

HCWORD Header Commentary Words 

Table 1. The metrics of the notepad++ generated dataset.  

In addition to all of the above metrics in each report on a file level that have been gener-

ated two additional columns have been added. The first column that was added includes 

the release in which each file and its corresponding metrics belong, and the second col-

umn consists of true of false depending on if the corresponding file is considered defective 

or not. As the code of the notepad++ is available online it is more optimal to compare the 

branch of each release with its next and find the files that have been changed and marked 

them as defective while all the others will be marked as non-defective. More specifically 

in this dataset a file is consider as defective if it has been edited in any way during a 

commit that declares that is fixing something. If a file is not edited in a commit with the 

word “fix” in its title or description is marked as non-defective.  

For the creation of the dataset that was used in this dissertation all the LocMetrics reports 

on file level that have been generated for all of the above releases except from release 

8.4.5 were added in a common csv file. The data for the 8.4.5 release were excluded in 

order to be used as test data in some of the experiments that were conducted during this 

dissertation. 

The dataset that is created has thirteen columns-attributes and 14038 samples, 13752 of 

which are non-defective and 286 defective. 

In order to use those data as input in various ML algorithms some preprocessing needed 

to be performed. The first step was to observe if there are any null values in the dataset. 



  -11- 

After the usage of the appropriate python code, it is observed that this dataset does not 

contain any null values. The next step was to remove the “File” column that contains the 

file names and the “RELEASE” column that contains the release in which each file be-

longs, as those are both objects and cannot be used to train the model. The final step was 

to transform the values of “DEFECTS” column to integers, so that the true becomes one 

(1) and the false zero (0). Then the transformed values of the “DEFECTS” column were 

removed from the dataset and added to a new variable as this column contains the results. 

3.2 Methodology 

In order to perform software defect detection on the data described in the previous section 

various ML models have been used.  

The ML models that were applied were Support Vector Machines (SVMs), Naïve Bayes, 

Logistic regression, Random Forest and k-Nearest Neighbors (kNN). Those algorithms 

have been used to conduct eight different experiments. These experiments differ from 

each other in terms of the training set and the test set of the ML algorithms that are used 

in them, as it is shown in figure 3.1. 

 

Figure 3.1. Methodology as a diagram. 

In the first experiment, the dataset that was used for each of those models were only part 

of the original dataset. More specifically, the dataset used in this experiment consists of 
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50% non-defective samples and 50% defective. This subset of the original dataset is cho-

sen in order to train and test the models using a balanced dataset.  

In order to create this dataset, the number of the defective samples of the original dataset 

needed to be found. As the defective samples were found to be 286, this number was used 

in order to randomly extract an equal number of samples from the 13752 samples of the 

subset of the non-defective samples. Then by combining those two subsets the new da-

taset that were used in this experiment were created. 

The need to create this balanced dataset with only part of the original dataset has been 

created due to the fact that the original dataset is highly imbalanced. The original dataset 

contains 14038 samples, 13752 of which have been declared as non-defective and only 

286 of them as defective. This imbalance between the samples of these two categories 

was expected as it is normal for a project to have more non-defective files than defective 

ones. In the first experiment that was conducted 20% of the dataset that was used was 

randomly selected in order to be used as test dataset. Then all the ML algorithms that is 

mentioned above have been used with the 80% of the new dataset as training set and with 

20% of it as test dataset.  

During the second experiment the same algorithms were used but this time the dataset 

that was used consisted of 90% non-defective samples and 10% defective. This new da-

taset was acquired in a similar way with the dataset of the first experiment. More specif-

ically, given that the 10% of the new dataset needed to be the 286 defective samples, the 

size of the new dataset was calculated to be 2860. Then a subset of 2860*0.9=2574 sam-

ples was randomly extracted from the subset of the non-defective samples. The defective 

and non-defective samples that were extracted were added in the same dataset which is 

the dataset that was used in this experiment. Finally, 80% of this dataset were used to 

train the chosen models and 20% of this were used to test them. 

The third experiment is similar to the second but in this experiment the dataset that was 

used included 80% of non-defective samples and 20% of defective ones. In order to create 

this dataset, the same methodology as in the second experiment were used. The difference 

is that in this case given that the 286 defective samples should be the 20% of the new 

dataset, the size of the new dataset was calculated to be 1430. As a result, 1430*0.8=1144 

of the non-defective samples were extracted to be used in the new dataset. After the de-

fective and non-defective subsets are added to the new dataset, 80% of this dataset is used 

to train the models and 20% of it is used to test them. 
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The fourth experiment were the one where the whole dataset was used. In this experiment 

the initial imbalanced dataset was used without any alteration and more precisely 80% of 

it was used as training dataset and 20% of it as test dataset for all models as in the previous 

experiments 

The fifth experiment differed from the previous ones as in this the whole dataset was used 

as training data and the data that were extracted from the release 8.4.5 -final release from 

which data could be extracted was used as test data.  

The other three experiments that were conducted were similar to the fifth as they also had 

the data that were extracted from the release 8.4.5 as test data but the training dataset 

differed in each one of them.  

More specifically, in the sixth experiment the training dataset is the one that consists of 

90% non-defective and 10% defective samples, in the seventh experiment the training 

dataset is the one that consists of 80% non-defective and 20% defective samples and fi-

nally, in the eighth experiment the training dataset is the one that consists of 50% non-

defective and 50% defective samples.  

3.3 Evaluation metrics 

 

Each of the models that were used, produce some metrics that will be used afterwards for 

their comparison. Those metrics are accuracy, precision, recall and f1-score.  

Accuracy is defined as the percentage of the correctly classified units and is calculated 

by dividing the summary of true positives (TP) and true negatives (TN), with the sum-

mary of all samples [2],[13]. In this dissertation, true positives are the samples that were 

defective and were predicted as defective and true negatives are the samples that were 

non-defective and were predicted as non-defective. 

Precision, or the caliber of a successful prediction made by the model, is another measure 

of the model's performance. Precision is calculated by dividing the proportion of true 

positives by the total number of positive predictions [14].  

The recall is determined as the proportion of positive samples that were correctly identi-

fied as positive to all positive samples. Recall measures the model's ability to recognize 

positive samples. The recall increases as more positive samples are found [15]. 
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The F1 score is defined as the harmonic mean of recall and precision. It can receive a 

minimum score of 0 and a maximum score of 1 (perfect recall and precision). Overall, it 

is an indicator of how accurate and reliable the model is [16].  

A Confusion Matrix displays all of those metrics. An evaluation tool for classification 

models is a condensed table known as a confusion matrix, sometimes known as an error 

matrix. The number of accurate and incorrect predictions for each class is expressed using 

count values [16]. An example of a confusion matrix is shown in figure 3.2. 

 

Figure 3.2. Example of a confusion matrix [2] 
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4 Results 

4.1 Results from the experiments’ perspective 

Experiment 1 

As it is mentioned above in every experiment five ML methods have been applied. From 

the results of the first experiment where only 286 samples for each category (defective 

and non-defective) were used, the metrics that were described in the previous chapter for 

each model are generated and are shown in Table 2 and in Figure 4.1. 

models accuracy precision recall f1-score 

SVM 80 86,207 76,923 81,301 

Logistic Regression 80,87 90,566 73,846 81,356 

Naive Bayes 68,696 87,179 52,308 65,385 

Random Forest 79,13 83,607 78,462 80,952 

KNeighbors 82,609 80,822 90,769 85,507 

Table 2. Metrics of all models when applied to a dataset with 50% non-defective and 50% 

defective samples. 
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Figure 4.1. Metrics of all models when applied to a dataset with 50% non-defective and 

50% defective samples.  

From the above results it is apparent that the ML algorithm with the best accuracy is k-

nearest neighbor, while the algorithm with the worst accuracy is Naïve Bayes. The lo-

gistic regression algorithm is also the one with the best precision while k-nearest neighbor 

has the worst one. However, k-nearest neighbor has also the best recall and f1 score where 

Naïve Bayes has the least optimal results for both of those metrics.  

 

Experiment 2 

In the second experiment in which 90% of the dataset that were used was non-defective 

and only 10% defective the results seem to differ. As it is shown in Table 3 and Figure 

4.2 in this experiment the best results seem to be those of logistic regression regarding 

accuracy and precision and those of random forest regarding recall and f1 score. The less 

accurate results seem to be those of k-nearest neighbor as it has the smallest accuracy and 

precision and those of support vector machine as it has the smallest recall and f1 score. 

models accuracy precision recall f1-score 

SVM 91,259 68,75 19,643 30,556 

Logistic Regression 91,958 72,727 28,571 41,026 
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Naive Bayes 90,734 54,545 32,143 40,449 

Random Forest 90,734 53,488 41,071 46,465 

KNeighbors 90,909 56,25 32,143 40,909 

Table 3. Metrics of all models when applied to a dataset with 90% non-defective and 10% 

defective samples. 

 

 

Figure 4.2. Metrics of all models when applied to a dataset with 90% non-defective and 

10% defective samples.  

 

Experiment 3 

The results of the third experiment where the 80% of the samples were non-defective and 

only 20% defective are shown in Table 4 and Figure 4.3. In this experiment Naïve Bayes 

has given the best accuracy while support vector machine has given the best precision. 

The most optimal results regarding the recall and the f1-score were those of random for-

est, while logistic regression had the less optimal results in all metrics. 

models accuracy precision recall f1-score 

SVM 86,014 83,333 35,714 50 
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Logistic Regression 83,217 63,333 33,929 44,186 

Naive Bayes 86,364 81,481 39,286 53,012 

Random Forest 85,664 67,442 51,786 58,586 

KNeighbors 84,965 65,854 48,214 55,67 

Table 4. Metrics of all models when applied to a dataset with 80% non-defective and 20% 

defective samples. 

 

 

Figure 4.3. Metrics of all models when applied to a dataset with 80% non-defective and 

20% defective samples.  

 

Experiment 4 

The fourth experiment that was conducted -the one where the whole dataset was used- 

resulted in the metrics that are shown in Table 5 and Figure 4.4. 

models accuracy precision recall f1-score 

SVM 97,899 50 3,39 6,349 

Logistic Regression 97,187 16,667 8,475 11,236 

Naive Bayes 96,296 21,519 28,814 24,638 
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Random Forest 97,685 37,5 15,254 21,687 

KNeighbors 97,792 38,462 8,475 13,889 

 

Table 5. Metrics of all models when applied to the whole dataset. 

 

 

Figure 4.4. Metrics of all models when applied to the whole dataset.  

In this figure is apparent that the model with the bigger accuracy and precision was the 

support vector machine. On the other hand, support vector machine had the smallest recall 

and f1 score while the naïve bayes was the model with the bigger ones.  

 

Experiment 5 

The fifth experiment that was conducted was the one where the whole dataset was used 

as training data while the data from the last release 8.4.5 was used as the test data. The 

results of this experiment are shown in Table 6 and Figure 4.5. From the figure it is ap-

parent that the experiment gave the less optimal results regarding the other experiments. 

The accuracy is high for all algorithms, but the other metrics seem to be small. The algo-

rithm with the less optimal results in this case is support vector machine as aside from the 
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accuracy all the other metrics are zero. Random forest has the best accuracy and precision 

and naïve bayes has the best recall and f1 score.  

models accuracy precision recall f1-score 

SVM 97,007 0 0 0 

Logistic Regression 96,655 20 6,25 9,524 

Naive Bayes 95,423 25 31,25 27,778 

Random Forest 97,183 50 18,75 27,273 

KNeighbors 97,007 40 12,5 19,048 

Table 6. Metrics of all models when applied to a dataset with the last release’s data as test 

data. 

 

 

Figure 4.5. Metrics of all models when applied to a dataset with the last release’s data as 

test data.  

Experiment 6 

The results of the sixth experiment where the test dataset were the data from the 8.4.5 

release and as training data were a dataset with 90% non-defective and 10% defective 

samples are shown in the Table 7 and the Figure 4.6 below. 
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models accuracy precision recall f1-score 

SVM 96,831 33,333 12,5 18,182 

Logistic Regression 95,951 29,412 31,25 30,303 

Naive Bayes 94,718 20,833 31,25 25 

Random Forest 96,479 40 50 44,444 

KNeighbors 95,775 30 37,5 33,333 

Table 7. Metrics of all models when applied to a dataset with the last release’s data as test 

data and trained with 90 and 10 percent of non-defective – defective samples, respec-

tively. 

 

 

Figure 4.6. Metrics of all models when applied to a dataset with the last release’s data as 

test data and trained with 90 and 10 percent of non-defective – defective samples, respec-

tively.  

 

From the above results it is obvious that support vector machine is the algorithm with the 

best accuracy when random forest is the algorithm with the best precision, recall and f1-
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score. The least accurate results belong to naïve bayes in terms of accuracy and precision 

and to the support vector machine algorithm in terms of recall and f1-score.  

Experiment 7 

In the seventh experiment where the test data were the last release’s data and the training 

data included 80% of non-defective and 20% of defective samples, support vector ma-

chine has the best accuracy while random forest has the best precision and f1-score. The 

best recall is the one of kNN. The results for this experiment are shown in Table 8 and 

Figure 4.7 below. The least accurate precision, recall and f1-score belong to logistic re-

gression. 

 accuracy precision recall f1-score 

SVM 94,542 20 31,25 24,39 

Logistic Regression 94,014 17,857 31,25 22,727 

Naive Bayes 94,014 17,857 31,25 22,727 

Random Forest 92,782 22,222 62,5 32,787 

KNeighbors 90,845 18,966 68,75 29,73 

Table 8. Metrics of all models when applied to a dataset with the last release’s data as test 

data and trained with 80 and 20 percent of non-defective – defective samples. 
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Figure 4.7. Metrics of all models when applied to a dataset with the last release’s data as 

test data and trained with 80 and 20 percent of non-defective – defective samples.  

 

Experiment 8 

In the eighth experiment where the test data were the last release’s data and the training 

data included 50% of non-defective and 50% of defective samples, naïve bayes had the 

best accuracy, precision and f1-score when kNN had the best recall. Also, kNN algorithm 

had the least accurate results in terms of accuracy, precision and f1-score. The results of 

this experiment are shown in Table 9 and Figure 4.8 below. 

models accuracy precision recall f1-score 

SVM 86,444 10,39 50 17,204 

Logistic Regression 86,092 12,048 62,5 20,202 

Naive Bayes 92,077 16,279 43,75 23,729 

Random Forest 82,394 10,377 68,75 18,033 

KNeighbors 76,937 9,22 81,25 16,561 

Table 9. Metrics of all models when applied to a dataset with the last release’s data as test 

data and trained with 50 and 50 percent of non-defective – defective samples. 
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Figure 4.8. Metrics of all models when applied to a dataset with the last release’s data as 

test data and trained with 50 and 50 percent of non-defective – defective samples. 

4.2 Results from the models’ perspective 

 

In the previous section the results of all models are displayed grouped by the experiment 

in which they were created. As it is also interesting to see those results from the models’ 

perspective, in this section the results of all models in every experiment will be shown 

grouped by model. 

 

Support vector machine 

The first algorithm that was applied in every experiment that was conducted was support 

vector machine (SVM). The results of this algorithm for each of the experiments in which 

it was used differ significantly and the evaluation metrics (accuracy, precision, recall and 

f1-score) of this model are shown in the Table 10 below: 

Experiments Accuracy Precision Recall F1-score 

Experiment 1 80 86,207 76,923 81,301 

Experiment 2 91,259 68,75 19,643 30,556 

Experiment 3 86,014 83,333 35,714 50 

Experiment 4 97,899 50 3,39 6,349 

Experiment 5 97,007 0 0 0 

Experiment 6 96,831 33,333 12,5 18,182 

Experiment 7 94,542 20 31,25 24,39 

Experiment 8 86,444 10,39 50 17,204 

Table 10. Metrics of Support vector machine model for all experiments 

 

From the table 10 above it is observed that the best result of the support vector machine 

algorithm regarding precision, recall and f1-score was achieved in the first experiment 

where the data that were used consisted of 50% defective samples and 50% non-defective 

samples and 20% of those samples were used as test data. However, the best results 
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regarding the accuracy of the model were achieved during the fourth experiment where 

the whole original dataset was used for the training and the testing of the models. 

Regarding the experiments where the dataset of release 8.4.5 was used, the fifth experi-

ment where the whole dataset where used had the best accuracy, the sixth experiment 

where the dataset consists of 90% non-defective and 10% defective samples had the best 

precision and f1 score and the eighth experiment where the dataset consists of 50% non-

defective and 50% defective samples had the best recall. 

 

Logistic Regression 

The second algorithm that was applied in every experiment that was conducted was lo-

gistic regression. The results of this algorithm for each of the experiments regarding the 

evaluation metrics (accuracy, precision, recall and f1-score) of this model are shown in 

the Table 11 below: 

Experiments Accuracy Precision Recall F1-score 

Experiment 1 80,87 90,566 73,846 81,356 

Experiment 2 91,958 72,727 28,571 41,026 

Experiment 3 83,217 63,333 33,929 44,186 

Experiment 4 97,187 16,667 8,475 11,236 

Experiment 5 96,655 20 6,25 9,524 

Experiment 6 95,951 29,412 31,25 30,303 

Experiment 7 94,014 17,857 31,25 22,727 

Experiment 8 86,092 12,048 62,5 20,202 

Table 11. Metrics of Logistic Regression model for all experiments 

 

From the table 11 above it is observed that the best result of the logistic regression algo-

rithm regarding precision, recall and f1-score was achieved in the first experiment where 

the data that were used consisted of 50% defective samples and 50% non-defective sam-

ples and 20% of those samples were used as test data. However, the best results regarding 

the accuracy of the model were achieved during the fourth experiment. 
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Also, similarly with the SVM among the experiments that use the dataset of release 8.4.5 

as test data, experiment 5 had the best accuracy, experiment 6 had the best precision and 

f1-score and experiment 8 had the best recall. 

 

Naive Bayes 

Every experiment that was conducted used naive bayes as the third algorithm. The eval-

uation metrics (accuracy, precision, recall, and f1-score) for this model are presented in 

Table 12 below. It is observed that the outcomes of this approach for each experiment in 

which it was applied vary greatly. 

Experiments Accuracy Precision Recall F1-score 

Experiment 1 68,696 87,179 52,308 65,385 

Experiment 2 90,734 54,545 32,143 40,449 

Experiment 3 86,364 81,481 39,286 53,012 

Experiment 4 96,296 21,519 28,814 24,638 

Experiment 5 95,423 25 31,25 27,778 

Experiment 6 94,718 20,833 31,25 25 

Experiment 7 94,014 17,857 31,25 22,727 

Experiment 8 92,077 16,279 43,75 23,729 

Table 12. Metrics of Naïve Bayes model for all experiments 

 

The first experiment, in which the data utilized consisted of 50% defective samples and 

50% non-defective samples and 20% of those samples were used as test data, produced 

the best results for the naive bayes algorithm in terms of precision, recall, and f1-score. 

However, the fourth experiment where the whole original dataset was used produced the 

best outcome in terms of the model's accuracy. 

Regarding the experiments 5-8 where the data of the last release where used as test data, 

experiment 5 had the best accuracy, precision and f1-score, while experiment 8 had the 

best recall. 

Random Forest 

The fourth method, random forest, was also employed in all experiments. Table 13 below 

lists the model's evaluation metrics (accuracy, precision, recall, and f1-score). For each 
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experiment in which this method was used, it has been noticed that the results varied 

substantially. 

Experiments Accuracy Precision Recall F1-score 

Experiment 1 79,13 83,607 78,462 80,952 

Experiment 2 90,734 53,488 41,071 46,465 

Experiment 3 85,664 67,442 51,786 58,586 

Experiment 4 97,685 37,5 15,254 21,687 

Experiment 5 97,183 50 18,75 27,273 

Experiment 6 96,479 40 50 44,444 

Experiment 7 92,782 22,222 62,5 32,787 

Experiment 8 82,394 10,377 68,75 18,033 

Table 13. Metrics of Random Forest model for all experiments 

From the results of the above table, it is apparent that random forest such as the previous 

models has a better accuracy score in the fourth experiment and a better score regarding 

the precision, the recall and the f1-score in the first experiment. The first experiment is 

the one where the data utilized consisted of 50% defective samples and 50% non-defec-

tive samples and 20% of those samples were used as test data. The fourth experiment was 

the experiment where the whole dataset was used and 80% of this dataset were used to 

train the models and 20% of it were used in order to test them. 

From the results of the experiments where the test dataset is the data of the last release, it 

is observed that experiment 5 had the best accuracy and precision, experiment 6 had the 

best f1-score and experiment 8 had the best recall. 

 

k-nearest neighbors 

In all experiments, the fifth and final technique that were used is kNN. Metrics for eval-

uating the model are listed in Table 14 below. It has been noted that the outcomes for 

every experiment in which this method was applied differed greatly. 

Experiments Accuracy Precision Recall F1-score 

Experiment 1 82,609 80,822 90,769 85,507 

Experiment 2 90,909 56,25 32,143 40,909 
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Experiment 3 84,965 65,854 48,214 55,67 

Experiment 4 97,792 38,462 8,475 13,889 

Experiment 5 97,007 40 12,5 19,048 

Experiment 6 95,775 30 37,5 33,333 

Experiment 7 90,845 18,966 68,75 29,73 

Experiment 8 76,937 9,22 81,25 16,561 

Table 14 Metrics of kNN model for all experiments 

From the findings in the table above, it is clear that kNN, like the previous models, per-

formed better in terms of accuracy in the fourth experiment and precision, recall, and f1-

score in the first experiment.  

Among the experiments where the data of release 8.4.5 were used as test data, experiment 

5 had the best accuracy and precision, experiment 6 had the best f1-score and experiment 

8 had the best recall. 
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5 Discussion 

The results of the experiments that were conducted shows that there is not one ML algo-

rithm that has given the best result in all four metrics in any of the conducted experiments. 

However, there were experiments where there was one algorithm that had three out of the 

four metrics better that the other models. Those models are kNN in terms of accuracy, 

recall and f1-score in Experiment 1, Random Forest in terms of precision, recall and f1-

score in Experiment 6 and Naïve Bayes in terms of accuracy, precision and f1-score in 

Experiment 8. It is apparent that even in the experiments that one algorithm has the best 

results in the majority of the metrics it is not the same algorithm in more than one exper-

iment. 

Moreover, the results of this dissertation show that the SVM model is the one that is 

affected the most by the major imbalance of the non-defective and the defective samples 

in the dataset as it seems from the results of SVM in the experiment that the whole dataset 

was used. In this experiment the results of SVM were significantly worse that those of 

the other models. 

Similarly with the results of the work by Perreault et al in this dissertation there is not 

one classifier that gives the best results in all the experiments but also the is not one 

classifier that gives the worst. 

The current dissertation has many similarities with the work by Perreault et al, but it also 

has some differences. The most significant difference is regarding the datasets used. The 

datasets used in the study by Perreault et al. were from the NASA metrics data program 

repository while the dataset in this dissertation have been extracted from the source code 

of an existing program and instead of comparing the results of different datasets, in this 

dissertation variations of the same dataset were used [4]. 

5.1 Threats to validity 

One threat to validity is the metrics that were used to evaluate the results of the models 

in each experiment. The metrics that were used in this dissertation are accuracy, precision, 

recall and F1-score. Those metrics are commonly used to evaluate models that were used 
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in software defect detection. However, there are also other metrics that could have been 

used in the same case, some of them are F2-score and F0.5-score.  

Another threat to validity is the admission that all the files that are part of the commit that 

has in the title the word “fix” are defective. Although this is a valid admission it is possible 

that not all of the files that are involved in these commits are defective. However, even in 

this case as the purpose is to find the defective files in the application it is better to have 

classify a file as defective even if it is not than classified it as non-defective in case it is 

defective. 
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6 Conclusions and further work 

6.1 Conclusions 

In this dissertation various ML techniques have been applied to a dataset extracted from 

the source code of notepad++. This dataset was used in eight experiments. The ML algo-

rithms used in all experiments were SVM, Naive Bayes, Random Forest, kNN and logistic 

regression. Those experiments differ regarding the consistency of defective and non-de-

fective samples in the training dataset as well as regarding the data that were used as a 

test dataset. For the evaluation of the ML models in each of those experiments four met-

rics were used. Those metrics were accuracy, precision, recall and f1-score. From the 

results of those experiments, it is apparent that none of those algorithms has given the 

best results regarding all the metrics for all experiments, but in each experiment, there is 

one that is better regarding one or more metrics. What can be concluded from all of those 

experiments is that the consistency of the training data in defective and non-defective 

results has a major impact on the results of all models. Also, the best results for all metrics 

seem to be in the experiment where the dataset that was used consisted of 50% defective 

and 50% non-defective results and where 80% of this dataset was used as training data 

and 20% of it as test data. 

Moreover, regarding the results from the models’ perspective, it can be concluding that 

all the ML models that were used in this dissertation have their best accuracy score in the 

fourth experiment. This is the experiment where the whole dataset was used and 80% of 

that was used for the training and 20% for the testing. In addition, all the models had their 

best precision, recall and f1-score in the first experiment. The first experiment is the one 

where the dataset used consisted of equal number of defective and non-defective samples 

when 20% of them were used for testing the models. 

More generally, it is observed that all the models have better results in the experiments 

where 80% of the dataset is used as training data and 20% of the dataset as test data. Also, 

in those experiments the accuracy for all the models is better in the Experiment 4 where 

the whole dataset was used, while precision, recall and f1-score are better in Experiment 
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1 where the dataset that was used consisted of 50% non-defective and 50% defective 

samples. 

6.2 Further work 

There are several ways that this dissertation can be expanded in the future. Firstly, it 

would be interesting to see the results of the same models with other hyperparameters in 

order to examine if a better result can be achieved. Also new models can be used in the 

same variations of the dataset and the produced results can be compared to the existing 

ones. 

Moreover, other experiments can be added where the dataset that will be used will consist 

of other combinations of defective and non-defective samples of the existing dataset. 

These experiments can be conducted with the same models that were used in this disser-

tation or in all these experiments more models can be added. For example, two more 

models that could be added are Neural Network and Decision tree algorithms. 

Furthermore, the dataset used can be expanded by adding data from more versions of 

notepad++ or data from another program can be used with the same techniques in order 

to see how the change of the dataset impacts the results of the models used in this disser-

tation. 

Finally, using the results of this dissertation another research can be conducted one where 

the input features that are more likely to determine the result can be found. 
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