
 -i-

Data Mining for Smart Cities:

Energy prediction for public
buildings

Vasiliki Papanikolaou

SID: 3308180016

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

JANUARY 2021

THESSALONIKI – GREECE

-ii-

Data Mining for Smart Cities:

Energy prediction for public
buildings

Vasiliki Papanikolaou

SID: 3308180016

Supervisor: Prof. Christos Tjortjis

Supervising Committee Members: Prof. Georgios Tsirigotis

Prof. Panagiotis Bozanis

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

JANUARY 2021

THESSALONIKI – GREECE

 -iii-

Acknowledgements

I would like to take this opportunity to express my gratitude to the following people

who helped me during this project. First, I would like to thank my supervisor Professor

Christos Tjortjis for his support and guidance. Also, I would like to thank the members

of the Data Mining and Analytics laboratory of International Hellenic University who

helped me to come up with new ideas and visualize my research. Finally, I would wish

to thank my husband, my family and friends. This work would not have been completed

without their valuable help, continuous support and interest.

Vasiliki Papanikolaou

 January 4th, 2021

-iv-

Abstract

This dissertation was a part of the program of MSc in Data Science in the International

Hellenic University. The scope of the study is to use Big Data and data mining methods

in the prediction of the energy consumption loads of non-commercial buildings in Smart

Cities. This task was achieved through 9 cases of deployed models. The load prediction

was made through Random Forest, Gradient Boosting, Linear and Extreme Gradient

Boosting Regression models in 4 cases of the first stage and 3 cases on the second stage.

Hyper-parameter tuning and model optimization through k-Fold Cross Validation and

GridSearch CV methods took place in the second case scenarios. The results achieved

for load prediction were 85.65% for the first case and 94.38% for the second case. For

all the evaluations a dataset of 4.3 million datapoints was utilized, as part of the Build-

ing Data Genome Project database. For the building type prediction using load data, the

Gradient Boosting and the Random Forest Classification methods were used. The score

achieved for this case was 90.83% with some preprocess of the data and no parameter

tuning.

 -v-

Contents

ACKNOWLEDGEMENTS ... III

ABSTRACT ... IV

CONTENTS ... V

LIST OF TABLES .. VII

LIST OF FIGURES .. VIII

1 INTRODUCTION .. 1

2 THEORETICAL BACKGROUND.. 5

2.1 SMART CITIES .. 5

2.1.1 Definitions and dimensions .. 5

2.2 DATA MINING ... 8

2.2.1 Basic concepts... 8

2.2.2 Supervised learning .. 9

2.3 BIG DATA ... 10

3 RELATED WORK .. 13

3.1 BUILDING DATA GENOME PROJECT ... 13

4 METHODOLOGY ... 17

4.1 PROBLEM ... 17

4.2 DATASET DESCRIPTION .. 18

4.3 MACHINE LEARNING MODELS ... 19

4.3.1 Random Forest Classification and Regression 20

4.3.2 Gradient Boosting Classification and Regression 20

4.3.3 Linear Regression ... 20

4.3.4 Extreme Gradient Boosting Regression .. 20

4.4 OPTIMIZATION .. 21

4.4.1 Hyper-parameters ... 21

4.4.2 Optimization techniques ... 21

-vi-

4.5 EVALUATION AND METRICS ... 22

4.5.1 Regression evaluation and metrics.. 22

4.5.2 Classification evaluation and metrics .. 23

5 RESULTS ... 27

5.1 DATA DESCRIPTION AND PREPROCESSING ... 27

5.1.1 Timeseries data .. 27

5.1.2 Data preprocess.. 30

5.2 LOAD PREDICTION .. 32

5.2.1 Preprocess of data ... 33

5.2.2 Case analysis .. 33

5.3 PREDICTION OF THE BUILDING TYPE ... 36

5.3.1 Preprocess of data ... 36

5.3.2 Case analysis .. 37

6 DISCUSSION ... 41

7 CONCLUSION ... 45

7.1 STUDY REVIEW ... 45

7.2 THREATS ON VALIDITY .. 46

7.3 FUTURE WORK ... 46

BIBLIOGRAPHY ... 49

APPENDIX A ... 53

APPENDIX B ... 57

APPENDIX C ... 58

 -vii-

List of Tables

Table 1. The key categories and primary indicators of a smart city according to

ITU-T FG-SSC analysis. 7

Table 2 Building energy consumption datasets 27

Table 3 Summary of the evaluation metrics of Case 1 models 34

Table 4 Summary of the evaluation results of Case 2 models 35

Table 5 Classes and number of tuples per class 37

Table 6 Mean accuracy of the classification models 38

-viii-

List of Figures

Figure 1 The most important key words with reference to Smart Cities which

were derived from the ITU – T FG- SSC. 7

Figure 2 The most widely used methods of machine learning per category. 10

Figure 3 The five main characteristics of big data. 11

Figure 4 Distribution of case study buildings among time zone, industry, sub-

industry and primary use type. 19

Figure 5 MSE calculation formula 22

Figure 6 RMSE calculation formula. 23

Figure 7 R2 calculation expression. 23

Figure 8 Confusion matrix. 24

Figure 9 Definition formula of accuracy 24

Figure 10 Definition formula of sensitivity 25

Figure 11 Definition formula of specificity 25

Figure 12 The accuracy formula expressed in terms of sensitivity and specificity.

 25

Figure 13 Definition formula of precision. 25

Figure 14 Definition formula of recall. 26

Figure 15 Definition formula of F1 or F-score. 26

Figure 16 Energy consumption profiles in kWh, for 507 buildings for the period

01-01-2010 up to 01-01-2016 28

Figure 17 Hourly energy consumption values in kWh, of Primary Classroom

Everett for a year 28

Figure 18 Hourly energy consumption values in kWh, for University Classroom

Caitlyn for a year 29

Figure 19 Hourly energy consumption values in kWh, for University Dormitory

Una for a year 29

Figure 20 Hourly energy consumption values in kWh, for University Laboratory

Paul for a year 29

Figure 21 Hourly energy consumption values in kWh, for Office Elizabeth for a

year 29

Figure 22 Dataset instance after the timeseries transformation. 31

 -ix-

Figure 23 Instance of the merged dataframe of temporal and meta-data. 32

Figure 25 Random Forest, classification report. 39

Figure 24 Gradient Boosting, classification report 39

Figure 26 Confusion matrix of the Gradient Boosting classifier 57

Figure 27 Confusion matrix of the Random Forest classifier 57

file:///C:/Users/Vicky/Documents/MscIHU_DataScience/Thesis/Text/Final/IHU_Thesis_2%20-%20Copy2_04012021_final.docx%23_Toc60758265
file:///C:/Users/Vicky/Documents/MscIHU_DataScience/Thesis/Text/Final/IHU_Thesis_2%20-%20Copy2_04012021_final.docx%23_Toc60758266

 -1-

1 Introduction

Today, we are surrounded by smart cities. It is on the forefront of the media and on the

imminent plans of technology companies and entrepreneurs. Societies and local gov-

ernments have significantly increased their interest in them, through the last 10 years.

Nevertheless, what is the actual interest in them, beyond the technological advance-

ments that they showcase? Through new technologies, efficiency and interconnectivity,

numerous cities around the world strive to provide the best quality of life for their citi-

zens.

Interdisciplinary studies and various stakeholders investigate the smart city and view

this topic from different perspectives. The University of Oxford and the Oxford Institute

of Internet, describe the idea of the “smart city” as the act of “giving the policymakers

real-time information on a whole variety of indicators about their city (traffic, environ-

ment, services, etc.) in order to improve decision making and optimize service deliv-

ery”[1]. A great institution such as the European Union, defines the smart city as “… a

place where traditional networks and services are made more efficient with the use of

digital and telecommunication technologies for the benefit of its inhabitants and busi-

ness”. However, this meaning is further expanded; beyond the information and commu-

nications technology (ICT) infrastructure, it includes not only the transport networks,

the water and waste disposal facilities and the efficient ways of lighting and heating the

buildings, but among others, also, the response of the city administration, the public

space and the needs of the population [2].

Among the many stakeholders that shape and create the future of smart cities, govern-

ments are some of the most important. City leaders, such as mayors and local authori-

ties, through their policies define guidelines and implement plans which transform a

traditional urban environment into a smart city. Yet still, there is not a complete, univer-

sal recipe of what a government should do to make its cities smart. This is highly de-

pendent on the unique context of each city. The engagement of the general government

results in a combination of different political and technical roles, well beyond simply

the implementation of the latest technology advancements. But this is a two-way rela-

tionship. Smart city initiatives provide opportunities to city authorities for long-term or

immediate cost-savings. In this era of austerity measures and cuts on spending, the goal

-2-

for governments is to save the public resources and innovate, both of which are at the

heart of smart cities.

The private domain is of equal importance. Enterprises and corporate organizations con-

tribute greatly to the development of smart cities and benefit greatly, as well. The entre-

preneurs are the pioneers who initiate many of the transitions during the development

process of a smart city. In return, the technologies being adopted by a city produce large

amounts of data, which boost business opportunities [3]. New jobs, new establishments,

sustainability and efficiency in corporate operations and in the services provided are on-

ly a part of many benefits for the business sector [4].

The urban infrastructures play a crucial role in the quality of the services within a smart

city, but also on their complexity, vulnerability or high cost. Therefore, specific devel-

opments are required, such as smart monitoring of systems and services, advanced

communication technology which guarantees the safety and the integrity of the data

transmission, advanced data analysis and machine learning tools for data processing and

integrated platforms for the management of smart infrastructures [5]. Moreover, it is the

potential interconnectivity between these infrastructures that enables the smart city ap-

plications to function in the most effective and useful way. Now, more than ever, the

Internet of Things (IoT) with its increasing capabilities, qualifies for this. IoT being em-

bedded and omnipresent adds to the integration of the real world to a network and even-

tually the Smart World.

Most smart city applications operate through IoT. This leads to large amounts of data,

the so-called Big Data. The main characteristics of big data are the large volume, the

increased velocity and the wide variety, while they are collected through various re-

sources. Their analysis offers the city valuable insights; hence, they play a key role in

transforming the lives of the citizens [6].

The large amounts of data generated continuously within the boundaries of a smart city,

require at first, efficient data storage and then, effective processing methods, to be uti-

lized in the decision-making process. The use of Data Mining (DM), Machine Learning

(ML) and data analytics techniques provide a lot of tools that serve this cause [7]. Spe-

cifically, DM and ML techniques filter, analyze, process the data, and eventually extract

high-quality information. Even so, the effectiveness or even suitability of traditional da-

ta mining methods and analytics platforms are sometimes challenged. Then, more ad-

 -3-

vanced techniques, such as Deep Learning (DL) and Reinforcement Learning (RL)

could sometimes be employed to accomplish the demanding task [8].

In this study, a part of great significance for smart cities will be assessed. The building

sector, which is responsible globally for an estimated 40% of total energy consumption.

In particular, this study focuses on non-residential buildings due to their unique charac-

teristics and complexities in energy consuming systems. Publicly open and available

data which consist of thousands of timeseries, are preprocessed and analyzed via data

mining methods. The aim of this analysis is to describe and provide the energy con-

sumption patterns of the selected public municipal buildings. Finally, several predictive

models are employed and explored to provide accurate predictions of the energy con-

sumption for certain types of public buildings. To achieve this goal, the research objec-

tives for this study are the following:

 To deploy several simple and well-known data mining predictive models and

evaluate their accuracy in load forecasting for certain types of public buildings.

 To further explore and evaluate these models by performing boosting tech-

niques.

 To predict and classify a building type by using load as an attribute.

The dataset is a result of a project of Clayton Miller and Forrest Meggers and of the

ETH University of Zurich to create an open dataset for non-residential buildings [9]. It

consists of electrical meter data of 507 commercial buildings with at least 8760

timestamps for each one of them. The dataset is public, open and available online by the

researchers, with the purpose of a repository creation suitable for benchmarking predic-

tive models and help scholars in energy research.

The analysis of the data and the experiments on this study are executed in Python 3.7.

Specifically, the packages Pandas, Matplotlib, are mainly used for the analysis and vis-

ualizations and Scikit-Learn is used for the implementation of the machine learning al-

gorithms. For the deployment of the models Google Colab was used and Jupyter Note-

books. All the computational work was executed and processed on the Google Cloud.

The remainder of the study is structured as follows. Chapter 2 describes and sets the

theoretical background for Smart Cities, Data Mining and Big Data. In Chapter 3, a lit-

erature review focused on the Building Data Genome dataset which was used is pre-

sented. Chapter 4 describes and analyses the methodology used to explore and prepro-

-4-

cess the data. Also, the theoretical description of the models that were used is illustrated

along with the evaluation metrics and the hyperparameters that were tuned. In chapter 5,

the experimental results for data preprocessing and the results of the models deploy are

outlined. All the load forecasting scenarios and the building type prediction scenarios

are presented here. Finally, the last two chapters 6 and 7 discuss and summarize the

findings of the study, accordingly. Aspects regarding the validity of this work and future

research directions are briefly explained in the last chapter.

 -5-

2 Theoretical background

The starting point of a study is to define the subject. In this case, it is the question: What

is a smart city? Nevertheless, any attempt to give a solid answer to that question results

in ambiguities and finally a series of context-based definitions. As it seems the relation-

ship between smart cities and data mining methods evolves through the years, so, that

today, no further development of smart cities research can be made far from the founda-

tional data mining, analytics and machine learning methods. Moreover, the data which

are related to smart cities projects, are inevitably analyzed and explored through big da-

ta related processes.

2.1 Smart Cities

2.1.1 Definitions and dimensions

Identifying an operational definition for smart cities requires a closer examination of the

theoretical background. Most of the researchers who study the concepts of smart cities,

find common ground on the fact that there is not only one widely accepted definition of

the term ‘smart city’ in bibliography. This is apparent to the scholars and in either case

clearly stated by many of them in their works [10]–[14]. According to researchers [15],

‘smart city’ as a notion appeared for the first time in 1998 by Van Bastelaer. However,

Dameri and Cocchia in 2013 stated that the concept was introduced in 1994 [13]. A

study of relevant research showed that, the definition of this term is an ongoing process.

As ‘smart city’ is directly linked to the evolution of technology and newer sources re-

flect that.

At one of the very first attempts to provide a definition for ‘digital city’, Van Bastelaer

concludes that the term may have several definitions, some of which differ greatly from

one another. However, in this study, the rapidly growing information and communica-

tion technologies are proven to be the driving forces that transformed the advanced in-

dustrial cities. The online services are managed by the municipal authorities or citizens

and present useful information that make people’s lives easier in the city [16]. From that

early notion of the digital city, the terminology has changed and during the last decade

-6-

researchers explored alternative approaches of the former ‘digital city’ which is now a

‘smart city’. Cocchia in her work [10] describes the smart city appearance as a sequent

that came after the emerging urbanization phenomenon in this century. Elaborating on

this idea, this trend flourished due to the information and technology improvements. At

most times, either ICT attributes of the city are highlighted (i.e digital, broadband, wire-

less, etc.) or the information flow through the urban space is [15]. Others argue that

ranking a characteristic (i.e. digital infrastructure) of a smart city higher than another,

only gives a unilateral perspective to the meaning of a smart city. Instead, multiple is-

sues should be considered such as: awareness, flexibility, transformability, synergy, in-

dividuality, strategic behavior, self-decisive [17]. In their attempt to shed light on this

fuzzy concept, the authors T. Nam and T. A. Pardo approach the term “smart” from a

linguistic, a marketing, a technological and an urban planning field perspective in their

work [18]. It is further inferred that a smart city can be called by many names (Digital

City, Intelligent City, Information City, Knowledge City or Smart Community) and all

of them are equally effective. It is mostly the modern technology and marketing stresses

that have resulted in the prevalence of the term ‘smart city’.

Giffinger, who is a widely cited researcher of this topic, in his work in 2007 [17] builds

upon the ‘smartness’ of a city and gives the following definition: “a city well perform-

ing in a forward-looking way in Smart Economy, Smart People, Smart Governance,

Smart Mobility, Smart Environment and Smart Living, built on the ‘smart’ combination

of endowments and activities of self-decisive, independent and aware citizens”. This is

a holistic approach, which recognizes that various aspects should form the basis for a

complete definition. In the same direction, the International Telecommunications Union

(ITU) in 2015, following an assessment of 116 available definitions on smart cities,

agreed on this definition: “A smart sustainable city is an innovative city that uses in-

formation and communication technologies (ICTs) and other means to improve quality

of life, efficiency of urban operation and services, and competitiveness, while ensuring

that it meets the needs of present and future generations with respect to economic, so-

cial, environmental as well as cultural aspects”. [19] The ITU-T Focus Group on Smart

Sustainable Cities (FG -SSC) identified a total of 8 different key categories, 6 primary

indicators and 30 key words as representative of a smart city. The following Table 1

summarizes the findings of the categories and indicators, while on Figure 1 the word

cloud reflects a quantitative analysis of the different keywords and the number of occur-

rences that these keywords have from the 116 documents studied [20].

 -7-

Table 1 The key categories and primary indicators of a smart city according to ITU-T FG-SSC

analysis. Source [20]

Key categories Primary Indicators

Quality of life and lifestyle

Smart living

Infrastructure and services

Smart people

ICT, communications, intelligence and information

Smart environment and sustainability

People, citizen and society

Smart governance

Environment and sustainability

Smart mobility

Governance, management and administration

Smart economy

Economy and finance

Mobility

Figure 1 The most important keywords with reference to Smart Cities which were derived from

the ITU – T FG- SSC. Source: [20]

Although researchers and academics recognize the great importance of intellectual and

social capital, for example smart governance and smart strategic planning, [14], [17] the

private corporate sector acts differently. In organizations and companies, it is anticipat-

ed that ICT provides a means of improving productivity through automation of process-

es and enhance decision making, planning and control activities. In a city, it is the same

contribution that ICTs have in simplifying the urban living complexities. The abun-

-8-

dance of data and the active use of them in decisions can make the difference in a city’s

traffic or energy problem [21].

2.2 Data Mining

Data mining is a subject that falls into many disciplines and can be defined in many

ways. The basic concepts of data mining are similar to the core concepts of the

Knowledge Discovery from Data (KDD) field. In general, the KDD process is a se-

quence of the following steps:

i. Data cleaning, removal of noise and inconsistencies in data

ii. Data integration, combination of multiple sources of data

iii. Data selection, retrieval of data relevant to the analysis

iv. Data transformation, transformation processes apply to data such as aggrega-

tions or summaries

v. Data mining, application of algorithmic methods to extract patterns from data

vi. Pattern evaluation, identification of interesting patterns in data

vii. Knowledge presentation, visualization and representation techniques are utilized

to showcase the extracted knowledge to the users [22].

2.2.1 Basic concepts

Some very basic concepts about data mining consider the foundational blocks of it. A

very basic concept in data mining is the idea of Class and databases. All the entries in a

database can be categorized in a number of classes. A class could be defined as a con-

cept which is described and characterized by specific data [22] Although, many kinds

of data can be mined, e.g. data streams, sequences of data, graphs etc., the most usual

are databases or data warehouses. The databases can hold several thousand or millions

of organized records.

The Data Mining techniques can be divided in two categories: descriptive or predictive.

The descriptive methods provide information which are properties of the data. The pre-

dictive methods extract inferences from the data to predict the information which are

not evident. The different techniques that fall into these two categories are:

i. Data classification

ii. Data prediction (regression methods)

iii. Data clustering

 -9-

iv. Outliers analysis

v. Association rule mining [23]

In the present work the first two categories are of interest for the analysis purposes. Da-

ta classification is the process of classifying the available dataset in classes. This cate-

gory incorporates methods that are called supervised learning. These methods exploit a

set of given input – output to learn a function that maps the input to output. The other

techniques available at the data classification category, are unsupervised learning,

where no outputs are provided, and reinforcement learning methods, where the output is

a set of instructions rather than a class.

2.2.2 Supervised learning

The supervised learning methods are the most used in machine learning applications.

The general idea is that a set of labelled data is provided and the data mining technique

learns from the relationship between the inputs and the outputs the function that maps

from the input data to the output data. The closer the approximation of this relationship

the better the performance of the method.

A further categorization in supervised learning methods, divides them in classification

and regression:

i. Classification: A classification problem is when the output variable is a category

ii. Regression: A regression problem is when the output variable is a real value [24]

The following figure shows graphically some of the most common machine learning

methods, Figure 2 The most widely used methods of machine learning per category.

Source [25]

-10-

Figure 2 The most widely used methods of machine learning per category. Source [25]

2.3 Big Data

One definition of Big Data comes from the McKinsey Global report from 2011: “ Big

Data is data whose scale, distribution, diversity, and/ or timeliness require the use of

new technical architectures and analytics to enable insights that unlock new sources of

business value.”

Although the volume of Big Data tends to attract the most attention, generally the varie-

ty and velocity of the data provide a more precise definition of Big Data. Some years

earlier big data used to be described by three main characteristics:

i. Huge volume of data, not thousands or millions of rows, but billions of rows

and millions of columns.

ii. Complexity of data types and structures, big data reflect the variety of available

data sources, formats, and structures.

iii. Speed of new data creation and growth, they can describe high velocity data,

with rapid data ingestion and near real time analysis.

 -11-

This is no longer the case. Big data is more than these three aspects. A new revised 5

point definition tries to incorporate all the characteristics than define big data. But to-

day, this is surpassed as well. In Figure 3 The five main characteristics of big data.

Source: [26]the 5 aspects of big data are illustrated.

Figure 3 The five main characteristics of big data. Source: [26]

On another point of view, big data can be structured in databases, unstructured in text

documents, images, videos, etc. or semi-structured in textual data with pattern XML,

etc.

 -13-

3 Related work

The research on machine learning applications for smart buildings is mainly focused on

two large groups: i) solutions focusing on occupancy, e.g. estimating the number of oc-

cupants, recognizing their activities or estimating about their preferences or behaviors

and, ii) solutions focusing on energy or devices, e.g. energy or device profiling and es-

timation, fault detection, inference from sensors etc. [27].

3.1 Building Data Genome Project

Several related studies have attempted to develop models that could support advanced

building energy systems (BES) and provide measurable improvement in the energy effi-

ciency in buildings. Accurate energy predictions are the most important factor that can

optimize the operation and control of BES. The new advancements in big data analytics

and machine learning fields equip the researchers with the necessary tools to describe

the complex relationships that the data of the buildings form. A large toolset of models

is available now, and it keeps growing. However, the development of repositories that

may serve as benchmarking tools for the plethora of the new models proposed is of

great importance. It is a common problem that a proposed model may be tested against

a specific dataset but may not generalize well when it is tested against another. The

Building Data Genome Project (BDG) dataset which was utilized in this study, is aimed

to serve as a benchmarking tool by its creators. [9] There have been several studies pub-

lished about it, even though it is relatively new. The following review is focused on the

use of the dataset by researchers from the year of publication in 2017 until now.

In 2017, Miller C., proposes in his study [28] a preliminary methodology about non-

residential buildings that have advanced metering (AMI) meters. This work falls into

the building retrofit area of interest and results in statistics, model and pattern-based

temporal features extraction from over 36,000 smart meters. Classification models, such

as Random Forest are deployed for this purpose, which showed an 18.3% increase in

accuracy of predicting if a building would perform well after a retrofit is made and an

27.6% increase in accuracy in predicting the industry type of a building.

-14-

Taheri M. et al., in their work [29] present the idea of efficiency factors which are cal-

culated from timeseries of energy, weather, and occupancy (represented by usage).

Their research explores the prediction of what are the modulations on the building de-

sign side to modulate the effect of the weather and finally provide a comfortable envi-

ronment to its occupants. Linear and non-linear regression models such as Linear Re-

gression (LR), Polynomial Regression (PR) and Gradient Boosted Trees Regression

(GBR) were utilized to present a method that helps in benchmarking the new buildings,

on the basis that variation in weather and human usage, creates variation in the energy

usage.

Park J.Y. et al, in their research [30] deal with load profiling and benchmarking for

buildings. The main idea is based on the new data-driven approaches that emerge where

the shape of the load profiles is used as a means of comparison. A total of 3829 build-

ings in this work are analyzed with clustering methods followed by entropy calculation

for each building. This approach contradicts the traditionally used classification meth-

ods for such applications. The results may be of use to portfolio management applica-

tions, building and urban energy simulations, demand response and renewable energy

integration in buildings and more.

Also in 2019, Miller C. in his work [31] used the BDG dataset to evaluate several fea-

ture engineering and data-driven classification models. With the aim of the study being

to provide explainable machine learning models for prediction and classification pur-

poses in building applications, this study is the first one to focus on this field of smart

meter data from non-residential buildings.

Fang X. et al, in their study [32] propose a novel hybrid deep transfer learning strategy

for short-term cross-building energy prediction. They make use of long short memory

(LSTM) for feature extraction and domain adversarial neural networks (DANN) for

finding domain invariant features that could be adapted to the unknown target buildings.

The results have shown that the building energy prediction can be improved significant-

ly.

In another new study, Nichiforov C. et al. [33] utilize the BDG database for testing and

evaluating their proposed method. With the purposes of extracting information, antici-

pating possible future faults and finally performing domain-specific load profiling, their

Matrix Profile (MP) technique is applied, which is based on a model free approach. The

results justify the scope of their study as their analysis provides higher level information

 -15-

which speed up the analysis with more advanced methods and provide a baseline for

online implementation or real time energy building management systems. Adding up to

the findings of the previous study, Nichiforov C. et al, in continuing their research by

utilizing the MP introduced a technique for feature extraction in the time series of BDG

dataset and anomaly detection. On a second stage, several classification algorithms

such as decision trees, nearest neighbors, support vector machines and regression trees

were utilized to discriminate among the dominant usage patterns of the buildings. The

diversity of the used dataset helped in proving that, the unusual behavior in energy con-

sumption patterns is sufficient enough for differentiating between usage patterns. This

leads to fast approaches in decision making and control systems where historical data

reach a possible minimum.

Li A. et al,[34] in their research make use of transfer learning based artificial neural

network (ANN) methods that could act as a baseline for building energy prediction

models when a limited amount of data is available. Their analysis on 400 buildings of

the BDG database revealed a significant improvement in accuracy of back-propagation

neural network (BPNN)- based building energy models for buildings with little availa-

ble training data. Moreover, through the analysis of the available features of the build-

ings, it was derived that the most influential buildings features were the building usage

and industry.

In 2019, ASHRAE hosted the Great Energy Predictor III (GEPIII) machine learning

competition on the Kaggle platform and the BDG dataset was one among the 16 differ-

ent data sources. The result was 2380 energy meters for over 1448 buildings and over

20 million of training data that were provided to the competitors. The results showed

that with great difference the Gradient Boosting methods such as Light GBM, CatBoost,

XGBoost, and LiteMORT resulted in greater accuracy in the final prediction models.

Moreover, some of the top solutions used Multi-Layer Perceptron, Feed-Forward Neu-

ral Networks and Random Forest models with very good results.[35] The ASHRAE

successful competition was followed by a new version of the BDG dataset, which in-

corporated the new timeseries that were added for the competition purposes. A BDG 2

dataset is available with 3,053 energy meters from 1,636 non-residential buildings with

a range of two full years (2016 and 2017) at an hourly frequency (17,544 measurements

per meter resulting in approximately 53.6 million measurements) [36].

-16-

In 2020, another research team by Wang Z. et al., [37] proposed a new method for gen-

erating realistic electrical load profiles of buildings through the Generative Adversarial

Network (GAN). This is a machine learning technique which is used to extract an un-

known probability distribution from plain data. The results showed that with the pro-

posed model, the general trend and the random variations of the actual electrical loads

are captured. Moreover, new building electrical loads can be generated, other profile

generation models can be verified, changes to load profiles can be detected and smart

meter data can be anonymized for research promoting reasons.

 -17-

4 METHODOLOGY

The aim of this study is to utilize the open dataset of the Building Data Genome Project

for predicting the consumption load for several commercial buildings. In the present

work this was attempted with the use and evaluation of well-known, conceptually sim-

ple, yet diverse data mining models. At first, the raw dataset is explored and prepro-

cessed. The first case is explored via four different regression models. At a second case

hyperparameter tuning methods are utilized to improve the performance of the selected

algorithms. Lastly, another task which is performed, is utilizing a classification model:

predicting the type of a building via classification methods.

4.1 Problem

Buildings are essentially a system that consists of inflows and outflows and their high

performance is achieved through carefully measurement, regulation and control. These

processes include day-to-day operations which finally, influence occupants’ health and

comfort, energy performance and the cost of utilities. Although the application of ma-

chine learning methods and data-driven processes in the building life cycle has been ex-

tensively researched, there are still some problems that remain unsolved [38].

It has been observed that most of the research results and novel methods will not reach

the industry in the imminent future or even never. This problem is attributed to several

reasons. It is certain that the low availability in open labeled data as training sets for the

models, affects the number of experiments and evaluations which are performed. This

could also lead to another possible obstacle, that of model transferability. There have

been transfer learning research approaches for solving this. [32] However, the para-

digms where a model is deployed and explored based on a building’s data and is then

transferred and applied to another building are limited. One more possible cause for the

slow process towards the industrialization of the research, is that the cost benefits are

not measured or clear enough to promote this. Finally, it is evident that in every pro-

posed novelty there comes an estimated possibility of success. The estimated accuracy

of most models and their capacity to generalize is an aspect that usually needs to be ex-

amined further.

-18-

Relevant to the open training data availability, is the fact that the majority of published

research presents different machine learning methods and models which are trained and

validated on different training data. This causes great difficulty in the comparison be-

tween them, as no safe conclusion can be drawn. A benchmarking process is of great

importance in this situation. There need to be large scale open datasets available upon

which different machine learning approaches could be evaluated. ASHRAE Global

Thermal Comfort Database [39], ASHRAE Great Energy Predictor III [40], Building

Data Genome Project [9] and the revised Building Data Genome Project 2 [36] datasets

have offered a preliminary solution on that. Even more attempts about different types of

buildings would be beneficial.

Finally, it is known that many of machine learning solutions are difficult to interpret and

explain. This poses restrictions on how a machine learning data-driven, or so called

black-box, model can provide interpretable results. Some of the proposed solutions fo-

cus on the integration with the physical models and implementation of physical domain

knowledge into the data-driven models [38].

This study is dedicated to deploy non-complex, interpretable and well-known but dif-

ferent in their core models, and measure their performance in energy load prediction.

The selected dataset is public, open and accessible to everyone. It is examined how tar-

geted hyperparameter tuning affects the accuracy of the model and how the special

characteristics of the buildings used as features can add to accuracy.

4.2 Dataset description

As only a few public data sources of hourly non-residential meter data exist for the pur-

pose of testing algorithms, the Building Data Genome dataset was chosen for this analy-

sis. It is a collection of 507 whole building electrical meters. The majority of which

come from university campuses. This dataset is the result of the ‘‘Building Data Ge-

nome Project’’ of Clayton Miller and Forrest Meggers [9] and it serves as a repository

of open, non-residential data sources which can be built upon by other researchers.

For each one of the buildings of the dataset a set of about a year hourly electrical energy

consumption values are gathered. The time period of the measurements spans from 01-

01-2010 to 01-01-2016. Along with the raw data file, there is a metadata file available

providing information on some of the buildings’ characteristics, e.g. surface area, pri-

mary heating type, as well as the location of the buildings, e.g. city, continent, and the

 -19-

primary use of them, e.g. educational, office etc. It is very interesting that the research-

ers were able to incorporate weather files for each one of the locations of the buildings,

which add to the potential analysis tasks. Snapshots of the raw data file and the metada-

ta file may be found at Appendix A. Some characteristics for the available data are

found in Figure 4 Distribution of case study buildings among time zone, industry, sub-

industry and primary use type. Source [9].

Figure 4 Distribution of case study buildings among time zone, industry, sub-industry and pri-

mary use type. Source [9]

4.3 Machine learning models

The load forecasting strategy of this study is based on several regression models. The

length and variety of data in the dataset pointed towards this direction since, the more

data available for a regressor the better it is trained. The models which were used are

Random Forest Regression, Linear Regression, Gradient Boosting Regression and Ex-

treme Gradient Boosting Regression. For the building type classification task, the Ran-

dom Forest Classifier and Gradient Boosting Classifier were used.

-20-

4.3.1 Random Forest Classification and Regression

Random Forest (RF) is a combination of decision trees. Decision trees are splitting a

dataset depending on the feature value in different trees and branches (directions). The

RF method consists of a large number of such decision trees that operate as a group.

The model’s prediction is similar to the one that the majority of the trees have predicted.

What need to be noted at this point is that bagging and feature randomness are used to

build each of the trees. As a result, the uncorrelated forest of trees that this process re-

sults in has increased accuracy in comparison to the individual trees [41].

4.3.2 Gradient Boosting Classification and Regression

The Gradient Boosting (GB) or the Gradient Boosting Decision Trees (GBDT) is an ac-

curate method that generalizes in the boosting of arbitrary differentiable loss func-

tions.[42] It is a machine learning technique used for regression or classification. The

main idea is to produce a model constructed of decision trees, which are weak predic-

tion models. It incorporates different stages in the model construction and generalizes

them by optimizing an arbitrary differentiable loss function. [43] The model perfor-

mance is measured by computing the cost of predicting 𝑦
^

𝑖 instead of actual value yi. The

loss across all N observations is just the average of all the individual observation losses:

[44]

4.3.3 Linear Regression

Linear regression is a method for modelling the linear relationship between a dependent

value and one or more independent variables. It can be categorized in simple or multiple

linear regression depending on the number of independent variables. [45] The linear re-

lationship between the dependent and independent variables is modeled by using linear

predictor functions. The parameters of those functions are unknown and are estimated

from the training data of the model. A variety of methods for fitting linear regression

models to data may be used, but the most usual method used is Least Squares Estima-

tion.

4.3.4 Extreme Gradient Boosting Regression

The Extreme Gradient Boosting regression method or XGBoost, belongs to the decision

trees methods. It is an ensemble method, like GB. This method has several advantages

which make it one of the most preferred in machine learning model deployment. It is

 -21-

based on a really powerful algorithm that shows great speed and good performance.

This aspect is empowered by the ability to run in multicore computers and exploit the

most of the processing power available. Moreover, large sets are handled well in the

training phase. These characteristics make this model outperform the more simple algo-

rithms. [46]

4.4 Optimization

Each of the algorithms has parameters that can be appropriately selected for great per-

formance of the model. Besides the hyper-parameters there are also techniques that

boost performance of the models when carefully selected. In this work both were im-

plemented in different cases.

4.4.1 Hyper-parameters

In Random Forest regressor, the parameters that were used to boost performance of the

model are the ‘n_estimators’, which represents the number of the trees in the forest. The

default value is 100 and the ‘max_depth’, which is the maximum depth of the tree. A

value of ‘None’ makes the algorithm keep iterating until pure leaf is reached.

The Gradient Boosting regressor could be optimized by tuning a few parameters like the

‘loss’. This parameter chooses the loss function to implement. Another parameter to

tune is the ‘max_features’, which chooses the number of features to consider when

looking for the best split. In this study, the ‘max_depth’ was chosen, which defines the

maximum depth of the individual regression estimators and the nodes of the tree.

In the XGBoost model, the booster parameter was selected for tuning. This parameter

controls the booster that is implemented in the model and it can be linear or tree based.

4.4.2 Optimization techniques

There are several boosting and optimization techniques available for better performance

of the models. In this study two of them were applied: Kfold cross validation and Grid

Search CV.

Kfold cross validation is basically a statistical method which is used mainly to compare

the evaluation of models and choose the best one for a particular problem. The idea is to

perform shuffling on data and take several samples from them to train the model. This

-22-

way the algorithm is able to generalize well. The number of samples is defined by the k

folds. There exist multiple shuffling choices for the data, such as the stratification op-

tion, which is used for data with imbalanced classes. In this option the data are sampled

from each class according to the length of the class.

Grid Search CV is mostly used for tuning the parameters of a model. It can be exhaus-

tive and explore all the possible combinations of the parameters or it may be exploring

only the ones given by user. In Scikit Learn Library is implemented together with the k-

fold cross validation method.

4.5 Evaluation and metrics

4.5.1 Regression evaluation and metrics

In regression problems the predicted values are continuous real numbers. The main idea

in evaluation of regressor performance is to measure the distance between the real value

and the predicted value. Although a variety of measures is available for evaluating the

performance of a regressor, this work uses only three of them. These are the Coefficient

of Determination or Adjusted R denoted as R
2
 , the Mean Square Error or MSE and the

Root Mean Square Error or RMSE.

The Mean Square Error, MSE measures the average Euclidean distance. The optimal

number is the minimum number for this metric. If 𝑦
^

𝑖 is the predicted value of the i-th

sample, and 𝑦𝑖 is the corresponding true value, then the mean squared error (MSE) es-

timated over 𝑛samples is defined as shown in Figure 5

MSE(𝑦, 𝑦
^

) =
1

𝑛samples

∑ (𝑦𝑖 − 𝑦
^

𝑖)
2

𝑛samples−1

𝑖=0

Figure 5 MSE calculation formula Source: [47]

Root Mean Square Error (RMSE) is one of the most widely used measures of the error

of a model in predicting quantitative data. In essence it is the standard deviation of the

residuals and shows how spread they are. It is a measure that tells how concentrated the

data are around the line of fit. Mathematically is expressed as the square root of MSE,

Figure 6:

 -23-

RMSE(𝑦, 𝑦
^

) = √
1

𝑛samples

∑ (𝑦𝑖 − 𝑦
^

𝑖)2

𝑛samples−1

𝑖=0

Figure 6 RMSE calculation formula. Source: [48]

The coefficient of determination, R
2

, expresses the proportion of the variance that can

be explained by the independent variables in the model. It is a measurement of goodness

of fit of the model to new samples. The optimum score is 1 and it can also take negative

values when the model is worse. A value close to zero would mean that the model does

not change regardless of what input features it has. If 𝑦
^

𝑖 is the predicted value of the i-

th sample and 𝑦𝑖 is the corresponding true value for total 𝑛 samples, the estimated R² is

defined as, Figure 7:

𝑅2(𝑦, 𝑦
^

) = 1 −

∑ (𝑦𝑖 − 𝑦
^

𝑖)
2

𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛

𝑖=1

Figure 7 R
2
 calculation expression. Source: [49]

where 𝑦 =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 and ∑ (𝑦𝑖 − 𝑦

^

𝑖)2
𝑛

𝑖=1
= ∑ 𝜖𝑖

2𝑛

𝑖=1

4.5.2 Classification evaluation and metrics

The most widely known and frequently used metrics to evaluate a classifiers perfor-

mance are: accuracy (or recognition rate), sensitivity (or recall), specificity, precision,

F1, and Fβ. In this study only accuracy, sensitivity, specificity and F1 are utilized. Some

basic terminology to classification metrics is needed before the previous mentioned

metrics are further explained.

Regarding the classifier’s label recognition, there are the positive tuples (those of the

main class of interest) and the negative tuples (all the other tuples). The positive ones

are denoted as P and the negative ones are denoted as N. When evaluating a tuple a

-24-

comparison is made between the classifier’s class label prediction and the tuple’s

known label.

The evaluation result is a summary of the metrics above, explained in terms of positive

and negative tuples and it is called confusion matrix. The following explanation of the

terms is essential for the understanding of the confusion matrix. The True Positives (or

TP) refer to the positive tuples that were labeled correctly by the classifier, while the

True Negatives (or TN) are the negative tuples that were correctly labeled by the classi-

fier. False Positives (or FP) are called the negative tuples that were incorrectly labeled

as positive and likewise False Negatives (or FN) are called the positive tuples that were

mislabeled as negative. The confusion matrix is illustrated in Figure 8

Figure 8 Confusion matrix. Source: [22]

The confusion matrix is used to illustrate how good a classifier is performing in recog-

nizing the different classes. The TP and TN values tell if a classifier is classifying the

right way while the FP and FN showcase the wrong way that a classifier is working.

With reference to the evaluation metrics discussed at the beginning of this paragraph,

these are defined using the formulas in Figure 9 – Figure 15.

The accuracy of a classifier on a given test set is defined as the test set tuples which are

correctly classified. The expression is:

Figure 9 Definition formula of accuracy Source [22]

 -25-

Sensitivity is also called true positive recognition rate and is defined as the proportion

of positive tuples that are correctly classified. The expression is:

Figure 10 Definition formula of sensitivity Source [22]

Similarly, specificity is the true negative recognition rate and is used to measure the

proportion of negative tuples that are correctly identified.

 Figure 11 Definition formula of specificity Source [22]

There is a relationship between accuracy and specificity and sensitivity measures, which

can be expressed as:

 Figure 12 The accuracy formula expressed in terms of sensitivity and specificity. Source: [22]

Precision can be defined as the percentage of tuples which are positive and are actually

classified as such. Precision is a measure of exactness and is expressed as:

Figure 13 Definition formula of precision. Source: [22]

-26-

The recall measure expresses the completeness is a measure of completeness and it ex-

presses the percentage of positive tuples that are labelled as positive. The definition

formula is:

Figure 14 Definition formula of recall. Source: [22]

Finally, the F1 or F-score measure is just a combination of the precision and recall

measures and it is expressed as:

 Figure 15 Definition formula of F1 or F-score. Source: [22]

When a classifier is evaluated, besides the mentioned measures, additional characteris-

tics may be considered. Some of them are robustness, scalability, speed and interpreta-

bility. These are more qualitative and give are used to describe the generalization and

stability of the classifier when is deployed with different datasets [22].

 -27-

5 RESULTS

5.1 Data description and preprocessing

5.1.1 Timeseries data

The effectiveness of load forecasting with the use of the proposed machine learning

models were evaluated on a whole implementation of the BDG dataset. The 507 differ-

ent timeseries with hourly resolution were combined in a large dataset. Statistical in-

formation on the 507 buildings of the dataset are presented on Table 2.

Table 2 Building energy consumption datasets

Dataset
Building

type

Count of

timestamps

Hourly energy consumption in kWh

Mean Min Max Std

Office Office 1348456 112.688400 0.005517 2649.300000 177.114300

PrimClass

Primary

School

Classroom
885145 16.689776 0.000658 298.69999 25.954297

UnivClass
University

Classroom
699716 86.935176 0.010000 570.66705 79.512861

UnivDorm
University

Dormitory
606554 94.608103 0.017931 641.180000 87.770776

UnivLab

University

Laborato-

ry

823396 300.146676 0.720000 3150.060000 349.349919

Combined All 4363267 121.94590 0.000658 3150.060000 208.601100

Figure 16 illustrates the 507 building energy consumption profiles for the period 01-01-

2010 up to 01-01-2016. It is obvious that there are missing values for the year 2011.

Moreover, several buildings regardless of their type, do not have consistent data values

for a whole year, almost half the days of 2015. This triggered a missing values explora-

tion of the data which resulted in dropping all the missing values of the dataset and

keeping for analysis those with meter values. From a total of 20,756,580 rows only

4,363,267 (~21%) of them form the dataset that was used for the machine learning

models. This is no surprise, as the creators of the dataset clearly state in their research

-28-

paper [9] that for every building only a total of 8760 (a year) of metered data is availa-

ble.

 Figure 16 Energy consumption profiles in kWh, for 507 buildings for the period 01-01-2010

up to 01-01-2016

Unfortunately, the general overview of the raw dataset did not reveal much information

and a more in-depth visualization process was conducted to know the timeseries. In

Figure 17 – Figure 21, five samples of the timeseries are illustrated. They illustrate the

hourly energy consumption values of one building per type, for a year. This is only a

sample of the 507 timeseries that are present in this dataset, but it is enough for an over-

view of what these timeseries may look like.

 Figure 17 Hourly energy consumption values in kWh, of Primary Classroom Everett for a year

 -29-

Figure 18 Hourly energy consumption values in kWh, for University Classroom Caitlyn for a

year

Figure 19 Hourly energy consumption values in kWh, for University Dormitory Una for a year

Figure 20 Hourly energy consumption values in kWh, for University Laboratory Paul for a year

Figure 21 Hourly energy consumption values in kWh, for Office Elizabeth for a year.

-30-

Some of the profiles show random patterns while some others, especially the office and

classroom profiles, show periodicity and specific patterns. Of course, this is anticipated

since the operation hours of these buildings is usually standard.

5.1.2 Data preprocess

As explained above, the exploration of the dataset revealed certain characteristics of the

timeseries that could jeopardize the accuracy in analysis. The strategy and the decisions

made on how these peculiarities were handled are explained below.

Missing data

First, the large number of missing values was a point of interest, especially the strategy

that should be followed for them. A percentage of 21% is relatively low for the keeping

instances. From another point of view, there are plenty of timesteps that are kept for

analysis, enough for the models to be properly trained and validated. There are no val-

ues metered for the year 2011 and for year 2015, a research showed that recorded values

exist after May. No model could handle accurately such a disturbance in a timeseries

data, even more when the available historical data cover only a year for each building.

Having that in mind, the strategy that was followed for missing data was to exclude

them from the analysis. After that, the timeseries of many buildings were left incom-

plete and, in some cases, they represented only half of the year.

Transformation of timeseries data

The previous described decision on the missing values led to another decision. The

question was, if we would decide to proceed with the buildings that had metered data

for a complete year as a timeseries or proceed otherwise. Careful consideration of the

limitations of one or the other choice led to the decision that the most possibly available

data points would be the best for the models. The aim of the study is to evaluate the pre-

ferred models on big data, meaning also large and diverse. Moreover, the literature re-

view showed that most of the studies proceed with timeseries analysis. Also, the need

for explainable and non-complex models, some computation and time limitations which

also apply here, pointed towards a different perspective. Finally, the decision was to

continue with a combined dataset, were the name of each building would not play an

important role. This dataset implemented the notion of time as a feature, the timestamp

was split in ‘day of year’ categorical values and the hour of the timestep was a categori-

cal value under the feature ‘hour of day’. If there had been historical data available for

 -31-

more than a year, this choice would have been different. This transformation resulted in

a somehow anonymized dataset where the ‘time’ was present as a feature. The benefits

of this are clearly shown on the low complexity of the analysis, the relatively low com-

putation needs, the fast execution times for this many points and the variety of available

methods for feature engineering and hyperparameter tuning methods. On the disad-

vantages comes the fact that the periodicity and trends of the timeseries are lost. Any

information that could be extracted through timeseries analysis are not shown. This last

argument though, may not be entirely accurate. In the dataset there are no meta-data

available for the buildings’ occupancy or the occupants’ habits or even the operation

shifts. This means, that the predicted total load values could not be explained in a con-

text of specific needs of occupants, or types of loads that are used, or types of devices

and the use routine of them. So, the timepoints in the timeseries of the building would

carry that information but we could not exploit it in a way.

Creation of a complete dataset

Following the previous steps, the dataset was holding 4,363,267 rows of energy con-

sumption meter described by the building’s name, the day of the year and hour it oc-

curred. Figure 22 illustrates an instance of this dataset.

Figure 22 Dataset instance after the timeseries transformation.

-32-

The next step was to combine the available meta-data for the buildings with the pro-

cessed temporal data. Instance of the meta-data available for the buildings may be found

at Appendix A. The primary meta-dataset contains 19 columns. Unfortunately, not all of

them hold data for all buildings. Thus, the features that were not present for all the

buildings had to be dropped. A feature called ‘timezone’ held the names of city and

continent in which the building is located. This feature was split in two: ‘city’ and ‘con-

tinent’. From the 19 columns only 6 remained. The merge process of the two resulted in

4,363,267 rows and 9 columns. Figure 23 showcases the resulting dataframe.

Figure 23 Instance of the merged dataframe of temporal and meta-data.

The last steps of the preprocess were to drop the ‘uid’ column of the data, as this is not

actually a feature. The anonymized dataset was left with load values as numerical data

and the rest of the columns were converted to dummy categorical values. This transfor-

mation is necessary for the models to be trained properly.

5.2 Load prediction

There were 4 different regression models evaluated for load prediction in 7 scenarios.

 -33-

5.2.1 Preprocess of data

At the first stage of analysis, the dataset had to be split in train and test set. Primary at-

tempts with the models, showed that the best performance is achieved with a 25% test

set 75% train set split, which is the default for the Scikit Learn. Other attempts used

20% for the test set or 33% for the test set. Moreover, although the thought of normali-

zation of the data was present, in fact the results from the first round showed that such

strategy would not be necessary.

However, this strategy for splitting in test/train data was changed at the second stage. A

split of 50/50 was chosen for the second case examined. The reason is that this could

save in computational time and complexity as the dataset was very large. Also, Scikit

Learn documentation suggested that the test set should be 50% in Grid Search CV for

optimal use.

5.2.2 Case analysis

In the first case scenarios for all four regression models, the models were using the da-

taset at its primary stage, without any feature engineering or optimization techniques.

The second case scenarios included 5 Fold cross validation for the train split for three

models. This case was combined with hyperparameter tuning through the Grid Search

CV method.

Case 1 - models

Random Forest Regressor

The effectiveness of the Random Forest (RF) regressor was evaluated in predicting the

load by utilizing the default parameters. The max_depth of the regressor was set to 2

and the number of estimators was 100. The performance of the regressor was evaluated

using three metrics: R
2
 , MSE and RMSE.

Linear Regression

The second model was Linear (LR) regressor. The parameters were left at their default

values and the dataset was at its primary form. The performance of the regressor was

evaluated by using the same metrics: R
2
, MSE and RMSE.

Gradient Boosting Regressor

The third model which was deployed is based upon a Gradient Boosting (GB) regressor.

The dataset was at its primary form and the parameters of the model were set at their

default values. Again, the performance was evaluated by utilizing the same metrics as

before: R
2
, MSE and RMSE

-34-

Extreme Gradient Boosting Regressor

The last model in this first case was an Extreme Gradient Boosting (XGB) Regressor.

Parameter tuning did not take place in this attempt and the dataset which was at its pri-

mary form. The performance was again evaluated by the same metrics as the previous

models: R
2
, MSE, RMSE.

Case 1 – Results analysis

 The results of the case 1 scenarios are summarized in Table 3.

Table 3 Summary of the evaluation metrics of Case 1 models

CASE 1
MODELS

RF LR GB XGB

M
E

T
R

IC
S

 R
2
 0.4098 0.4184 0.8548 0.8565

MSE 25731.5677 25299.6714 6275.8881 6202.7785

RMSE 160.4106 159.0587 79.2205 78.7577

The fact that the first stage of model deployment resulted in such good metrics for some

models, is interesting. The RF regressor reached a medium score of 40.98%, which is

quite good for this length of dataset. The Linear regressor reached a close 41.84% and

the RMSE was very close to the Random Forest as well. The great difference comes

with the two boosting algorithms. The GB regressor reached 85.48% at this first stage

without parameter tuning and the XGB regressor reached a little higher, 85.65%. Their

RMSE results were very close, also. The two boosting algorithms are based in the same

principles in their core and such a close result was expected. On the other hand, good

scores like this were not anticipated, for a difficult dataset.

The transformation of the categorical features with dummy values, played a significant

role in this outcome. The binary codes of 1 and 0 after the transformation may result in

more features but do not complicate the training phase of the model.

The RF model performed lower than the linear model, in all metrics. However, it is the

RF regressor that has more possibilities of reaching higher scores with proper tuning of

the parameters. The Linear model has narrow space for improvement.

 -35-

Case 2 – Models

Random Forest Regressor

The effectiveness of the RF regressor was evaluated in predicting the load by utilizing

the default parameters, but this time, a 5 fold cross validation was used for the train and

test split of data. The ‘max_depth’ parameter of the regressor was tuned for 2 or 3 via

the use of Grid Search CV method and the number of estimators was set to 100. The

performance of the regressor was evaluated using the metrics: average R2, MSE and

RMSE.

Linear Regression

In the second case, the LR regressor was left out. The reasons behind this decision are

the low performance of the regressor in case 1 and the minimum available parameters

for hyper-tuning via Grid Search method.

Gradient Boosting Regressor

The GB regressor. The dataset was split in train and test sets using 5 fold cross-

validation. The ‘max_depth’ parameter was tuned for values 3 and 5. Again, the per-

formance was evaluated by utilizing the same metrics as before.

Extreme Gradient Boosting Regressor

The last method was the XGB regressor. The dataset was used with a 5 fold cross vali-

dation at train-test split. The booster parameter of the model was set to 'gblinear' and

'gbtree', to test the effect of the linear and the tree booster in the performance of the

model. The performance was again evaluated by the same metrics as the previous mod-

els: average R2, MSE, RMSE.

Case 2 – Results analysis

The results of the Case 2 models are summarized in Table 4

Table 4 Summary of the evaluation results of Case 2 models

CASE 2
MODELS

RF GB XGB

M
E

T
R

IC
S

 Avg R
2
 0.5486 0.9438 0.8574

MSE 19630.4523 2503.9616 6285.0809

RMSE 140.1087 50.0396. 79.2785

-36-

The results of the second case after the hyper-parameter tuning and the 5 fold cross-

validation implementation have changed compared to the first case. All models have

performed better. The RF regressor had an amazing 33.87% increase compared to the

first case. The best parameter was the ‘max_depth’ equal to 3 and number of estimators

was chosen at 100. The increase is attributed partially to the ‘max_depth’ change from 2

to 3 and partially to the 5 fold cross validation. The ‘max_depth’ parameter controls the

depth of the tree, thus the available nodes, so an increased number is sure to result in

greater separation of the data. The XGB regressor had a small increase, since the score

at first round was already high. It reached 85.74% and was increased by 0.11%. The op-

timization through 5 fold cross validation was responsible for that increase. The best

booster parameter although tuned, was already the best as default, of ‘gbtree’. The al-

ternative linear booster did not perform better than the tree-based one. A very interest-

ing change in the second stage is the increase in GB regressor. In the first case reached

85.48% by learning from the primary data. The second stage was different in the 5 fold

cross validation which was applied to the training dataset and the change of the

max_depth parameter which resulted in 5, as the best. These two alterations increased

the score by 10.42%.

5.3 Prediction of the building type

In research, clustering methods are prevailing in building type prediction. However, in

this case, two classification algorithms were deployed and evaluated in predicting the

building type. A positive aspect towards the selection of these classifiers, was the fact

that they have performed well as regressors in load prediction. More complex classifiers

were left out of the selection. A problem like this, with the complexity and computa-

tional cost that the large number of datapoints poses, would be very difficult to handle.

5.3.1 Preprocess of data

For this classification task, the data had to be transformed suitably. Although, the major

preprocess part of the dataset remained the same as for the regression tasks, a few final

preprocess steps were added. First, the label column had to be created in data. On the

regression tasks the target values were the load values, while in this case the target val-

ue is the type of the building. The two features, ‘industry’ and ‘usespace’, were concat-

 -37-

enated resulting in the ‘label’ feature. Next, the two old features had to be dropped. The

‘continent’ and ‘city’ features had to be transformed into dummy values for simplicity.

Finally, the ‘label’ had to be transformed from string to numbered categories for sim-

plicity, also. The result was 9 classes. Table 5 shows the resulting classes with the

number of tuples they contain. It is evident that the problem is imbalanced.

Table 5 Classes and number of tuples per class

Class Number of tuples

Class 1 1040847

Class 2 835753

Class 5 823396

Class 3 699716

Class 4 598219

Class 6 212203

Class 0 95406

Class 7 49392

Class 8 8335

9 classes in total 4,363,267 tuples

The train/test split in this case used the default values of 25% test set and 75% train test.

The imbalance of classes was considered by setting the’ stratify’ option in test/train split

to ‘Yes’. This adjustment would result in a more balanced problem. They were not cross

validation or other optimizing techniques applied in this step.

5.3.2 Case analysis

Case 1 – Models

Gradient Boosting Classifier

The first scenario was to deploy a GB classifier model to predict the building type. At

this stage the parameters of the model were used with their default values. The metrics

-38-

of the classification with the GB model sere a full classification report, with accuracy,

precision, recall, f1-score values calculated.

Random Forest Classifier

This scenario used an RF classifier as a model. The dataset was at its preprocessed form

as described above and the ‘max_depth’ parameter was set to 3, all other parameters

were set at their default values. A full classification report was produced, also.

Case 1 – Results analysis

Table 6 below, illustrates the mean accuracy score of the two models. Clearly, the GB

classifier has performed better than the RF. Moreover, the difference between the two is

significant, to a point that RF would need wide hyper-parameter tuning.

Table 6 Mean accuracy of the classification models

CASE 1
MODELS

RF GB

mean

accuracy
0.4192 0.9083

The full classification reports of both classifiers are illustrated at Figure 25 Gradient

Boosting, classification report and Figure 24 Random Forest, classification report.. The

complete confusion matrices for both models are available at Appendix B, Figure 26

Confusion matrix of the Gradient Boosting classifier- Figure 27 Confusion matrix of the

Random Forest classifier For the GB classifier the precision scores are very good in to-

tal, and only in the fourth class seems to be low. Of course, the recall score tells that the

estimation for great performance is a little optimistic for some classes, for example the

third class has a high precision, but the recall value is lower, meaning that some tuples

which are classified in class were not actually true. The f1-scores of the model are quite

high for most of the classes, which is a measure of balanced values between the preci-

sion and recall for this problem. In overall, most of the classes are well classified by the

model and this makes it a successful choice of algorithm for this problem.

For the RF classifier the results on the classification matrix are revealing. The precision

scores are extremely low, and the recall are at a medium level. There are classes that

have not been correctly classified, at all. For example, class 0, class 3, class 4, class 7,

 -39-

class 8, have a recall value of 0.00. Only class 1 and class 2 are somehow correctly clas-

sified. The bad performance of the classifier for most of the classes, is shown in the f1-

scores, too. Most of them fall at 0.00 level. The overall performance of RF classifier in

this problem make it a bad choice for this problem.

 precision recall f1-score support

 0 1.00 1.00 1.00 23851

 1 0.89 0.89 0.89 260212

 2 0.92 0.98 0.95 208938

 3 0.90 0.86 0.88 174929

 4 0.86 0.87 0.87 149555

 5 0.91 0.89 0.90 205849

 6 1.00 0.97 0.98 53051

 7 1.00 1.00 1.00 12348

 8 1.00 1.00 1.00 2084

 accuracy 0.91 1090817

 macro avg 0.94 0.94 0.94 1090817

weighted avg 0.91 0.91 0.91 1090817

Figure 25 Gradient Boosting, classification report

 precision recall f1-score support

 0 0.00 0.00 0.00 23851

 1 0.34 0.81 0.48 260212

 2 0.50 0.81 0.62 208938

 3 0.00 0.00 0.00 174929

 4 0.00 0.00 0.00 149555

 5 0.54 0.34 0.42 205849

 6 1.00 0.12 0.21 53051

 7 0.00 0.00 0.00 12348

 8 0.00 0.00 0.00 2084

 accuracy 0.42 1090817

 macro avg 0.26 0.23 0.19 1090817

weighted avg 0.33 0.42 0.32 1090817

Figure 24 Random Forest, classification report.

-40-

 -41-

6 DISCUSSION

In this study 9 models in total were deployed exploring various load prediction and

building type prediction tasks. For load prediction tasks, 4 different machine learning

algorithms were utilized in 2 different cases and 7 model deployments in total. For the

building type prediction task, 2 different machine learning algorithms were evaluated in

1 case.

The first case in load prediction, includes 4 regressor models, Random Forest, Gradient

Boosting, Linear and XgBoost which were evaluated on a train set of the dataset which

was lightly preprocessed. The results showed that among the four models the XGB re-

gressor outperformed the others with a score very close to the GB regressor. The XGB

reached a 85.65% score in performance and the GB 85.48%. This is almost a difference

of ~0.2% between them. In comparison to the other metrics, where their differences

reach ~1.1% for the MSE and ~1.2% at the RMSE. In total, it could be deducted that the

two models performed similarly in this problem without even minor optimizing han-

dlings. The other two algorithms, RF with 40.98% and LR with 41.84% also performed

similarly to one another. In comparison to the two boosting algorithms, though, they

showed a difference of more than 50% decreased performance. This is clear evidence

that boosting techniques or hyper-parameter tuning is needed for them to perform better.

In the second case, the three RF, GB, XGB regressors were slightly tuned and boosted

through 5 fold cross validation of the train data, different train/test set split and hyper-

parameter tuning. The results showed that for the XGB the margin for improvement was

narrow, for the GB a little wider and for the RF it was a lot better. In particular, the

XGB model reached 85.74% by increasing this score by ~0.10% in comparison to case

1. In this case, the GB outperformed the other two, even the XGB, by reaching 94.38%

score. This is a very high score and the total increase compared to case 1 is close to

10%. The evidence that the RF model would benefit from optimization techniques was

proven to be right, since the score reached 54.86% increased by almost 34% from the

first case. Although, the RF algorithm performed poorly in this second case compared to

-42-

the other two, it is clear that there is probably still room for improvement. Of course, it

is highly unlikely that it will reach the high scores of the boosting algorithms.

The final task of building type prediction via classification methods, was evaluated as

successful due to the high score of the GB classifier. In this case, only two models were

deployed, RF and GB. The data was again slightly preprocessed with most of the values

transformed to numerical categories for simplicity. The GB achieved a score of 90.83%

and the RF reached 41.92%. Again, as it was found at the load prediction part of the

study, RF would have probably performed better if more optimizing had been done be-

fore the deployment. The classification report results show the degree of the GB classi-

fier’s superiority in this classification task compared to the RF. All scores, are increased

with the f1-scores of GB reaching the level of 1 for most classes. In contrast to the RF

results, where most of the tuples are misclassified and the corresponding f1-scores are at

the 0.0 level. The GB classifier has performed better both on the precision and on recall

metrics, revealing a balance between the two.

Regarding the preprocess and analysis of the dataset, the choice of mild preprocess be-

fore the first case model deployments is justified. This way, the power of the boosting

algorithms was shown from the very first stage. On the second case scenarios were hy-

per-parameter tuning had been applied and cross validation and train/test split alterna-

tives were explored, it was shown that the decision tree algorithms had potential for bet-

ter performance. The same applies for both the load prediction and the building type

prediction tasks.

In total, the models have performed as expected from the published research. Although,

not many benchmarking datasets are available, and the ones that exist have not been

tested thoroughly with non-complex machine learning algorithms, many researchers

have pointed out the superiority of boosting algorithms in large datasets.

With respect to the research questions of the present study, the deployment of several

models with specific characteristics regarding their simplicity, non-complexity and per-

formance was achieved and the results were consistent with the research. Evaluation

and exploration of them and their ability to perform better was investigated through hy-

per-parameter tuning and optimization techniques. A prediction for building type was

achieved reaching a high level of accuracy from a large dataset through a simple model

approach. Moreover, it could be deducted from the above analysis that the models could

 -43-

generalize well when faced with new data. The extend of the dataset was large enough

to support this.

 -45-

7 CONCLUSION

7.1 Study review

A benchmarking data set which is public and open was utilized in this study with the

aim to evaluate the performance of specific machine learning algorithms in load predic-

tion and to test two classification algorithms in building type prediction. The algorithms

that were used performed as it was anticipated from the research review. In load predic-

tion the two of the regression models Gradient Boosting and Extreme Gradient Boosting

performed very well while the Random Forest and Linear model performed at a medium

level. The second attempt, after hyper-parameter tuning and optimization techniques

were used, revealed that the Gradient Boosting and Extreme Gradient Boosting algo-

rithms stile performed at great levels, while the Random Forest algorithm showed sig-

nificant improvement but still at a lower level than the other two. In building type pre-

diction from load data, the Gradient Boosting and Random Forest models were evaluat-

ed in classification with the first one showing great performance. The Random Forest

would perform better if some hyper-parameter tuning took place.

Although, in this study it was not the case to test thoroughly and exhaustively the capa-

bilities of the algorithms, an overview of them is shown. The idea of testing them with a

large dataset with a significant number of non-complex features has proven to be im-

portant. The research questions posed at the beginning of this study are answered and

the results, agree with the general trend in research.

With respect to the knowledge gained from this study, it could be stated that it gave a

clear perspective of how a very big dataset behaves. Moreover, the accompanying limi-

tations in time and computational power limitations have proven to be beneficial for the

decision-making process. Not many random choices were made and a thorough research

for the parameters and methods to be employed was necessary.

-46-

7.2 Threats on validity

It is common for studies that are constrained by time limitations and computational re-

sources availability to reach conclusions that are subjected to further analysis. The work

presented here is to the best knowledge of the researcher, so far.

Regarding missing values strategy, the exclusion from the beginning of a few missing

rows in the middle of a full dataset could be avoided with proper imputation methods

that result in a complete timeseries. This would result in greater generalization abilities

for the models.

The weather data were not utilized as attributes in the studied dataset and this probably

has an impact in the evaluation result of the models. Several studies have incorporated

such data as features and the results were improved. From a realistic point of view this

would be expected to happen in an energy management system that predicts daily or

monthly load consumption.

Extensive feature research was not conducted in this study, although it would supply

interesting alternatives in the training datasets for the models. This is a possible threat to

generalization ability of the models.

Finally, due to limited time only a simple classification task was performed. The dataset

is suitable for extensive classification tasks for energy prediction or building type label

prediction.

7.3 Future work

This study was conducted with the aim to evaluate some of the most well-known re-

gression and classification models in load prediction and complementary to test the per-

formance of two models in building type label prediction. Of course, the evaluation

process is not complete, nor the selection of models is exhaustive. The dataset has been

extensively studied since 2017 with a variety of proposed models and with a variety of

predicting tasks. If it were for future research, the following points would be a good

start.

 A wider variety of base models should be evaluated by using this dataset. This

proposal includes a large pool of novel or hybrid models that could work on

 -47-

such a type of data. This would result in a database of evaluation results of dif-

ferent models on a benchmarking dataset such as BDG dataset.

 The new revised BDG 2 should be utilized in replicating the process presented

in this study, as well as more models as proposed above. The new dataset is

larger and incorporates more types of buildings. These new timeseries would

add to the computation time of the training phase but the resulting models

should generalize better in unknown data.

 The decent number of features which are provided as meta-data with the open

dataset, is suitable for experimentation and extended feature engineering. More

features could be extracted from the present ones and interesting combination

would probably give to low score models, a new perspective and increase their

scores.

 An interesting approach would be for the dataset to be further analyzed as a

timeseries. The resulting models would provide for comparison with the pro-

posed one in this study.

 Finally, as it is studied in research building type label prediction should be also

tested through a variety of clustering methods.

 -49-

Bibliography

[1] Oxford Institute, “Smart Cities Research.” https://smartcities.oii.ox.ac.uk/ (accessed

Oct. 05, 2020).

[2] European Commission, “Smart cities,” European Commission.

https://ec.europa.eu/info/eu-regional-and-urban-development/topics/cities-and-

urban-development/city-initiatives/smart-cities_en (accessed Oct. 05, 2020).

[3] R. K. R. Kummitha, “Smart cities and entrepreneurship: An agenda for future re-

search,” Technological Forecasting and Social Change, vol. 149, p. 119763, Dec.

2019, doi: 10.1016/j.techfore.2019.119763.

[4] “5 Ways Businesses Benefit From Smart Cities | Articles | Chief Innovation Of-

ficer.” https://channels.theinnovationenterprise.com/articles/5-ways-businesses-

benefit-from-smart-cities (accessed Oct. 05, 2020).

[5] I. Shahrour, “Smart City – Isam shahrour.” http://ishahrour.com/en/smart-cityen/

(accessed Oct. 05, 2020).

[6] I. A. T. Hashem et al., “The role of big data in smart city,” International Journal of

Information Management, vol. 36, no. 5, pp. 748–758, Oct. 2016, doi:

10.1016/j.ijinfomgt.2016.05.002.

[7] H. Habibzadeh, A. Boggio-Dandry, Z. Qin, T. Soyata, B. Kantarci, and H. T. Mouf-

tah, “Soft Sensing in Smart Cities: Handling 3Vs Using Recommender Systems,

Machine Intelligence, and Data Analytics,” IEEE Communications Magazine, vol.

56, no. 2, pp. 78–86, Feb. 2018, doi: 10.1109/MCOM.2018.1700304.

[8] X. He, K. Wang, H. Huang, and B. Liu, “QoE-Driven Big Data Architecture for

Smart City,” IEEE Communications Magazine, vol. 56, no. 2, pp. 88–93, Feb. 2018,

doi: 10.1109/MCOM.2018.1700231.

[9] C. Miller and F. Meggers, “The Building Data Genome Project: An open, public

data set from non-residential building electrical meters,” Energy Procedia, vol. 122,

pp. 439–444, Sep. 2017, doi: 10.1016/j.egypro.2017.07.400.

[10] A. Cocchia, “Smart and Digital City: A Systematic Literature Review,” in Smart

City: How to Create Public and Economic Value with High Technology in Urban

Space, R. P. Dameri and C. Rosenthal-Sabroux, Eds. Cham: Springer International

Publishing, 2014, pp. 13–43.

[11] M. Angelidou, “Smart cities: A conjuncture of four forces,” Cities, vol. 47, pp.

95–106, Sep. 2015, doi: 10.1016/j.cities.2015.05.004.

[12] V. Albino, U. Berardi, and R. M. Dangelico, “Smart Cities: Definitions, Dimen-

sions, Performance, and Initiatives,” Journal of Urban Technology, vol. 22, no. 1,

pp. 3–21, Jan. 2015, doi: 10.1080/10630732.2014.942092.

[13] H. Ahvenniemi, A. Huovila, I. Pinto-Seppä, and M. Airaksinen, “What are the

differences between sustainable and smart cities?,” Cities, vol. 60, pp. 234–245,

Feb. 2017, doi: 10.1016/j.cities.2016.09.009.

[14] R. P. Dameri, Smart City Implementation: Creating Economic and Public Value

in Innovative Urban Systems. Cham: Springer International Publishing, 2017.

[15] L. G. Anthopoulos, “Understanding the Smart City Domain: A Literature Re-

view,” in Transforming City Governments for Successful Smart Cities, M. P.

Rodríguez-Bolívar, Ed. Cham: Springer International Publishing, 2015, pp. 9–21.

-50-

[16] B. van Bastelaer, “Digital cities and transferability of results,” p. 15, 1998.

[17] R. Giffinger, C. Fertner, H. Kramar, and E. Meijers, “City-ranking of European

medium-sized cities,” Cent. Reg. Sci., pp. 1–12, Jan. 2007.

[18] T. Nam and T. A. Pardo, “Conceptualizing smart city with dimensions of tech-

nology, people, and institutions,” in Proceedings of the 12th Annual International

Digital Government Research Conference: Digital Government Innovation in Chal-

lenging Times, New York, NY, USA, Jun. 2011, pp. 282–291, doi:

10.1145/2037556.2037602.

[19] International Telecommunications Unit, “Focus Group on Smart Sustainable

Cities.” https://www.itu.int/en/ITU-T/focusgroups/ssc/Pages/default.aspx (accessed

Oct. 06, 2020).

[20] ITU - T Focus Group on Smart Sustainable Cities, “TR Smart sustainable cities

an analysis of definitions,” Oct. 2014. https://www.itu.int/en/ITU-

T/focusgroups/ssc/Documents/website/web-fg-ssc-0100-r9-

definitions_technical_report.docx (accessed Oct. 06, 2020).

[21] P. Neirotti, A. De Marco, A. C. Cagliano, G. Mangano, and F. Scorrano, “Cur-

rent trends in Smart City initiatives: Some stylised facts,” Cities, vol. 38, pp. 25–36,

Jun. 2014, doi: 10.1016/j.cities.2013.12.010.

[22] J. Han, M. Kamber, and J. Pei, Data Mining. Concepts and Techniques, 3rd ed.

USA: Morgan Kaufmann Publishers - Elsevier, 2011.

[23] S. Agarwal, “Data Mining: Data Mining Concepts and Techniques,” in 2013 In-

ternational Conference on Machine Intelligence and Research Advancement, Dec.

2013, pp. 203–207, doi: 10.1109/ICMIRA.2013.45.

[24] J. Brownlee, “Supervised and Unsupervised Machine Learning Algorithms,”

Machine Learning Mastery, Mar. 15, 2016.

https://machinelearningmastery.com/supervised-and-unsupervised-machine-

learning-algorithms/ (accessed Jan. 04, 2021).

[25] “(PDF) Machine Learning Methods for Reliable Resource Provisioning in Edge-

Cloud Computing: A Survey.”

https://www.researchgate.net/publication/335810150_Machine_Learning_Methods_

for_Reliable_Resource_Provisioning_in_Edge-Cloud_Computing_A_Survey (ac-

cessed Jan. 04, 2021).

[26] J. Moura and C. Serrão, Handbook of Research on Trends and Future Direc-

tions in Big Data and Web Intelligence, vol. Security and Privacy Issues of Big Da-

ta. IGI Global, 2015.

[27] D. Djenouri, R. Laidi, Y. Djenouri, and I. Balasingham, “Machine Learning for

Smart Building Applications: Review and Taxonomy,” ACM Comput. Surv., vol.

52, no. 2, p. 24:1-24:36, Mar. 2019, doi: 10.1145/3311950.

[28] C. Miller, “Predicting success of energy savings interventions and industry type

using smart meter and retrofit data from thousands of non-residential buildings,” in

Proceedings of the 4th ACM International Conference on Systems for Energy-

Efficient Built Environments, Delft Netherlands, Nov. 2017, pp. 1–4, doi:

10.1145/3137133.3137160.

[29] M. Taheri, P. Rastogi, C. Parry, and A. Wegienka, “Benchmarking Building En-

ergy Consumption Using Efficiency Factors,” Rome, Italy, pp. 3863–3870, doi:

10.26868/25222708.2019.210575.

[30] J. Y. Park, X. Yang, C. Miller, P. Arjunan, and Z. Nagy, “Apples or oranges?

Identification of fundamental load shape profiles for benchmarking buildings using

a large and diverse dataset,” Applied Energy, vol. 236, pp. 1280–1295, Feb. 2019,

doi: 10.1016/j.apenergy.2018.12.025.

 -51-

[31] C. Miller, “What’s in the box?! Towards explainable machine learning applied

to non-residential building smart meter classification,” Energy and Buildings, vol.

199, pp. 523–536, Sep. 2019, doi: 10.1016/j.enbuild.2019.07.019.

[32] X. Fang, G. Gong, G. Li, L. Chun, W. Li, and P. Peng, “A hybrid deep transfer

learning strategy for short term cross-building energy prediction,” Energy, vol. 215,

p. 119208, Jan. 2021, doi: 10.1016/j.energy.2020.119208.

[33] C. Nichiforov, I. Stancu, I. Stamatescu, and G. Stamatescu, “Information Extrac-

tion Approach for Energy Time Series Modelling,” in 2020 24th International Con-

ference on System Theory, Control and Computing (ICSTCC), Oct. 2020, pp. 886–

891, doi: 10.1109/ICSTCC50638.2020.9259635.

[34] A. Li, F. Xiao, C. Fan, and M. Hu, “Development of an ANN-based building

energy model for information-poor buildings using transfer learning,” Build. Simul.,

vol. 14, no. 1, pp. 89–101, Feb. 2021, doi: 10.1007/s12273-020-0711-5.

[35] C. Miller et al., “The ASHRAE Great Energy Predictor III competition: Over-

view and results,” Science and Technology for the Built Environment, vol. 26, no.

10, pp. 1427–1447, Nov. 2020, doi: 10.1080/23744731.2020.1795514.

[36] C. Miller et al., “The Building Data Genome Project 2, energy meter data from

the ASHRAE Great Energy Predictor III competition,” Scientific Data, vol. 7, no. 1,

Art. no. 1, Oct. 2020, doi: 10.1038/s41597-020-00712-x.

[37] Z. Wang and T. Hong, “Generating realistic building electrical load profiles

through the Generative Adversarial Network (GAN),” Energy and Buildings, vol.

224, p. 110299, Oct. 2020, doi: 10.1016/j.enbuild.2020.110299.

[38] T. Hong, Z. Wang, X. Luo, and W. Zhang, “State-of-the-art on research and ap-

plications of machine learning in the building life cycle,” Energy and Buildings,

vol. 212, p. 109831, Apr. 2020, doi: 10.1016/j.enbuild.2020.109831.

[39] V. Földváry Ličina et al., “Development of the ASHRAE Global Thermal Com-

fort Database II,” Building and Environment, vol. 142, pp. 502–512, Sep. 2018, doi:

10.1016/j.buildenv.2018.06.022.

[40] “ASHRAE - Great Energy Predictor III.” https://kaggle.com/c/ashrae-energy-

prediction (accessed Jan. 03, 2021).

[41] T. Yiu, “Understanding Random Forest,” Medium, Aug. 14, 2019.

https://towardsdatascience.com/understanding-random-forest-58381e0602d2 (ac-

cessed Jan. 04, 2021).

[42] “1.11. Ensemble methods — scikit-learn 0.24.0 documentation.” https://scikit-

learn.org/stable/modules/ensemble.html#gradient-tree-boosting (accessed Jan. 04,

2021).

[43] “Gradient boosting,” Wikipedia. Dec. 31, 2020, Accessed: Jan. 04, 2021.

[Online]. Available:

https://en.wikipedia.org/w/index.php?title=Gradient_boosting&oldid=997459645.

[44] “How to explain gradient boosting.” http://explained.ai/gradient-

boosting/index.html (accessed Jan. 04, 2021).

[45] D. Freeman, Statistical Models: Theory and Practice. Cambridge University

Press, 2009.

[46] “A Brief Introduction to XGBoost. Extreme Gradient Boosting with XGBoost! |

by Neetika Khandelwal | Towards Data Science.” https://towardsdatascience.com/a-

brief-introduction-to-xgboost-3eaee2e3e5d6 (accessed Jan. 04, 2021).

[47] D. J. Hand and R. J. Till, “[No title found],” Machine Learning, vol. 45, no. 2,

pp. 171–186, 2001, doi: 10.1023/A:1010920819831.

-52-

[48] “RMSE: Root Mean Square Error,” Statistics How To.

https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-

root-mean-square-error/ (accessed Jan. 04, 2021).

[49] “R2 score.” [Online]. Available: https://scikit-

learn.org/stable/modules/model_evaluation.html#r2-score.

 -53-

Appendix A

Instance of raw temporal data set

-54-

Instance of meta data set

 -55-

Instance of meta data set (continued)

 -57-

Appendix B

Confusion matrices for the two classification models.

Figure 26 Confusion matrix of the Gradient Boosting classifier

Figure 27 Confusion matrix of the Random Forest classifier

array([[23844, 5, 0, 2, 0, 0, 0, 0,

 0],

 [0, 231243, 9499, 2751, 10571, 6148, 0, 0,

 0],

 [0, 1965, 205622, 0, 1108, 218, 25, 0,

 0],

 [0, 11328, 2833, 150634, 3849, 6285, 0, 0,

 0],

 [0, 5791, 2254, 6482, 130750, 4278, 0, 0,

 0],

 [0, 8958, 873, 7730, 5510, 182778, 0, 0,

 0],

 [0, 0, 1412, 0, 0, 173, 51466, 0,

 0],

 [0, 0, 0, 0, 0, 0, 0, 12348,

 0],

 [0, 0, 0, 0, 0, 0, 0, 0,

 2084]])

array([[0, 6588, 3645, 0, 0, 13618, 0, 0,

 0],

 [0, 211871, 33476, 0, 0, 14865, 0, 0,

 0],

 [0, 39793, 168263, 0, 0, 882, 0, 0,

 0],

 [0, 135832, 25945, 0, 0, 13152, 0, 0,

 0],

 [0, 111945, 19628, 0, 0, 17982, 0, 0,

 0],

 [0, 112462, 22631, 0, 0, 70756, 0, 0,

 0],

 [0, 0, 46461, 0, 0, 222, 6368, 0,

 0],

 [0, 0, 12348, 0, 0, 0, 0, 0,

 0],

 [0, 0, 2084, 0, 0, 0, 0, 0,

 0]])

-58-

Appendix C

The Python scripts that were deployed are shown below.

Setting up

Import libraries

from pathlib import Path

import numpy as np

import time

import pickle

import pandas as pd

import matplotlib.pyplot as plt

Directories and Paths

DIR_WORK = Path(....)

DIR_DATA = Path(....)

TS_DATA = "temp_open_utc.csv"

BUILDING_DATA = "meta_open.csv"

ETL

#Timeseries Data

#Load data

ts_data_raw = pd.read_csv(Path(DIR_DATA, TS_DATA))\

ts_data_raw.tail(2)

Check & Convert datatypes

ts_data_raw.dtypes

ts_data_raw["timestamp"] = pd.to_datetime(ts_data_raw["timestamp"])

print(ts_data_raw.dtypes)

ts_data_raw.tail(2)

Visualise the timeseries

Convert the timestamp column to DatetimeIndex and plot the graph

ts_data_raw.set_index(pd.DatetimeIndex(ts_data_raw["timestamp"]))

.drop("timestamp", axis=1)

.plot(figsize=(20,10), legend=False, title='Hourly building energy consumption profiles in kWh')

Unpack & transform the dataframe

ts_data = pd.melt(ts_data_raw, value_vars=ts_data_raw.columns.values[1:], id_vars=['timestamp'])

ts_data

 -59-

ts_clean = ts_data.copy()

Drop nan rows

ts_clean = ts_clean.dropna()

Extract the ordinal day of the year

ts_clean["day_of_year"] = ts_clean["timestamp"].dt.dayofyear

Extract the hour from the timestamp

ts_clean["hour"] = ts_clean["timestamp"].dt.hour

Rename columns

ts_clean = ts_clean.rename(columns={"variable": "uid", "value": "load"})

Drop irrelevant columns and reset index

ts_clean = ts_clean.drop("timestamp", axis=1).reset_index(drop=True)

print(ts_clean.shape)

ts_clean.tail(6)

Building data

building_data_raw = pd.read_csv(Path(DIR_DATA, BUILDING_DATA))

building_data_raw

building_data_raw.dtypes

Keep relevant columns and creating derivative features

building_data = building_data_raw[["uid", "industry", "primaryspaceuse_abbrev", "sqm", "timezone"]]

Create 2 new features from Timezone

building_data[["continent", "city"]] = building_data["timezone"].str.split("/", expand=True)

Drop Timezone as it is irrelevant

building_data = building_data.drop("timezone", axis=1)

Rename columns for consistency

building_data = building_data.rename(columns={"primaryspaceuse_abbrev": "usespace"})

building_data

Primary dataframe

primary = ts_clean.merge(building_data, on="uid")

primary.head()

Models

Prepare data for model

df = primary.copy()

df.head()

-60-

df.info()

Drop the uid

df = df.drop("uid", axis=1)

Convert categorical to dummies

df = pd.get_dummies(df)

Modelling

Split data in Train, Test

Primary dataset

Import library

from sklearn.model_selection import train_test_split

Train/test split

x = df.loc[:, df.columns != 'load']

x.head()

y = df.loc[:, "load"]

CASE 1 -Use of shuffle in split - random state=10 - train/test 75/25 defaults

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.25)

CASE 2 -Use of shuffle in split - random state=10 - train/test 50/50

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.50)

Regression

Import libraries

from sklearn.ensemble import RandomForestRegressor

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import mean_squared_error

from math import sqrt

import xgboost as xgb

import time

Random forest

Case 1

start_time = time.time()

rf_reg = RandomForestRegressor(max_depth=2, random_state=1, n_estimators=100, n_jobs=-1)

rf_reg.fit(x_train, y_train)

end_time = time.time()

 -61-

print("--- %s seconds ---" % (end_time - start_time))

Predicted values

y_pred = rf_reg.predict(x)

Print metrics of the model 75/25 split

R2

print("Train score:", rf_reg.score(x_train, y_train))

print("Test score:", rf_reg.score(x_test, y_test))

MSE

rf_reg_mse = mean_squared_error(y, y_pred)

print("MSE:", rf_reg_mse)

RMSE

rf_reg_rmse = sqrt(rf_reg_mse)

print("RMSE:", rf_reg_rmse)

Case 2 - Grid Search - 5 FOLD

#Split data in train and test set

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.50)

start_time = time.time()

Set the parameters

max_depths = (2,3)

n_estimators = (100)

tuned_parameters = [{'max_depth': max_depths}]

n_folds = 5

Random Forest Regressor

rf_reg = RandomForestRegressor(random_state=1, n_jobs=-1)

RFREG = GridSearchCV(rf_reg, param_grid=tuned_parameters, cv=5, verbose=10)

RFREG.fit(x_train, y_train)

print('Best parameters: ', RFREG.best_params_)

print('Average score: ', RFREG.best_score_)

print(RFREG.cv_results_['mean_test_score'])

Predict

y_true, y_pred = y_test, RFREG.predict(x)

end_time = time.time()

print("--- %s seconds ---" % (end_time - start_time))

-62-

#Print the scores

R2

print("Train score:", RFREG.score(x_train, y_train))

print("Test score:", RFREG.score(x_test, y_test))

MSE

RFREG_mse = mean_squared_error(y, y_pred)

print("MSE:", RFREG_mse)

RMSE

RFREG_rmse = sqrt(RFREG_mse)

print("RMSE:", RFREG_rmse)

Linear Regression

Case 1

start_time = time.time()

lr_reg = LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=-1)

lr_reg.fit(x_train, y_train)

end_time = time.time()

print("--- %s seconds ---" % (end_time - start_time))

Predicted values

y_pred = lr_reg.predict(x)

Print metrics of the model

R2

print("Train score:", lr_reg.score(x_train, y_train))

print("Test score:", lr_reg.score(x_test, y_test))

MSE

lr_reg_mse = mean_squared_error(y, y_pred)

print("MSE:", lr_reg_mse)

RMSE

lr_reg_rmse = sqrt(lr_reg_mse)

print("RMSE:", lr_reg_rmse)

Case 2 - GridSearchCV - 5 fold

#Split data in train and test set

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.50)

start_time = time.time()

Set the parameters

max_depths = (3, 5, 7)

 -63-

tuned_parameters = [{'max_depth': max_depths}]

n_folds = 5

lr_reg = LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=-1)

lr_reg.fit(x_train, y_train)

LRREG = LinearRegression(random_state = 1, n_jobs=-1)

LRREG = GridSearchCV(LRREG, param_grid=tuned_parameters, cv=5, verbose=10)

LRREG.fit(x_train, y_train)

print('Best parameters: ', LRREG.best_params_)

print('Average score: ', LRREG.best_score_)

print(LRREG.cv_results_['mean_test_score'])

Predict

y_true, y_pred = y_test, LRREG.predict(x)

end_time = time.time()

print("--- %s seconds ---" % (end_time - start_time))

#Print the score

R2

print("Train score:", XGBREG.score(x_train, y_train))

print("Test score:", XGBREG.score(x_test, y_test))

MSE

XGBREG_mse = mean_squared_error(y, y_pred)

print("MSE:", XGBREG_mse)

RMSE

XGBREG_rmse = sqrt(XGBREG_mse)

print("RMSE:", XGBREG_rmse)

Gradient Boosting

Case 1

start_time = time.time()

gb_reg = GradientBoostingRegressor(random_state=0)

gb_reg.fit(x_train, y_train)

end_time = time.time()

print("--- %s seconds ---" % (end_time - start_time))

Predicted values

y_pred = gb_reg.predict(x)

-64-

Print metrics of the model

R2

print("Train score:", gb_reg.score(x_train, y_train))

print("Test score:", gb_reg.score(x_test, y_test))

MSE

gb_reg_mse = mean_squared_error(y, y_pred)

print("MSE:", gb_reg_mse)

RMSE

gb_reg_rmse = sqrt(gb_reg_mse)

print("RMSE:", gb_reg_rmse)

Case 2 - GridSearchCV - 5 FOLD

#Split data in train and test set

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.50)

start_time = time.time()

Set the parameters by cross-validation

max_depths = (3,5)

tuned_parameters = [{'max_depth': max_depths}]

#n_folds = 5

GBREG = GradientBoostingRegressor(max_depth=5, random_state = 1)

GBREG = GridSearchCV(GBREG, param_grid=tuned_parameters, cv=5, verbose=10)

GBREG.fit(x_train, y_train)

print('Best parameters: ', GBREG.best_params_)

print('Average score: ', GBREG.best_score_)

print(GBREG.cv_results_['mean_test_score'])

Predict

y_true, y_pred = y_test, GBREG.predict(x)

end_time = time.time()

print("--- %s seconds ---" % (end_time - start_time))

#Print the score

R2

print("Train score:", GBREG.score(x_train, y_train))

print("Test score:", GBREG.score(x_test, y_test))

MSE

GBREG_mse = mean_squared_error(y, y_pred)

print("MSE:", GBREG_mse)

RMSE

 -65-

GBREG_rmse = sqrt(GBREG_mse)

print("RMSE:", GBREG_rmse)

XgBoost

Case 1

start_time = time.time()

xgb_reg = xgb.XGBRegressor(n_jobs=1)

xgb_reg.fit(x_train, y_train)

end_time = time.time()

print("--- %s seconds ---" % (end_time - start_time))

Predicted values

y_pred = xgb_reg.predict(x)

Print metrics of the model

R2

print("Train score:", xgb_reg.score(x_train, y_train))

print("Test score:", xgb_reg.score(x_test, y_test))

MSE

xgb_reg_mse = mean_squared_error(y, y_pred)

print("MSE:", xgb_reg_mse)

RMSE

xgb_reg_rmse = sqrt(xgb_reg_mse)

print("RMSE:", xgb_reg_rmse)

Case 2 - Grid Search - 5 FOLD

#Split data in train and test set

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.50)

start_time = time.time()

Set the parameters

boosters = ('gblinear', 'gbtree')

tuned_parameters = [{'booster': boosters}]

XGBREG = xgb.XGBRegressor(random_state = 1, n_jobs=1)

XGBREG = GridSearchCV(XGBREG, param_grid=tuned_parameters, cv=5, verbose=10)

XGBREG.fit(x_train, y_train)

print('Best parameters: ', XGBREG.best_params_)

print('Average score: ', XGBREG.best_score_)

-66-

print(XGBREG.cv_results_['mean_test_score'])

Predict

y_true, y_pred = y_test, XGBREG.predict(x)

end_time = time.time()

print("--- %s seconds ---" % (end_time - start_time))

#Print the score

R2

print("Train score:", XGBREG.score(x_train, y_train))

print("Test score:", XGBREG.score(x_test, y_test))

MSE

XGBREG_mse = mean_squared_error(y, y_pred)

print("MSE:", XGBREG_mse)

RMSE

XGBREG_rmse = sqrt(XGBREG_mse)

print("RMSE:", XGBREG_rmse)

Classification

Preprocess data

Import libraries from regression part too

from sklearn.preprocessing import LabelEncoder

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

Repeat the first case preprocess steps to transform the dataset for classification

ts_data_raw.head()

ts_data_raw["timestamp"] = pd.to_datetime(ts_data_raw["timestamp"])

ts_data = pd.melt(ts_data_raw, value_vars=ts_data_raw.columns.values[1:], id_vars=['timestamp'])

ts_clean = ts_data.copy()

Drop nan rows

ts_clean = ts_clean.dropna()

Extract the ordinal day of the year

ts_clean["day_of_year"] = ts_clean["timestamp"].dt.dayofyear

Extract the hour from the timestamp

ts_clean["hour"] = ts_clean["timestamp"].dt.hour

Rename columns

ts_clean = ts_clean.rename(columns={"variable": "uid", "value": "load"})

Drop irrelevant columns and reset index

ts_clean = ts_clean.drop("timestamp", axis=1).reset_index(drop=True)

 -67-

#building_data_raw = pd.read_csv(Path(DIR_DATA, BUILDING_DATA))

building_data = building_data_raw[["uid", "industry", "primaryspaceuse_abbrev", "sqm", "timezone"]]

Create 2 new features from Timezone

building_data[["continent", "city"]] = building_data["timezone"].str.split("/", expand=True)

Drop Timezone as it is irrelevant

building_data = building_data.drop("timezone", axis=1)

Rename columns for consistency

building_data = building_data.rename(columns={"primaryspaceuse_abbrev": "usespace"})

primary = ts_clean.merge(building_data, on="uid")

df = primary.copy()

df = df.drop("uid", axis=1)

df

Create the 'label' for classification

df["label"] = df["industry"] + "-" + df["usespace"]

Drop the two features after the concatenation

df = df.drop(["industry", "usespace"], axis=1)

Get dummy values for the features left

df = pd.get_dummies(df, columns=["continent", "city"])

df.head()

Use of Lable Encoder for the transformation of the label from string to numbered categories

df['label'] = LabelEncoder().fit_transform(df['label'])

df.head()

Count the classes and check the balance

df["label"].value_counts()

Split in train and test

x = df.loc[:, df.columns != 'label']

y = df.loc[:, "label"]

Use of shuffle in split and flag stratify to YES because of imbalanced dataset

x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=10, shuffle=True, stratify=y)

Gradient Boosting

Case 1

start_time = time.time()

gb_class = GradientBoostingClassifier(random_state=0)

gb_class.fit(x_train, y_train)

end_time = time.time()

print("--- %s seconds ---" % (end_time - start_time))

-68-

print("Train score:", gb_class.score(x_train, y_train))

print("Test score:", gb_class.score(x_test, y_test))

y_pred = gb_class.predict(x_test)

Classification report

print(classification_report(y_test, y_pred))

Confusion matrix

confusion_matrix(y_test, y_pred)

Random Forest

Case 1

start_time = time.time()

rf_class = RandomForestClassifier(max_depth = 3, random_state=0, n_jobs=-1)

rf_class.fit(x_train, y_train)

end_time = time.time()

print("--- %s seconds ---" % (end_time - start_time))

print("Train score:", rf_class.score(x_train, y_train))

print("Test score:", rf_class.score(x_test, y_test))

y_pred = rf_class.predict(x_test)

Classification report

print(classification_report(y_test, y_pred))

Confusion matrix

confusion_matrix(y_test, y_pred)

