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Abstract 

This dissertation was a part of the program of MSc in Data Science in the International 

Hellenic University. The scope of the study is to use Big Data and data mining methods 

in the prediction of the energy consumption loads of non-commercial buildings in Smart 

Cities. This task was achieved through 9 cases of deployed models. The load prediction 

was made through Random Forest, Gradient Boosting, Linear and Extreme Gradient 

Boosting Regression models in 4 cases of the first stage and 3 cases on the second stage. 

Hyper-parameter tuning and model optimization through k-Fold Cross Validation and 

GridSearch CV methods took place in the second case scenarios. The results achieved 

for load prediction were 85.65% for the first case and 94.38% for the second case. For 

all the evaluations a dataset of 4.3 million datapoints was utilized, as part of the Build-

ing Data Genome Project database. For the building type prediction using load data, the 

Gradient Boosting and the Random Forest Classification methods were used. The score 

achieved for this case was 90.83% with some preprocess of the data and no parameter 

tuning.  
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1 Introduction 

Today, we are surrounded by smart cities. It is on the forefront of the media and on the 

imminent plans of technology companies and entrepreneurs. Societies and local gov-

ernments have significantly increased their interest in them,  through the last 10 years. 

Nevertheless, what is the actual interest in them, beyond the technological advance-

ments that they showcase? Through new technologies, efficiency and interconnectivity, 

numerous cities around the world strive to provide the best quality of life for their citi-

zens.  

Interdisciplinary studies and various stakeholders investigate the smart city and view 

this topic from different perspectives. The University of Oxford and the Oxford Institute 

of Internet, describe the idea of the “smart city” as the act of “giving the policymakers 

real-time information on a whole variety of indicators about their city (traffic, environ-

ment, services, etc.) in order to improve decision making and optimize service deliv-

ery”[1]. A great institution such as the European Union, defines the smart city as “… a 

place where traditional networks and services are made more efficient with the use of 

digital and telecommunication technologies for the benefit of its inhabitants and busi-

ness”. However, this meaning is further expanded; beyond the information and commu-

nications technology (ICT) infrastructure, it includes not only the transport networks, 

the water and waste disposal facilities and the efficient ways of lighting and heating the 

buildings, but among others, also, the response of the city administration, the public 

space and the needs of the population [2].  

Among the many stakeholders that shape and create the future of smart cities, govern-

ments are some of the most important. City leaders, such as mayors and local authori-

ties, through their policies define guidelines and implement plans which transform a 

traditional urban environment into a smart city. Yet still, there is not a complete, univer-

sal recipe of what a government should do to make its cities smart. This is highly de-

pendent on the unique context of each city. The engagement of the general government 

results in a combination of different political and technical roles, well beyond simply 

the implementation of the latest technology advancements. But this is a two-way rela-

tionship. Smart city initiatives provide opportunities to city authorities for long-term or 

immediate cost-savings. In this era of austerity measures and cuts on spending, the goal 
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for governments is to save the public resources and innovate, both of which are at the 

heart of smart cities. 

The private domain is of equal importance. Enterprises and corporate organizations con-

tribute greatly to the development of smart cities and benefit greatly, as well. The entre-

preneurs are the pioneers who initiate many of the transitions during the development 

process of a smart city. In return, the technologies being adopted by a city produce large 

amounts of data, which boost business opportunities [3]. New jobs, new establishments, 

sustainability and efficiency in corporate operations and in the services provided are on-

ly a part of  many benefits for the business sector [4]. 

The urban infrastructures play a crucial role in the quality of the services within a smart 

city, but also on their complexity, vulnerability or high cost. Therefore, specific devel-

opments are required, such as smart monitoring of systems and services, advanced 

communication technology which guarantees the safety and the integrity of the data 

transmission, advanced data analysis and machine learning tools for data processing and 

integrated platforms for the management of smart infrastructures [5]. Moreover, it is the 

potential interconnectivity between these infrastructures that enables the smart city ap-

plications to function in the most effective and useful way. Now, more than ever, the 

Internet of Things (IoT) with its increasing capabilities, qualifies for this. IoT being em-

bedded and omnipresent adds to the integration of the real world to a network and even-

tually the Smart World. 

Most smart city applications operate through IoT. This leads to large amounts of data, 

the so-called Big Data. The main characteristics of big data are the large volume, the 

increased velocity and the wide variety, while they are collected through various re-

sources. Their analysis offers the city valuable insights; hence, they play a key role in 

transforming the lives of the citizens [6].  

The large amounts of data generated continuously within the boundaries of a smart city, 

require at first, efficient data storage and then, effective processing methods, to be uti-

lized in the decision-making process. The use of Data Mining (DM), Machine Learning 

(ML) and data analytics techniques provide a lot of tools that serve this cause [7]. Spe-

cifically, DM and ML techniques filter, analyze, process the data, and eventually extract 

high-quality information. Even so, the effectiveness or even suitability of traditional da-

ta mining methods and analytics platforms are sometimes challenged. Then, more ad-
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vanced techniques, such as Deep Learning (DL) and Reinforcement Learning (RL) 

could sometimes be employed to accomplish the demanding task [8]. 

In this study, a part of great significance for smart cities will be assessed. The building 

sector, which is responsible globally for an estimated 40% of total energy consumption. 

In particular, this study focuses on non-residential buildings due to their unique charac-

teristics and complexities in energy consuming systems. Publicly open and available 

data which consist of thousands of timeseries, are preprocessed and analyzed via data 

mining methods. The aim of this analysis is to describe and provide the energy con-

sumption patterns of the selected public municipal buildings. Finally, several predictive 

models are employed and explored to provide accurate predictions of the energy con-

sumption for certain types of public buildings. To achieve this goal, the research objec-

tives for this study are the following: 

 To deploy several simple and well-known data mining predictive models and 

evaluate their accuracy in load forecasting for certain types of public buildings. 

 To further explore and evaluate these models by performing boosting tech-

niques. 

 To predict and classify a building type by using load as an attribute.  

 

The dataset is a result of a project of Clayton Miller and Forrest Meggers and of the 

ETH University of Zurich to create an open dataset for non-residential buildings [9]. It 

consists of electrical meter data of 507 commercial buildings with at least 8760 

timestamps for each one of them. The dataset is public, open and available online by the 

researchers, with the purpose of a repository creation suitable for benchmarking predic-

tive models and help scholars in energy research. 

The analysis of the data and the experiments on this study are executed in Python 3.7. 

Specifically, the packages Pandas, Matplotlib, are mainly used for the analysis and vis-

ualizations and Scikit-Learn is used for the implementation of the machine learning al-

gorithms. For the deployment of the models Google Colab was used and Jupyter Note-

books. All the computational work was executed and processed on the Google Cloud. 

The remainder of the study is structured as follows. Chapter 2 describes and sets the 

theoretical background for Smart Cities, Data Mining and Big Data. In Chapter 3, a lit-

erature review focused on the Building Data Genome dataset which was used is pre-

sented. Chapter 4 describes and analyses the methodology used to explore and prepro-
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cess the data. Also, the theoretical description of the models that were used is illustrated 

along with the evaluation metrics and the hyperparameters that were tuned. In chapter 5, 

the experimental results for data preprocessing and the results of the models deploy are 

outlined. All the load forecasting scenarios and the building type prediction scenarios 

are presented here. Finally, the last two chapters 6 and 7 discuss and summarize the 

findings of the study, accordingly. Aspects regarding the validity of this work and future 

research directions are briefly explained in the last chapter. 
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2 Theoretical background 

The starting point of a study is to define the subject. In this case, it is the question: What 

is a smart city? Nevertheless, any attempt to give a solid answer to that question results 

in ambiguities and finally a series of context-based definitions. As it seems the relation-

ship between smart cities and data mining methods evolves through the years, so, that 

today, no further development of smart cities research can be made far from the founda-

tional data mining, analytics and machine learning methods. Moreover, the data which 

are related to smart cities projects, are inevitably analyzed and explored through big da-

ta related processes. 

2.1 Smart Cities 

2.1.1 Definitions and dimensions 

Identifying an operational definition for smart cities requires a closer examination of the 

theoretical background. Most of the researchers who study the concepts of smart cities, 

find common ground on the fact that there is not only one widely accepted definition of 

the term ‘smart city’ in bibliography. This is apparent to the scholars and in either case 

clearly stated by many of them in their works [10]–[14]. According to researchers [15], 

‘smart city’ as a notion appeared for the first time in 1998 by Van Bastelaer. However, 

Dameri and Cocchia in 2013 stated that the concept was introduced in 1994 [13]. A 

study of relevant research showed that, the definition of this term is an ongoing process. 

As ‘smart city’ is directly linked to the evolution of technology and newer sources re-

flect that. 

At one of the very first attempts to provide a definition for ‘digital city’, Van Bastelaer 

concludes that the term may have several definitions, some of which differ greatly from 

one another. However, in this study, the rapidly growing information and communica-

tion technologies are proven to be the driving forces that transformed the advanced in-

dustrial cities. The online services are managed by the municipal authorities or citizens 

and present useful information that make people’s lives easier in the city [16]. From that 

early notion of the digital city, the terminology has changed and during the last decade 
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researchers explored alternative approaches of the former ‘digital city’ which is now a 

‘smart city’. Cocchia in her work [10] describes the smart city appearance as a sequent 

that came after the emerging urbanization phenomenon in this century. Elaborating on 

this idea, this trend flourished due to the information and technology improvements. At 

most times, either ICT attributes of the city are highlighted (i.e digital, broadband, wire-

less, etc.) or the information flow through the urban space is [15]. Others argue that 

ranking a characteristic (i.e. digital infrastructure) of a smart city higher than another, 

only gives a unilateral perspective to the meaning of a smart city. Instead, multiple is-

sues should be considered such as: awareness, flexibility, transformability, synergy, in-

dividuality, strategic behavior, self-decisive [17]. In their attempt to shed light on this 

fuzzy concept, the authors T. Nam and T. A. Pardo approach the term “smart” from a 

linguistic, a marketing, a technological and an urban planning field perspective in their 

work [18]. It is further inferred that a smart city can be called by many names (Digital 

City, Intelligent City, Information City, Knowledge City or Smart Community) and all 

of them are equally effective. It is mostly the modern technology and marketing stresses 

that have resulted in the prevalence of the term ‘smart city’. 

Giffinger, who is a widely cited researcher of this topic, in his work in 2007 [17] builds 

upon the ‘smartness’ of a city and gives the following definition: “a city well perform-

ing in a forward-looking way in Smart Economy, Smart People, Smart Governance, 

Smart Mobility, Smart Environment and Smart Living, built on the ‘smart’ combination 

of endowments and activities of self-decisive, independent and aware citizens”. This is 

a holistic approach, which recognizes that various aspects should form the basis for a 

complete definition. In the same direction, the International Telecommunications Union 

(ITU) in 2015, following an assessment of 116 available definitions on smart cities, 

agreed on this definition: “A smart sustainable city is an innovative city that uses in-

formation and communication technologies (ICTs) and other means to improve quality 

of life, efficiency of urban operation and services, and competitiveness, while ensuring 

that it meets the needs of present and future generations with respect to economic, so-

cial, environmental as well as cultural aspects”. [19] The ITU-T Focus Group on Smart 

Sustainable Cities (FG -SSC) identified a total of 8 different key categories, 6 primary 

indicators and 30 key words as representative of a smart city. The following Table 1 

summarizes the findings of the categories and indicators, while on Figure 1 the word 

cloud reflects a quantitative analysis of the different keywords and the number of occur-

rences that these keywords have from the 116 documents studied [20]. 
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Table 1 The key categories and primary indicators of a smart city according to ITU-T FG-SSC  

analysis. Source [20] 

Key categories  Primary Indicators 

Quality of life and lifestyle 
 

Smart living 

Infrastructure and services 
 

Smart people 

ICT, communications, intelligence and information 
 

Smart environment and sustainability 

People, citizen and society 
 

Smart governance 

Environment and sustainability 
 

Smart mobility 

Governance, management and administration 
 

Smart economy 

Economy and finance 
 

 

Mobility 
 

 

 

  

Figure 1 The most important keywords with reference to Smart Cities which were derived from 

the ITU – T FG- SSC. Source: [20] 

 

Although researchers and academics recognize the great importance of intellectual and 

social capital, for example smart governance and smart strategic planning, [14], [17] the 

private corporate sector acts differently. In organizations and companies, it is anticipat-

ed that ICT provides a means of improving productivity through automation of process-

es and enhance decision making, planning and control activities. In a city, it is the same 

contribution that ICTs have in simplifying the urban living complexities. The abun-
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dance of data and the active use of them in decisions can make the difference in a city’s 

traffic or energy problem [21]. 

2.2 Data Mining 

Data mining is a subject that falls into many disciplines and can be defined in many 

ways. The basic concepts of data mining are similar to the core concepts of the 

Knowledge Discovery from Data (KDD) field. In general, the KDD process is a se-

quence of the following steps:  

i. Data cleaning, removal of noise and inconsistencies in data 

ii. Data integration, combination of multiple sources of data 

iii. Data selection, retrieval of data relevant to the analysis 

iv. Data transformation, transformation processes apply to data such as aggrega-

tions or summaries 

v. Data mining, application of algorithmic methods to extract patterns from data 

vi. Pattern evaluation, identification of interesting patterns in data 

vii. Knowledge presentation, visualization and representation techniques are utilized 

to showcase the extracted knowledge to the users [22]. 

2.2.1 Basic concepts 

Some very basic concepts about data mining consider the foundational blocks of it. A 

very basic concept in data mining is the idea of Class and databases. All the entries in a 

database can be categorized in a number of classes. A class could be defined as a con-

cept which is described and characterized by specific data [22]  Although, many kinds 

of data can be mined, e.g. data streams, sequences of data, graphs etc.,  the most usual 

are databases or data warehouses. The databases can hold several thousand or millions 

of organized records. 

The Data Mining techniques can be divided in two categories: descriptive or predictive. 

The descriptive methods provide information which are properties of the data. The pre-

dictive methods extract inferences from the data to predict the information which are 

not evident. The different techniques that fall into these two categories are: 

i. Data classification 

ii. Data prediction (regression methods) 

iii. Data clustering 
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iv. Outliers analysis 

v. Association rule mining [23] 

In the present work the first two categories are of interest for the analysis purposes. Da-

ta classification is the process of classifying the available dataset in classes. This cate-

gory incorporates methods that are called supervised learning. These methods exploit a 

set of given input – output to learn a function that maps the input to output. The other 

techniques available at the data classification category, are unsupervised learning, 

where no outputs are provided, and reinforcement learning methods, where the output is 

a set of instructions rather than a class.  

2.2.2 Supervised learning 

The supervised learning methods are the most used in machine learning applications. 

The general idea is that a set of labelled data is provided and the data mining technique 

learns from the relationship between the inputs and the outputs the function that maps 

from the input data to the output data. The closer the approximation of this relationship 

the better the performance of the method.  

A further categorization in supervised learning methods, divides them in classification 

and regression:  

i. Classification: A classification problem is when the output variable is a category 

ii. Regression: A regression problem is when the output variable is a real value [24]  

 

The following figure shows graphically some of the most common machine learning 

methods, Figure 2  The most widely used methods of machine learning per category. 

Source [25] 
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Figure 2  The most widely used methods of machine learning per category. Source [25]  

 

2.3 Big Data 

One definition of Big Data comes from the McKinsey Global report from 2011: “ Big 

Data is data whose scale, distribution, diversity, and/ or timeliness require the use of 

new technical architectures and analytics to enable insights that unlock new sources of 

business value.”  

Although the volume of Big Data tends to attract the most attention, generally the varie-

ty and velocity of the data provide a more precise definition of Big Data. Some years 

earlier big data used to be described by three main characteristics: 

i. Huge volume of data, not thousands or millions of rows, but billions of rows 

and millions of columns. 

ii. Complexity of data types and structures, big data reflect the variety of available 

data sources, formats, and structures. 

iii. Speed of new data creation and growth, they can describe high velocity data, 

with rapid data ingestion and near real time analysis. 



  

 -11- 

This is no longer the case. Big data is more than these three aspects. A new revised 5 

point definition tries to incorporate all the characteristics than define big data. But to-

day, this is surpassed as well. In Figure 3 The five main characteristics of big data. 

Source: [26]the 5 aspects of big data are illustrated.  

 

 

Figure 3 The five main characteristics of big data. Source: [26] 

 

On another point of view, big data can be structured in databases,  unstructured in text 

documents, images, videos, etc. or semi-structured in textual data with pattern XML, 

etc.  
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3 Related work 

The research on machine learning applications for smart buildings is mainly focused on 

two large groups: i) solutions focusing on occupancy, e.g. estimating the number of oc-

cupants, recognizing their activities or estimating about their preferences or behaviors 

and, ii) solutions focusing on energy or devices, e.g. energy or device profiling and es-

timation, fault detection, inference from sensors etc. [27]. 

3.1 Building Data Genome Project 

Several related studies have attempted to develop models that could support advanced 

building energy systems (BES) and provide measurable improvement in the energy effi-

ciency in buildings. Accurate energy predictions are the most important factor that can 

optimize the operation and control of BES. The new advancements in big data analytics 

and machine learning fields equip the researchers with the necessary tools to describe 

the complex relationships that the data of the buildings form. A large toolset of models 

is available now, and it keeps growing. However, the development of repositories that 

may serve as benchmarking tools for the plethora of the new models proposed is of 

great importance. It is a common problem that a proposed model may be tested against 

a specific dataset but may not generalize well when it is tested against another. The 

Building Data Genome Project (BDG) dataset which was utilized in this study, is aimed 

to serve as a benchmarking tool by its creators. [9] There have been several studies pub-

lished about it, even though it is relatively new. The following review is focused on the 

use of the dataset by researchers from the year of publication in 2017 until now. 

In 2017, Miller C., proposes in his study [28] a preliminary methodology about non-

residential buildings that have advanced metering (AMI) meters. This work falls into 

the building retrofit area of interest and results in statistics, model and pattern-based 

temporal features extraction from over 36,000 smart meters. Classification models, such 

as Random Forest are deployed for this purpose, which showed an 18.3% increase in 

accuracy of predicting if a building would perform well after a retrofit is made and an 

27.6% increase in accuracy in predicting the industry type of a building. 
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Taheri M. et al., in their work [29] present the idea of efficiency factors which are cal-

culated from timeseries of energy, weather, and occupancy (represented by usage). 

Their research explores the prediction of what are the modulations on the building de-

sign side to modulate the effect of the weather and finally provide a comfortable envi-

ronment to its occupants. Linear and non-linear regression models such as Linear Re-

gression (LR), Polynomial Regression (PR) and Gradient Boosted Trees Regression 

(GBR) were utilized to present a method that helps in benchmarking the new buildings, 

on the basis that variation in weather and human usage, creates variation in the energy 

usage.  

Park J.Y. et al, in their research [30] deal with load profiling and benchmarking for 

buildings. The main idea is based on the new data-driven approaches that emerge where 

the shape of the load profiles is used as a means of comparison. A total of 3829 build-

ings in this work are analyzed with clustering methods followed by entropy calculation 

for each building. This approach contradicts the traditionally used classification meth-

ods for such applications. The results may be of use to portfolio management applica-

tions, building and urban energy simulations, demand response and renewable energy 

integration in buildings and more. 

Also in 2019, Miller C. in his work [31] used the BDG dataset to evaluate several fea-

ture engineering and data-driven classification models. With the aim of the study being 

to provide explainable machine learning models for prediction and classification pur-

poses in building applications, this study is the first one to focus on this field of smart 

meter data from non-residential buildings.  

Fang X. et al, in their study [32] propose a novel hybrid deep transfer learning strategy 

for short-term cross-building energy prediction. They make use of long short memory 

(LSTM) for feature extraction and domain adversarial neural networks (DANN) for 

finding domain invariant features that could be adapted to the unknown target buildings. 

The results have shown that the building energy prediction can be improved significant-

ly.  

In another new study, Nichiforov C. et al. [33] utilize the BDG database for testing and 

evaluating their proposed method. With the purposes of extracting information, antici-

pating possible future faults and finally performing domain-specific load profiling, their 

Matrix Profile (MP) technique is applied, which is based on a model free approach. The 

results justify the scope of their study as their analysis provides higher level information 
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which speed up the analysis with more advanced methods and provide a baseline for 

online implementation or real time energy building management systems. Adding up to 

the findings of the previous study, Nichiforov  C. et al, in continuing their research by 

utilizing the MP introduced a technique for feature extraction in the time series of BDG 

dataset and anomaly detection. On a second stage,  several classification algorithms 

such as decision trees, nearest neighbors, support vector machines and regression trees 

were utilized to discriminate among the dominant usage patterns of the buildings. The 

diversity of the used dataset helped in proving that, the unusual behavior in energy con-

sumption patterns is sufficient enough for differentiating between usage patterns. This 

leads to fast approaches in decision making and control systems where historical data 

reach a possible minimum. 

Li A. et al,[34] in their research make use of transfer learning based artificial neural 

network (ANN) methods that could act as a baseline for building energy prediction 

models when a limited amount of data is available. Their analysis on 400 buildings of 

the BDG database revealed a significant improvement in accuracy of  back-propagation 

neural network (BPNN)- based building energy models for buildings with little availa-

ble training data. Moreover, through the analysis of the available features of the build-

ings, it was derived that the most influential buildings features were the building usage 

and industry. 

In 2019, ASHRAE hosted the Great Energy Predictor III (GEPIII) machine learning 

competition on the Kaggle platform and the BDG dataset was one among the 16 differ-

ent data sources. The result was 2380 energy meters for over 1448 buildings and over 

20 million of training data that were provided to the competitors. The results showed 

that with great difference the Gradient Boosting methods such as Light GBM, CatBoost, 

XGBoost, and LiteMORT resulted in greater accuracy in the final prediction models. 

Moreover, some of the top solutions used Multi-Layer Perceptron, Feed-Forward Neu-

ral Networks and Random Forest models with very good results.[35] The ASHRAE 

successful competition was followed by a new version of the BDG dataset, which in-

corporated the new timeseries that were added for the competition purposes. A BDG 2 

dataset is available with 3,053 energy meters from 1,636 non-residential buildings with 

a range of two full years (2016 and 2017) at an hourly frequency (17,544 measurements 

per meter resulting in approximately 53.6 million measurements) [36].  
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In 2020, another research team by Wang Z. et al., [37] proposed a new method for gen-

erating realistic electrical load profiles of buildings through the Generative Adversarial 

Network (GAN). This is a machine learning technique which is used to extract an un-

known probability distribution from plain data. The results showed that with the pro-

posed model, the general trend and the random variations of the actual electrical loads 

are captured. Moreover, new building electrical loads can be generated, other profile 

generation models can be verified, changes to load profiles can be detected and smart 

meter data can be anonymized for research promoting reasons.  
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4 METHODOLOGY 

The aim of this study is to utilize the open dataset of the Building Data Genome Project 

for predicting the consumption load for several commercial buildings. In the present 

work this was attempted with the use and evaluation of well-known, conceptually sim-

ple, yet diverse data mining models. At first, the raw dataset is explored and prepro-

cessed. The first case is explored via four different regression models. At a second case 

hyperparameter tuning methods are utilized to improve the performance of the selected 

algorithms. Lastly, another task which is performed, is utilizing a classification model: 

predicting the type of a building via classification methods. 

4.1 Problem 

Buildings are essentially a system that consists of inflows and outflows and their high 

performance is achieved through carefully measurement, regulation and control. These 

processes include day-to-day operations which finally, influence occupants’ health and 

comfort, energy performance and the cost of utilities. Although the application of ma-

chine learning methods and data-driven processes in the building life cycle has been ex-

tensively researched, there are still some problems that remain unsolved [38].  

It has been observed that most of the research results and novel methods will not reach 

the industry in the imminent future or even never. This problem is attributed to several 

reasons. It is certain that the low availability in open labeled data as training sets for the 

models, affects the number of experiments and evaluations which are performed. This 

could also lead to another possible obstacle, that of model transferability. There have 

been transfer learning research approaches for solving this. [32] However, the para-

digms where a model is deployed and explored based on a building’s data and is then 

transferred and applied to another building are limited. One more possible cause for the 

slow process towards the industrialization of the research, is that the cost benefits are 

not measured or clear enough to promote this. Finally, it is evident that in every pro-

posed novelty there comes an estimated possibility of success. The estimated accuracy 

of most models and their capacity to generalize is an aspect that usually needs to be ex-

amined further.  
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Relevant to the open training data availability, is the fact that the majority of published 

research presents different machine learning methods and models which are trained and 

validated on different training data. This causes great difficulty in the comparison be-

tween them, as no safe conclusion can be drawn. A benchmarking process is of great 

importance in this situation. There need to be large scale open datasets available upon 

which different machine learning approaches could be evaluated. ASHRAE Global 

Thermal Comfort Database [39], ASHRAE Great Energy Predictor III [40],  Building 

Data Genome Project  [9] and the revised Building Data Genome Project 2 [36] datasets 

have offered a preliminary solution on that. Even more attempts about different types of 

buildings would be beneficial.  

Finally, it is known that many of machine learning solutions are difficult to interpret and 

explain. This poses restrictions on how a machine learning data-driven, or so called 

black-box, model can provide interpretable results. Some of the proposed solutions fo-

cus on the integration with the physical models and implementation of physical domain 

knowledge into the data-driven models [38]. 

This study is dedicated to deploy non-complex, interpretable and well-known but dif-

ferent in their core models, and measure their performance in energy load prediction. 

The selected dataset is public, open and accessible to everyone. It is examined how tar-

geted hyperparameter tuning affects the accuracy of the model and how the special 

characteristics of the buildings used as features can add to accuracy.  

4.2 Dataset description 

As only a few public data sources of hourly non-residential meter data exist for the pur-

pose of testing algorithms, the Building Data Genome dataset was chosen for this analy-

sis. It   is a collection of 507 whole building electrical meters. The majority of which 

come from university campuses. This dataset is the  result of the ‘‘Building Data Ge-

nome Project’’ of Clayton Miller and Forrest Meggers  [9] and it serves as a repository 

of open, non-residential data sources which can be built upon by other researchers.  

For each one of the buildings of the dataset a set of about a year hourly electrical energy 

consumption values are gathered. The time period of the measurements spans from 01-

01-2010 to 01-01-2016. Along with the raw data file, there is a metadata file available 

providing information on some of the buildings’ characteristics, e.g. surface area, pri-

mary heating type, as well as the location of the buildings, e.g. city, continent, and the 
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primary use of them, e.g. educational, office etc. It is very interesting that the research-

ers were able to incorporate weather files for each one of the locations of the buildings, 

which add to the potential analysis tasks. Snapshots of the raw data file and the metada-

ta file may be found at Appendix A. Some characteristics for the available data are 

found in Figure 4 Distribution of case study buildings among time zone, industry, sub-

industry and primary use type. Source [9]. 

 

 

Figure 4 Distribution of case study buildings among time zone, industry, sub-industry and pri-

mary use type. Source [9] 

 

4.3 Machine learning models 

The load forecasting strategy of this study is based on several regression models. The 

length and variety of data in the dataset pointed towards this direction since, the more 

data available for a regressor the better it is trained. The models which were used are 

Random Forest Regression, Linear Regression, Gradient Boosting Regression and Ex-

treme Gradient Boosting Regression. For the building type classification task, the Ran-

dom Forest Classifier and Gradient Boosting Classifier were used.  
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4.3.1 Random Forest Classification and Regression  

Random Forest (RF) is a combination of decision trees. Decision trees are splitting a 

dataset depending on the feature value in different trees  and branches (directions). The 

RF method consists of a large number of such decision trees that operate as a group. 

The model’s prediction is similar to the one that the majority of the trees have predicted. 

What need to be noted at this point is that bagging and feature randomness are used to 

build each of the trees.  As a result, the uncorrelated forest of trees that this process re-

sults in has increased accuracy in comparison to the individual trees [41]. 

4.3.2 Gradient Boosting Classification and Regression  

The Gradient Boosting (GB) or the Gradient Boosting Decision Trees (GBDT) is an ac-

curate method that generalizes in the boosting of arbitrary differentiable loss func-

tions.[42] It is a machine learning technique used for regression or classification. The 

main idea is to produce a model constructed of decision trees, which are weak predic-

tion models. It incorporates different stages in the model construction and generalizes 

them by optimizing an arbitrary differentiable loss function. [43] The model perfor-

mance is measured by computing the cost of predicting 𝑦
^

𝑖 instead of actual value yi. The 

loss across all N observations is just the average of all the individual observation losses: 

[44]  

4.3.3 Linear Regression 

Linear regression is a method for modelling the linear relationship between a dependent 

value and one or more independent variables. It can be categorized in simple or multiple 

linear regression depending on the number of independent variables. [45] The linear re-

lationship between the dependent and independent variables is modeled by using linear 

predictor functions. The parameters of those functions are unknown and are estimated 

from the training data of the model. A variety of methods for fitting linear regression 

models to data may be used, but the most usual method used is Least Squares Estima-

tion.  

4.3.4 Extreme Gradient Boosting Regression 

The Extreme Gradient Boosting regression method or XGBoost, belongs to the decision 

trees methods. It is an ensemble method, like GB. This method has several advantages 

which make it one of the most preferred in machine learning model deployment. It is 
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based on a really powerful algorithm that shows great speed and good performance. 

This aspect is empowered by the ability to run in multicore computers and exploit the 

most of the processing power available. Moreover, large sets are handled well in the 

training phase. These characteristics make this model outperform the more simple algo-

rithms. [46] 

4.4 Optimization 

Each of the algorithms has parameters that can be appropriately selected for great per-

formance of the model. Besides the hyper-parameters there are also techniques that 

boost performance of the models when carefully selected. In this work both were im-

plemented in different cases. 

4.4.1 Hyper-parameters 

In Random Forest regressor, the parameters that were used to boost performance of the  

model are the ‘n_estimators’, which represents the number of the trees in the forest. The 

default value is 100 and the ‘max_depth’, which is the maximum depth of the tree. A 

value of ‘None’ makes the algorithm keep iterating until pure leaf is reached. 

The Gradient Boosting regressor could be optimized by tuning a few parameters like the 

‘loss’. This parameter chooses the loss function to implement. Another parameter to 

tune is the ‘max_features’, which chooses the number of features to consider when 

looking for the best split. In this study, the ‘max_depth’ was chosen, which defines the 

maximum depth of the individual regression estimators and the nodes of the tree.  

In the XGBoost model, the booster parameter was selected for tuning. This parameter 

controls the booster that is implemented in the model and it can be linear or tree based.  

 

4.4.2 Optimization techniques 

There are several boosting and optimization techniques available for better performance 

of the models. In this study two of them were applied: Kfold cross validation and Grid 

Search CV.  

Kfold cross validation is basically a statistical method which is used mainly to compare 

the evaluation of models and choose the best one for a particular problem. The idea is to 

perform shuffling on data and take several samples from them to train the model. This 



-22- 

way the algorithm is able to generalize well. The number of samples is defined by the k 

folds. There exist multiple shuffling choices for the data, such as the stratification op-

tion, which is used for data with imbalanced classes. In this option the data are sampled 

from each class according to the length of the class.  

Grid Search CV is mostly used for tuning the parameters of a model. It can be exhaus-

tive and explore all the possible combinations of the parameters or it may be exploring 

only the ones given by user. In Scikit Learn Library is implemented together with the k-

fold cross validation method. 

4.5 Evaluation and metrics 

4.5.1  Regression evaluation and metrics 

In regression problems the predicted values are continuous real numbers. The main idea 

in evaluation of regressor performance is to measure the distance between the real value 

and the predicted value. Although a variety of measures is available for evaluating the 

performance of a regressor, this work uses only three of them. These are the Coefficient 

of Determination or Adjusted R denoted as R
2
 , the Mean Square Error or MSE and the 

Root Mean Square Error or RMSE.  

The Mean Square Error, MSE measures the average Euclidean distance. The optimal 

number is the minimum number for this metric. If 𝑦
^

𝑖 is the predicted value of the i-th 

sample, and 𝑦𝑖 is the corresponding true value, then the mean squared error (MSE) es-

timated over 𝑛samples is defined as shown in Figure 5 

 

MSE(𝑦, 𝑦
^

) =
1

𝑛samples

∑ (𝑦𝑖 − 𝑦
^

𝑖)
2

𝑛samples−1

𝑖=0

 

Figure 5 MSE calculation formula Source: [47] 

 

Root Mean Square Error (RMSE) is one of the most widely used measures of the error 

of a model in predicting quantitative data. In essence it is the standard deviation of the 

residuals and shows how spread they are. It is a measure that tells how concentrated the 

data are around the line of fit. Mathematically is expressed as the square root of MSE, 

Figure 6: 
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RMSE(𝑦, 𝑦
^

) = √
1

𝑛samples

∑ (𝑦𝑖 − 𝑦
^

𝑖)2

𝑛samples−1

𝑖=0

 

Figure 6 RMSE calculation formula. Source: [48] 

 

The coefficient of determination, R
2 

, expresses the proportion of the variance that can 

be explained by the independent variables in the model. It is a measurement of goodness 

of fit of the model to new samples. The optimum score is 1 and it can also take negative 

values when the model is worse. A value close to zero would mean that the model does 

not change regardless of what input features it has.  If 𝑦
^

𝑖 is the predicted value of the i-

th sample and 𝑦𝑖 is the corresponding true value for total 𝑛 samples, the estimated R² is 

defined as, Figure 7:
 

 

𝑅2(𝑦, 𝑦
^

) = 1 −

∑ (𝑦𝑖 − 𝑦
^

𝑖)
2

𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛

𝑖=1

 

Figure 7 R
2
 calculation expression. Source: [49] 

 

where 𝑦 =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  and ∑ (𝑦𝑖 − 𝑦

^

𝑖)2
𝑛

𝑖=1
= ∑ 𝜖𝑖

2𝑛

𝑖=1
  

4.5.2 Classification evaluation and metrics 

The most widely known and frequently used metrics to evaluate a classifiers perfor-

mance are: accuracy (or recognition rate), sensitivity (or recall), specificity, precision, 

F1, and Fβ. In this study only accuracy, sensitivity, specificity and F1 are utilized. Some 

basic terminology to classification metrics is needed before the previous mentioned 

metrics are further explained.  

Regarding the classifier’s label recognition, there are the positive tuples (those of the 

main class of interest) and the negative tuples (all the other tuples). The positive ones 

are denoted as P and the negative ones are denoted as N. When evaluating a tuple a 
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comparison is made between the classifier’s class label prediction and the tuple’s 

known label.  

The evaluation result is a summary of the metrics above, explained in terms of positive 

and negative tuples and it is called confusion matrix. The following explanation of the 

terms is essential for the understanding of the confusion matrix. The True Positives (or 

TP) refer to the positive tuples that were labeled correctly by the classifier, while the 

True Negatives (or TN) are the negative tuples that were correctly labeled by the classi-

fier. False Positives (or FP) are called the negative tuples that were incorrectly labeled 

as positive and likewise False Negatives (or FN) are called the positive tuples that were 

mislabeled as negative. The confusion matrix is illustrated in Figure 8 

 

 

Figure 8 Confusion matrix. Source: [22]  

 

The confusion matrix is used to illustrate how good a classifier is performing in recog-

nizing the different classes. The TP and TN values tell if a classifier is classifying the 

right way while the FP and FN showcase the wrong way that a classifier is working.  

With reference to the evaluation metrics discussed at the beginning of this paragraph, 

these are defined using the formulas in Figure 9 – Figure 15. 

The accuracy of a classifier on a given test set is defined as the test set tuples which are 

correctly classified. The expression is: 

 

 

Figure 9 Definition formula of accuracy Source [22] 
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Sensitivity is also called true positive recognition rate and is defined as the proportion 

of positive tuples that are correctly classified. The expression is:  

 

 

Figure 10  Definition formula of sensitivity Source [22] 

 

Similarly, specificity is the true negative recognition rate and is used to measure the 

proportion of negative tuples that are correctly identified.  

 

 

 Figure 11  Definition formula of specificity Source [22] 

 

There is a relationship between accuracy and specificity and sensitivity measures, which 

can be expressed as: 

 

 Figure 12 The accuracy formula expressed in terms of sensitivity and specificity. Source: [22] 

 

Precision can be defined as the percentage of tuples which are positive and are actually 

classified as such. Precision is a measure of exactness and is expressed as: 

 

 

Figure 13  Definition formula of precision. Source: [22]  
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The recall measure expresses the completeness  is a measure of completeness and it ex-

presses the percentage of positive tuples that are labelled as positive. The definition 

formula is: 

 

 

Figure 14 Definition formula of recall. Source: [22]  

 

Finally, the  F1 or F-score measure is just a combination of the precision and recall 

measures and it is expressed as: 

 

 Figure 15 Definition formula of F1 or F-score. Source:  [22] 

 

When a classifier is evaluated, besides the mentioned measures, additional characteris-

tics may be considered. Some of them are robustness, scalability, speed and interpreta-

bility. These are more qualitative and give are used to describe the generalization and 

stability of the classifier when is deployed with different datasets [22]. 
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5 RESULTS 

5.1 Data description and preprocessing 

5.1.1 Timeseries data 

The effectiveness of load forecasting with the use of the proposed machine learning 

models were evaluated on a whole implementation of the BDG dataset. The 507 differ-

ent timeseries with hourly resolution were combined in a large dataset. Statistical in-

formation on the 507 buildings of the dataset are presented on Table 2. 

Table 2  Building energy consumption datasets 

Dataset 
Building 

type 

Count of 

timestamps 

Hourly energy consumption in kWh 

Mean Min Max Std 

Office Office 1348456 112.688400 0.005517 2649.300000 177.114300 

PrimClass 

Primary 

School 

Classroom 
885145 16.689776 0.000658 298.69999 25.954297 

UnivClass 
University 

Classroom 
699716 86.935176 0.010000 570.66705 79.512861 

UnivDorm 
University 

Dormitory 
606554 94.608103 0.017931 641.180000 87.770776 

UnivLab 

University 

Laborato-

ry 

823396 300.146676 0.720000 3150.060000 349.349919 

Combined All 4363267 121.94590 0.000658 3150.060000 208.601100 

 

Figure 16 illustrates the 507 building energy consumption profiles for the period 01-01-

2010 up to 01-01-2016. It is obvious that there are missing values for the year 2011. 

Moreover,  several buildings regardless of their type, do not have consistent data values 

for a whole year, almost half the days of 2015. This triggered a missing values explora-

tion of the data which resulted in dropping all the missing values of the dataset and 

keeping for analysis those with meter values. From a total of 20,756,580 rows only 

4,363,267 (~21%) of them form the dataset that was used for the machine learning 

models. This is no surprise, as the creators of the dataset clearly state in their research 
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paper [9] that for every building only a total of 8760 (a year) of metered data is availa-

ble.  

 

 Figure 16  Energy consumption profiles in kWh, for 507 buildings for the period 01-01-2010 

up to 01-01-2016 

Unfortunately, the general overview of the raw dataset did not reveal much information 

and a more in-depth visualization process was conducted to know the timeseries. In 

Figure 17 – Figure 21, five samples of the  timeseries are illustrated. They illustrate the 

hourly energy consumption values of one building per type, for a year. This is only a 

sample of the 507 timeseries that are present in this dataset, but it is enough for an over-

view of what these timeseries may look like.  

 

 Figure 17  Hourly energy consumption values in kWh, of Primary Classroom Everett for a year 
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Figure 18  Hourly energy consumption values in kWh, for University Classroom  Caitlyn for a 

year 

 

 

Figure 19  Hourly energy consumption values in kWh, for University Dormitory Una for a year 

 

Figure 20  Hourly energy consumption values in kWh, for University Laboratory Paul for a year 

 

 

Figure 21  Hourly energy consumption values in kWh, for Office Elizabeth for a year. 
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Some of the profiles show random patterns while some others, especially the office and 

classroom profiles, show periodicity and specific patterns. Of course, this is anticipated 

since the operation hours of these buildings is usually standard. 

5.1.2 Data preprocess 

As explained above, the exploration of the dataset revealed certain characteristics of the 

timeseries that could jeopardize the accuracy in analysis. The strategy and the decisions 

made on how these peculiarities were handled are explained below. 

Missing data 

First, the large number of missing values was a point of interest, especially the strategy 

that should be followed for them. A percentage of 21% is relatively low for the keeping 

instances. From another point of view, there are plenty of timesteps that are kept for 

analysis, enough for the models to be properly trained and validated. There are no val-

ues metered for the year 2011 and for year 2015, a research showed that recorded values 

exist after May. No model could handle accurately such a disturbance in a timeseries 

data, even more when the available historical data cover only a year for each building. 

Having that in mind, the strategy that was followed for missing data was to exclude 

them from the analysis. After that, the timeseries of many buildings were left incom-

plete and, in some cases, they represented only half of the year.  

Transformation of timeseries data 

The previous described decision on the missing values led to another decision. The 

question was, if we would decide to proceed with the buildings that had metered data 

for a complete year as a timeseries or proceed otherwise. Careful consideration of the 

limitations of one or the other choice led to the decision that the most possibly available 

data points would be the best for the models. The aim of the study is to evaluate the pre-

ferred models on big data, meaning also large and diverse. Moreover, the literature re-

view showed that most of the studies proceed with timeseries analysis. Also, the need 

for explainable and non-complex models, some computation and time limitations which 

also apply here, pointed towards a different perspective. Finally, the decision was to 

continue with a combined dataset, were the name of each building would not play an 

important role. This dataset implemented the notion of time as a feature, the timestamp 

was split in ‘day of year’ categorical values and the hour of the timestep was a categori-

cal value under the feature ‘hour of day’. If there had been historical data available for 
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more than a year, this choice would have been different. This transformation resulted in 

a somehow anonymized dataset where the ‘time’ was present as a feature. The benefits 

of this are clearly shown on the low complexity of the analysis, the relatively low com-

putation needs, the fast execution times for this many points and the variety of available 

methods for feature engineering and hyperparameter tuning methods. On the disad-

vantages comes the fact that the periodicity and trends of the timeseries are lost. Any 

information that could be extracted through timeseries analysis are not shown. This last 

argument though, may not be entirely accurate. In the dataset there are no meta-data 

available for the buildings’ occupancy or the occupants’ habits or even the operation 

shifts. This means, that the predicted total load values could not be explained in a con-

text of specific needs of occupants, or types of loads that are used, or types of devices 

and the use routine of them. So, the timepoints in the timeseries of the building would 

carry that information but we could not exploit it in a way.  

Creation of a complete dataset 

Following the previous steps, the dataset was holding 4,363,267 rows of energy con-

sumption meter described by the building’s name, the day of the year and hour it oc-

curred. Figure 22 illustrates an instance of this dataset. 

 

Figure 22  Dataset instance after the timeseries transformation. 
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The next step was to combine the available meta-data for the buildings with the pro-

cessed temporal data. Instance of the meta-data available for the buildings may be found 

at Appendix A. The primary meta-dataset contains 19 columns. Unfortunately, not all of 

them hold data for all buildings. Thus, the features that were not present for all the 

buildings had to be dropped. A feature called ‘timezone’ held the names of city and 

continent in which the building is located. This feature was split in two: ‘city’ and ‘con-

tinent’. From the 19 columns only 6 remained. The merge process of the two resulted in 

4,363,267 rows and 9 columns. Figure 23 showcases the resulting dataframe. 

 

Figure 23  Instance of the merged dataframe of temporal and meta-data. 

 

The last steps of the preprocess were to drop the ‘uid’ column of the data, as this is not 

actually a feature. The anonymized dataset was left with load values as numerical data 

and the rest of the columns were converted to dummy categorical values. This transfor-

mation is necessary for the models to be trained properly. 

5.2 Load prediction  

There were 4 different regression models evaluated for load prediction in 7 scenarios.  
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5.2.1 Preprocess of data 

At the first stage of analysis, the dataset had to be split in train and test set. Primary at-

tempts with the models, showed that the best performance is achieved with a 25% test 

set 75% train set split, which is the default for the Scikit Learn. Other attempts used 

20% for the test set or 33% for the test set. Moreover, although the thought of normali-

zation of the data was present, in fact the results from the first round showed that such 

strategy would not be necessary.  

However, this strategy for splitting in test/train data was changed at the second stage. A 

split of 50/50 was chosen for the second case examined. The reason is that this could 

save in computational time and complexity as the dataset was very large. Also, Scikit 

Learn documentation suggested that the test set should be 50% in Grid Search CV for 

optimal use.  

5.2.2 Case analysis 

In the first case scenarios for all four regression models, the models were using the da-

taset at its primary stage, without any feature engineering or optimization techniques. 

The second case scenarios included 5 Fold cross validation for the train split for three 

models. This case was combined with hyperparameter tuning through the Grid Search 

CV method.  

Case 1 - models 

Random Forest Regressor 

The effectiveness of the Random Forest (RF) regressor was evaluated in predicting the 

load by utilizing the default parameters. The max_depth of the regressor was set to 2 

and the number of estimators was 100. The performance of the regressor was evaluated 

using three metrics: R
2
 , MSE and RMSE. 

Linear Regression  

The second model was Linear (LR) regressor. The parameters were left at their default 

values and the dataset was at its primary form. The performance of the regressor was 

evaluated by using the same metrics: R
2
, MSE  and RMSE. 

Gradient Boosting Regressor 

The third model which was deployed is based upon a Gradient Boosting (GB) regressor. 

The dataset was at its primary form and the parameters of the model were set at their 

default values. Again, the performance was evaluated by utilizing the same metrics as 

before: R
2
, MSE  and RMSE 
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Extreme Gradient Boosting Regressor 

The last model in this first case was an Extreme Gradient Boosting (XGB) Regressor. 

Parameter tuning did not take place in this attempt and the dataset which was at its pri-

mary form. The performance was again evaluated by the same metrics as the previous 

models: R
2
, MSE, RMSE. 

 

Case 1 – Results analysis 

 The results of the case 1 scenarios are summarized in Table 3. 

Table 3 Summary of the evaluation metrics of Case 1 models 

CASE 1 
MODELS 

RF LR GB XGB 

M
E

T
R

IC
S

 R
2
 0.4098 0.4184 0.8548 0.8565 

MSE 25731.5677 25299.6714 6275.8881 6202.7785 

RMSE 160.4106 159.0587 79.2205 78.7577 

 

The fact that the first stage of model deployment resulted in such good metrics for some 

models, is interesting. The RF regressor reached a medium score of 40.98%, which is 

quite good for this length of dataset. The Linear regressor reached a close 41.84% and 

the RMSE was very close to the Random Forest as well. The great difference comes 

with  the two boosting algorithms. The GB regressor reached 85.48% at this first stage 

without parameter tuning and the XGB regressor reached a little higher, 85.65%. Their 

RMSE results were very close, also. The two boosting algorithms are based in the same 

principles in their core and such a close result was expected. On the other hand, good 

scores like this were not anticipated, for a difficult dataset.  

The transformation of the categorical features with dummy values, played a significant 

role in this outcome. The binary codes of 1 and 0 after the transformation may result in 

more features but do not complicate the training phase of the model.  

The RF model performed lower than the linear model, in all metrics. However, it is the 

RF regressor that has more possibilities of reaching higher scores with proper tuning of 

the parameters. The Linear model has narrow space for improvement.  
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Case 2 – Models  

Random Forest Regressor 

The effectiveness of the RF regressor was evaluated in predicting the load by utilizing 

the default parameters, but this time, a 5 fold cross validation was used for the train and 

test split of data. The ‘max_depth’ parameter of the regressor was tuned for 2 or 3 via 

the use of Grid Search CV method and the number of estimators was set to 100. The 

performance of the regressor was evaluated using the metrics: average R2, MSE and 

RMSE. 

Linear Regression  

In the second case, the LR regressor was left out. The reasons behind this decision are 

the low performance of the regressor in case 1 and the minimum available parameters 

for hyper-tuning via Grid Search method.  

Gradient Boosting Regressor 

The GB regressor. The dataset was split in train and test sets using 5 fold cross-

validation. The ‘max_depth’ parameter was tuned for values 3 and 5. Again, the per-

formance was evaluated by utilizing the same metrics as before.  

Extreme Gradient Boosting Regressor 

The last method was the XGB regressor. The dataset was used with a 5 fold cross vali-

dation at train-test split. The booster parameter of the model was set to 'gblinear' and 

'gbtree', to test the effect of the linear and the tree booster in the performance of the 

model. The performance was again evaluated by the same metrics as the previous mod-

els: average R2, MSE, RMSE. 

 

Case 2 – Results analysis 

The results of the Case 2 models are summarized in Table 4 

Table 4 Summary of the evaluation results of Case 2 models 

CASE 2 
MODELS 

RF GB XGB 

M
E

T
R

IC
S

 Avg R
2
 0.5486 0.9438 0.8574 

MSE 19630.4523 2503.9616 6285.0809 

RMSE 140.1087 50.0396. 79.2785 
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The results of the second case after the hyper-parameter tuning and the 5 fold cross-

validation implementation have changed compared to the first case. All models have 

performed better. The RF regressor had an amazing 33.87% increase compared to the 

first case. The best parameter was the ‘max_depth’ equal to 3 and number of estimators 

was chosen at 100. The increase is attributed partially to the ‘max_depth’ change from 2 

to 3 and partially to the 5 fold cross validation. The ‘max_depth’ parameter controls the 

depth of the tree, thus the available nodes, so an increased number is sure to result in 

greater separation of the data. The XGB regressor had a small increase, since the score 

at first round was already high. It reached 85.74% and was increased by 0.11%. The op-

timization through 5 fold cross validation was responsible for that increase. The best 

booster parameter although tuned, was already the best as default, of ‘gbtree’. The al-

ternative linear booster did not perform better than the tree-based one. A very interest-

ing change in the second stage is the increase in GB regressor. In the first case reached 

85.48% by learning from the primary data. The second stage was different in the 5 fold 

cross validation which was applied to the training dataset and the change of the 

max_depth parameter which resulted in 5, as the best. These two alterations increased 

the score by 10.42%.  

 

5.3 Prediction of the building type 

In research, clustering methods are prevailing in building type prediction. However, in 

this case, two classification algorithms were deployed and evaluated in predicting the 

building type. A positive aspect towards the selection of these classifiers, was the fact 

that they have performed well as regressors in load prediction. More complex classifiers 

were left out of the selection. A problem like this, with the complexity and computa-

tional cost that the large number of datapoints poses, would be very difficult to handle.  

5.3.1 Preprocess of data 

For this classification task, the data had to be transformed suitably. Although, the major 

preprocess part of the dataset remained the same as for the regression tasks, a few final 

preprocess steps were added. First, the label column had to be created in data. On the 

regression tasks the target values were the load values, while in this case the target val-

ue is the type of the building. The two features, ‘industry’ and ‘usespace’, were concat-
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enated resulting in the ‘label’ feature. Next, the two old features had to be dropped. The 

‘continent’ and ‘city’ features had to be transformed into dummy values for simplicity. 

Finally, the ‘label’ had to be transformed from string to numbered categories for sim-

plicity, also. The result was 9 classes. Table 5  shows the resulting classes with the 

number of tuples they contain. It is evident that the problem is imbalanced.  

 

 

Table 5  Classes and number of tuples per class 

Class Number of tuples 

Class 1 1040847 

Class 2 835753 

Class 5 823396 

Class 3 699716 

Class 4 598219 

Class 6 212203 

Class 0 95406 

Class 7 49392 

Class 8 8335 

9 classes in total  4,363,267 tuples  

 

The train/test split in this case used the default values of 25% test set and 75% train test. 

The imbalance of classes was considered by setting the’ stratify’ option in test/train split 

to ‘Yes’. This adjustment would result in a more balanced problem. They were not cross 

validation or other optimizing techniques applied in this step.  

5.3.2 Case analysis 

Case 1 – Models  

Gradient Boosting Classifier 

The first scenario was to deploy a GB classifier model to predict the building type. At 

this stage the parameters of the model were used with their default values. The metrics 
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of the classification with the GB model sere a full classification report, with accuracy, 

precision, recall, f1-score values calculated.  

Random Forest Classifier 

This scenario used an RF classifier as a model. The dataset was at its preprocessed form 

as described above and the ‘max_depth’ parameter was set to 3, all other parameters 

were set at their default values. A full classification report was produced, also.  

 

Case 1 – Results analysis 

Table 6 below, illustrates the mean accuracy score of the two models. Clearly, the GB 

classifier has performed better than the RF. Moreover, the difference between the two is 

significant, to a point that RF would need wide hyper-parameter tuning.  

Table 6  Mean accuracy of the classification models 

CASE 1 
MODELS 

RF GB 

mean  

accuracy 
0.4192 0.9083 

 

The full classification reports of both classifiers are illustrated at Figure 25  Gradient 

Boosting, classification report and Figure 24  Random Forest, classification report.. The 

complete confusion matrices for both models are available at Appendix B, Figure 26  

Confusion matrix of the Gradient Boosting classifier- Figure 27 Confusion matrix of the 

Random Forest classifier For the GB classifier the precision scores are very good in to-

tal, and only in the fourth class seems to be low. Of course, the recall score tells that the 

estimation for great performance is a little optimistic for some classes, for example the 

third class has a high precision, but the recall value is lower, meaning that some tuples 

which are classified in class were not actually true. The f1-scores of the model are quite 

high for most of the classes, which is a measure of balanced values between the preci-

sion and recall for this problem. In overall, most of the classes are well classified by the 

model and this makes it a successful choice of algorithm for this problem.  

For the RF classifier the results on the classification matrix are revealing. The precision 

scores are extremely low, and the recall are at a medium level. There are classes that 

have not been correctly classified, at all. For example, class 0, class 3, class 4, class 7, 
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class 8, have a recall value of 0.00. Only class 1 and class 2 are somehow correctly clas-

sified. The bad performance of the classifier for most of the classes, is shown in the f1-

scores, too. Most of them fall at 0.00 level. The overall performance of RF classifier in 

this problem make it a bad choice for this problem.  

 

 

 

 

 

        precision    recall  f1-score   support 

 

           0       1.00      1.00      1.00     23851 

           1       0.89      0.89      0.89    260212 

           2       0.92      0.98      0.95    208938 

           3       0.90      0.86      0.88    174929 

           4       0.86      0.87      0.87    149555 

           5       0.91      0.89      0.90    205849 

           6       1.00      0.97      0.98     53051 

           7       1.00      1.00      1.00     12348 

           8       1.00      1.00      1.00      2084 

 

    accuracy                           0.91   1090817 

   macro avg       0.94      0.94      0.94   1090817 

weighted avg       0.91      0.91      0.91   1090817 

 

Figure 25  Gradient Boosting, classification report 

              precision    recall  f1-score   support 

 

           0       0.00      0.00      0.00     23851 

           1       0.34      0.81      0.48    260212 

           2       0.50      0.81      0.62    208938 

           3       0.00      0.00      0.00    174929 

           4       0.00      0.00      0.00    149555 

           5       0.54      0.34      0.42    205849 

           6       1.00      0.12      0.21     53051 

           7       0.00      0.00      0.00     12348 

           8       0.00      0.00      0.00      2084 

 

    accuracy                           0.42   1090817 

   macro avg       0.26      0.23      0.19   1090817 

weighted avg       0.33      0.42      0.32   1090817 

 

Figure 24  Random Forest, classification report. 
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6 DISCUSSION 

In this study 9 models in total were deployed exploring various load prediction and 

building type prediction tasks. For load prediction tasks, 4 different machine learning 

algorithms were utilized in 2 different cases and 7 model deployments in total. For the 

building type prediction task, 2 different machine learning algorithms were evaluated in 

1 case. 

The first case in load prediction, includes 4 regressor models, Random Forest, Gradient 

Boosting, Linear and XgBoost which were evaluated on a train set of the dataset which 

was lightly preprocessed. The results showed that among the four models the XGB re-

gressor outperformed the others with a score very close to the GB regressor. The XGB 

reached a 85.65% score in performance and the GB 85.48%. This is almost a difference 

of ~0.2% between them. In comparison to the other metrics, where their differences 

reach ~1.1% for the MSE and ~1.2% at the RMSE. In total, it could be deducted that the 

two models performed similarly in this problem without even minor optimizing han-

dlings. The other two algorithms, RF with 40.98% and LR with 41.84% also performed 

similarly to one another. In comparison to the two boosting algorithms, though, they 

showed a difference of more than 50% decreased performance. This is clear evidence 

that boosting techniques or hyper-parameter tuning is needed for them to perform better.  

In the second case, the three RF, GB, XGB regressors were slightly tuned and boosted 

through 5 fold cross validation of the train data, different train/test set split and hyper-

parameter tuning. The results showed that for the XGB the margin for improvement was 

narrow, for the GB a little wider and for the RF it was a lot better. In particular, the 

XGB model reached 85.74% by increasing this score by ~0.10% in comparison to case 

1. In this case, the GB outperformed the other two, even the XGB, by reaching 94.38% 

score. This is a very high score and the total increase compared to case 1 is close to 

10%. The evidence that the RF model would benefit from optimization techniques was 

proven to be right, since the score reached 54.86% increased by almost 34% from the 

first case. Although, the RF algorithm performed poorly in this second case compared to 
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the other two, it is clear that there is probably still room for improvement. Of course, it 

is highly unlikely that it will reach the high scores of the boosting algorithms.  

The final task of building type prediction via classification methods, was evaluated as 

successful due to the high score of the GB classifier. In this case, only two models were 

deployed, RF and GB. The data was again slightly preprocessed with most of the values 

transformed to numerical categories for simplicity. The GB achieved a score of 90.83% 

and the RF reached 41.92%. Again, as it was found at the load prediction part of the 

study, RF would have probably performed better if more optimizing had been done be-

fore the deployment. The classification report results show the degree of the GB classi-

fier’s superiority in this classification task compared to the RF. All scores, are increased 

with the f1-scores of GB reaching the level of 1 for most classes. In contrast to the RF 

results, where most of the tuples are misclassified and the corresponding f1-scores are at 

the 0.0 level. The GB classifier has performed better both on the precision and on recall 

metrics, revealing a balance between the two.  

Regarding the preprocess and analysis of the dataset, the choice of mild preprocess be-

fore the first case model deployments is justified. This way, the power of the boosting 

algorithms was shown from the very first stage. On the second case scenarios were hy-

per-parameter tuning had been applied and cross validation and train/test split alterna-

tives were explored, it was shown that the decision tree algorithms had potential for bet-

ter performance. The same applies for both the load prediction and the building type 

prediction tasks.  

In total, the models have performed as expected from the published research. Although, 

not many benchmarking datasets are available, and the ones that exist have not been 

tested thoroughly with non-complex machine learning algorithms, many researchers 

have pointed out the superiority of boosting algorithms in large datasets.  

With respect to the research questions of the present study, the deployment of several 

models with specific characteristics regarding their simplicity, non-complexity and per-

formance was achieved and the results were consistent with the research. Evaluation 

and exploration of them and their ability to perform better was investigated through hy-

per-parameter tuning and optimization techniques. A prediction for building type was 

achieved reaching a high level of accuracy from a large dataset through a simple model 

approach. Moreover, it could be deducted from the above analysis that the models could 
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generalize well when faced with new data. The extend of the dataset was large enough 

to support this.  
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7 CONCLUSION  

7.1  Study review  

A benchmarking data set which is public and open was utilized in this study with the 

aim to evaluate the performance of specific machine learning algorithms in load predic-

tion and to test two classification algorithms in building type prediction. The algorithms 

that were used performed as it was anticipated from the research review. In load predic-

tion the two of the regression models Gradient Boosting and Extreme Gradient Boosting 

performed very well while the Random Forest and Linear model performed at a medium 

level. The second attempt, after hyper-parameter tuning and optimization techniques 

were used, revealed that the Gradient Boosting and Extreme Gradient Boosting algo-

rithms stile performed at great levels, while the Random Forest algorithm showed sig-

nificant improvement but still at a lower level than the other two. In building type pre-

diction from load data, the Gradient Boosting and Random Forest models were evaluat-

ed in classification with the first one showing great performance. The Random Forest 

would perform better if some hyper-parameter tuning took place. 

Although, in this study it was not the case to test thoroughly and exhaustively the capa-

bilities of the algorithms, an overview of them is shown. The idea of testing them with a 

large dataset with a significant number of non-complex features has proven to be im-

portant. The research questions posed at the beginning of this study are answered and 

the results, agree with the general trend in research.  

With respect to the knowledge gained from this study, it could be stated that it gave a 

clear perspective of how a very big dataset behaves. Moreover, the accompanying limi-

tations in time and computational power limitations have proven to be beneficial for the 

decision-making process. Not many random choices were made and a thorough research 

for the parameters and methods to be employed was necessary. 
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7.2 Threats on validity 

It is common for studies that are constrained by time limitations and computational re-

sources availability to reach conclusions that are subjected to further analysis. The work 

presented here is to the best knowledge of the researcher, so far.  

Regarding missing values strategy, the exclusion from the beginning of a few missing 

rows in the middle of a full dataset could be avoided with proper imputation methods 

that result in a complete timeseries. This would result in greater generalization abilities 

for the models.  

The weather data were not utilized as attributes in the studied dataset and this probably 

has an impact in the evaluation result of the models. Several studies have incorporated 

such data as features and the results were improved. From a realistic point of view this 

would be expected to happen in an energy management system that predicts daily or 

monthly load consumption.  

Extensive feature research was not conducted in this study, although it would supply 

interesting alternatives in the training datasets for the models. This is a possible threat to 

generalization ability of the models.   

Finally, due to limited time only a simple classification task was performed. The dataset 

is suitable for extensive classification tasks for energy prediction or building type label 

prediction. 

 

7.3 Future work  

This study was conducted with the aim to evaluate some of the most well-known re-

gression and classification models in load prediction and complementary to test the per-

formance of  two models in building type label prediction. Of course, the evaluation 

process is not complete, nor the selection of models is exhaustive. The dataset has been 

extensively studied since 2017 with a variety of proposed models and with a variety of 

predicting tasks. If it were for future research, the following points would be a good 

start. 

 A wider variety of base models should be evaluated by using this dataset. This 

proposal includes a large pool of novel or hybrid models that could work on 
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such a type of data. This would result in a database of evaluation results of dif-

ferent models on a benchmarking dataset such as BDG dataset.  

 The new revised BDG 2 should be utilized in replicating the process presented 

in this study, as well as more models as proposed above. The new dataset is 

larger and incorporates more types of buildings. These new timeseries would 

add to the computation time of the training phase but the resulting models 

should generalize better in unknown data.  

 The decent number of features which are provided as meta-data with the open 

dataset, is suitable for experimentation and extended feature engineering. More 

features could be extracted from the present ones and interesting combination 

would probably give to low score models, a new perspective and increase their 

scores. 

 An interesting approach would be for the dataset to be further analyzed as a 

timeseries. The resulting models would provide for comparison with the pro-

posed one in this study.  

 Finally, as it is studied in research building type label prediction should be also 

tested through a variety of clustering methods.   
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Appendix A 

Instance of raw temporal data set 
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Instance of meta data set 
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Instance of meta data set (continued) 
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Appendix B 

Confusion matrices for the two classification models. 

  

Figure 26  Confusion matrix of the Gradient Boosting classifier 

 

Figure 27 Confusion matrix of the Random Forest classifier 

array([[ 23844,      5,      0,      2,      0,      0,      0,      0, 

             0], 

       [     0, 231243,   9499,   2751,  10571,   6148,      0,      0, 

             0], 

       [     0,   1965, 205622,      0,   1108,    218,     25,      0, 

             0], 

       [     0,  11328,   2833, 150634,   3849,   6285,      0,      0, 

             0], 

       [     0,   5791,   2254,   6482, 130750,   4278,      0,      0, 

             0], 

       [     0,   8958,    873,   7730,   5510, 182778,      0,      0, 

             0], 

       [     0,      0,   1412,      0,      0,    173,  51466,      0, 

             0], 

       [     0,      0,      0,      0,      0,      0,      0,  12348, 

             0], 

       [     0,      0,      0,      0,      0,      0,      0,      0, 

          2084]]) 

 

 

array([[     0,   6588,   3645,      0,      0,  13618,      0,      0, 

             0], 

       [     0, 211871,  33476,      0,      0,  14865,      0,      0, 

             0], 

       [     0,  39793, 168263,      0,      0,    882,      0,      0, 

             0], 

       [     0, 135832,  25945,      0,      0,  13152,      0,      0, 

             0], 

       [     0, 111945,  19628,      0,      0,  17982,      0,      0, 

             0], 

       [     0, 112462,  22631,      0,      0,  70756,      0,      0, 

             0], 

       [     0,      0,  46461,      0,      0,    222,   6368,      0, 

             0], 

       [     0,      0,  12348,      0,      0,      0,      0,      0, 

             0], 

       [     0,      0,   2084,      0,      0,      0,      0,      0, 

             0]]) 
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Appendix C 

The Python scripts that were deployed are shown below. 

# Setting up 

# Import libraries 

from pathlib import Path 

import numpy as np 

import time 

import pickle  

import pandas as pd 

import matplotlib.pyplot as plt 

 

# Directories and Paths 

DIR_WORK = Path(....) 

DIR_DATA = Path(....) 

 

TS_DATA = "temp_open_utc.csv" 

BUILDING_DATA = "meta_open.csv" 

 

 

# ETL 

#Timeseries Data 

 

#Load data 

ts_data_raw = pd.read_csv(Path(DIR_DATA, TS_DATA))\ 

ts_data_raw.tail(2) 

 

# Check & Convert datatypes 

ts_data_raw.dtypes 

 

ts_data_raw["timestamp"] = pd.to_datetime(ts_data_raw["timestamp"]) 

print(ts_data_raw.dtypes) 

ts_data_raw.tail(2) 

 

# Visualise the timeseries  

# Convert the timestamp column to DatetimeIndex and plot the graph 

ts_data_raw.set_index(pd.DatetimeIndex(ts_data_raw["timestamp"])) 

.drop("timestamp", axis=1) 

.plot(figsize=(20,10), legend=False, title='Hourly building energy consumption profiles in kWh') 

 

# Unpack & transform the dataframe 

ts_data = pd.melt(ts_data_raw, value_vars=ts_data_raw.columns.values[1:], id_vars=['timestamp']) 

ts_data 
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ts_clean = ts_data.copy() 

 

# Drop nan rows 

ts_clean = ts_clean.dropna() 

 

# Extract the ordinal day of the year 

ts_clean["day_of_year"] = ts_clean["timestamp"].dt.dayofyear 

 

# Extract the hour from the timestamp 

ts_clean["hour"] = ts_clean["timestamp"].dt.hour 

 

# Rename columns  

ts_clean = ts_clean.rename(columns={"variable": "uid", "value": "load"}) 

 

# Drop irrelevant columns and reset index 

ts_clean = ts_clean.drop("timestamp", axis=1).reset_index(drop=True) 

 

print(ts_clean.shape) 

ts_clean.tail(6) 

 

# Building data 

building_data_raw = pd.read_csv(Path(DIR_DATA, BUILDING_DATA)) 

building_data_raw 

 

building_data_raw.dtypes 

 

# Keep relevant columns and creating derivative features 

building_data = building_data_raw[["uid", "industry", "primaryspaceuse_abbrev", "sqm", "timezone"]] 

 

# Create 2 new features from Timezone 

building_data[["continent", "city"]] = building_data["timezone"].str.split("/", expand=True) 

 

# Drop Timezone as it is irrelevant 

building_data = building_data.drop("timezone", axis=1)  

 

# Rename columns for consistency 

building_data = building_data.rename(columns={"primaryspaceuse_abbrev": "usespace"}) 

building_data 

 

# Primary dataframe 

primary = ts_clean.merge(building_data, on="uid") 

primary.head() 

 

# Models 

# Prepare data for model 

df = primary.copy() 

df.head() 
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df.info() 

 

# Drop the uid 

df = df.drop("uid", axis=1) 

 

# Convert categorical to dummies 

df = pd.get_dummies(df) 

 

# Modelling 

# Split data in Train, Test 

# Primary dataset 

 

# Import library 

from sklearn.model_selection import train_test_split 

 

# Train/test split 

x = df.loc[:, df.columns != 'load'] 

x.head() 

 

y = df.loc[:, "load"] 

 

# CASE 1 -Use of shuffle in split - random state=10 - train/test 75/25 defaults 

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.25) 

 

# CASE 2 -Use of shuffle in split - random state=10 - train/test 50/50 

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.50) 

 

# Regression 

# Import libraries 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.linear_model import LinearRegression 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import mean_squared_error 

from math import sqrt 

import xgboost as xgb  

import time 

 

# Random forest 

# Case 1 

start_time = time.time() 

 

rf_reg = RandomForestRegressor(max_depth=2, random_state=1, n_estimators=100, n_jobs=-1) 

rf_reg.fit(x_train, y_train) 

 

end_time = time.time() 
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print("--- %s seconds ---" % (end_time - start_time)) 

 

# Predicted values 

y_pred = rf_reg.predict(x) 

 

# Print metrics of the model 75/25 split 

# R2 

print("Train score:", rf_reg.score(x_train, y_train)) 

print("Test score:", rf_reg.score(x_test, y_test)) 

 

# MSE 

rf_reg_mse = mean_squared_error(y, y_pred) 

print("MSE:", rf_reg_mse) 

 

# RMSE 

rf_reg_rmse = sqrt(rf_reg_mse) 

print("RMSE:", rf_reg_rmse) 

 

# Case 2 - Grid Search - 5 FOLD 

 

#Split data in train and test set 

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.50) 

 

start_time = time.time() 

 

# Set the parameters 

max_depths = (2,3) 

n_estimators = (100) 

tuned_parameters = [{'max_depth': max_depths}] 

n_folds = 5 

 

# Random Forest Regressor 

rf_reg = RandomForestRegressor(random_state=1, n_jobs=-1) 

 

RFREG = GridSearchCV(rf_reg, param_grid=tuned_parameters, cv=5, verbose=10) 

RFREG.fit(x_train, y_train) 

print('Best parameters: ', RFREG.best_params_) 

print('Average score: ', RFREG.best_score_) 

print(RFREG.cv_results_['mean_test_score']) 

 

# Predict 

y_true, y_pred = y_test, RFREG.predict(x) 

 

end_time = time.time() 

 

print("--- %s seconds ---" % (end_time - start_time)) 
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#Print the scores 

# R2 

print("Train score:", RFREG.score(x_train, y_train)) 

print("Test score:", RFREG.score(x_test, y_test)) 

# MSE 

RFREG_mse = mean_squared_error(y, y_pred) 

print("MSE:", RFREG_mse) 

# RMSE 

RFREG_rmse = sqrt(RFREG_mse) 

print("RMSE:", RFREG_rmse) 

 

# Linear Regression 

# Case 1 

start_time = time.time() 

 

lr_reg = LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=-1) 

lr_reg.fit(x_train, y_train) 

 

end_time = time.time() 

 

print("--- %s seconds ---" % (end_time - start_time)) 

 

# Predicted values 

y_pred = lr_reg.predict(x) 

 

# Print metrics of the model  

# R2 

print("Train score:", lr_reg.score(x_train, y_train)) 

print("Test score:", lr_reg.score(x_test, y_test)) 

 

# MSE 

lr_reg_mse = mean_squared_error(y, y_pred) 

print("MSE:", lr_reg_mse) 

 

# RMSE 

lr_reg_rmse = sqrt(lr_reg_mse) 

print("RMSE:", lr_reg_rmse) 

 

# Case 2 - GridSearchCV - 5 fold 

#Split data in train and test set 

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.50) 

 

start_time = time.time() 

 

# Set the parameters  

max_depths = (3, 5, 7) 
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tuned_parameters = [{'max_depth': max_depths}] 

n_folds = 5 

 

lr_reg = LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=-1) 

lr_reg.fit(x_train, y_train) 

 

LRREG = LinearRegression(random_state = 1, n_jobs=-1) 

 

LRREG = GridSearchCV(LRREG, param_grid=tuned_parameters, cv=5, verbose=10) 

LRREG.fit(x_train, y_train) 

print('Best parameters: ', LRREG.best_params_) 

print('Average score: ', LRREG.best_score_) 

print(LRREG.cv_results_['mean_test_score']) 

 

# Predict 

y_true, y_pred = y_test, LRREG.predict(x) 

 

end_time = time.time() 

 

print("--- %s seconds ---" % (end_time - start_time)) 

 

#Print the score 

# R2 

print("Train score:", XGBREG.score(x_train, y_train)) 

print("Test score:", XGBREG.score(x_test, y_test)) 

# MSE 

XGBREG_mse = mean_squared_error(y, y_pred) 

print("MSE:", XGBREG_mse) 

# RMSE 

XGBREG_rmse = sqrt(XGBREG_mse) 

print("RMSE:", XGBREG_rmse) 

 

# Gradient Boosting 

# Case 1 

 

start_time = time.time() 

 

gb_reg = GradientBoostingRegressor(random_state=0) 

gb_reg.fit(x_train, y_train) 

 

end_time = time.time() 

 

print("--- %s seconds ---" % (end_time - start_time)) 

 

# Predicted values 

y_pred = gb_reg.predict(x) 

 



-64- 

# Print metrics of the model  

# R2 

print("Train score:", gb_reg.score(x_train, y_train)) 

print("Test score:", gb_reg.score(x_test, y_test)) 

 

# MSE 

gb_reg_mse = mean_squared_error(y, y_pred) 

print("MSE:", gb_reg_mse) 

 

# RMSE 

gb_reg_rmse = sqrt(gb_reg_mse) 

print("RMSE:", gb_reg_rmse) 

 

# Case 2 - GridSearchCV - 5 FOLD 

#Split data in train and test set 

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.50) 

 

start_time = time.time() 

 

# Set the parameters by cross-validation 

max_depths = (3,5) 

tuned_parameters = [{'max_depth': max_depths}] 

#n_folds = 5 

 

GBREG = GradientBoostingRegressor(max_depth=5, random_state = 1) 

 

GBREG = GridSearchCV(GBREG, param_grid=tuned_parameters, cv=5, verbose=10) 

GBREG.fit(x_train, y_train) 

print('Best parameters: ', GBREG.best_params_) 

print('Average score: ', GBREG.best_score_) 

print(GBREG.cv_results_['mean_test_score']) 

 

# Predict 

y_true, y_pred = y_test, GBREG.predict(x) 

 

end_time = time.time() 

 

print("--- %s seconds ---" % (end_time - start_time)) 

 

#Print the score 

# R2 

print("Train score:", GBREG.score(x_train, y_train)) 

print("Test score:", GBREG.score(x_test, y_test)) 

# MSE 

GBREG_mse = mean_squared_error(y, y_pred) 

print("MSE:", GBREG_mse) 

# RMSE 
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GBREG_rmse = sqrt(GBREG_mse) 

print("RMSE:", GBREG_rmse) 

 

# XgBoost 

# Case 1 

 

start_time = time.time() 

 

xgb_reg = xgb.XGBRegressor(n_jobs=1) 

xgb_reg.fit(x_train, y_train) 

 

end_time = time.time() 

 

print("--- %s seconds ---" % (end_time - start_time)) 

 

# Predicted values 

y_pred = xgb_reg.predict(x) 

 

# Print metrics of the model  

# R2 

print("Train score:", xgb_reg.score(x_train, y_train)) 

print("Test score:", xgb_reg.score(x_test, y_test)) 

 

# MSE 

xgb_reg_mse = mean_squared_error(y, y_pred) 

print("MSE:", xgb_reg_mse) 

 

# RMSE 

xgb_reg_rmse = sqrt(xgb_reg_mse) 

print("RMSE:", xgb_reg_rmse) 

 

# Case 2 - Grid Search - 5 FOLD 

#Split data in train and test set 

x_train, x_test, y_train, y_test = train_test_split(x , y, random_state=10, shuffle=True, test_size=0.50) 

 

start_time = time.time() 

 

# Set the parameters  

boosters = ('gblinear', 'gbtree') 

tuned_parameters = [{'booster': boosters}] 

 

XGBREG = xgb.XGBRegressor(random_state = 1, n_jobs=1) 

 

XGBREG = GridSearchCV(XGBREG, param_grid=tuned_parameters, cv=5, verbose=10) 

XGBREG.fit(x_train, y_train) 

print('Best parameters: ', XGBREG.best_params_) 

print('Average score: ', XGBREG.best_score_) 
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print(XGBREG.cv_results_['mean_test_score']) 

 

# Predict 

y_true, y_pred = y_test, XGBREG.predict(x) 

 

end_time = time.time() 

 

print("--- %s seconds ---" % (end_time - start_time)) 

 

#Print the score 

# R2 

print("Train score:", XGBREG.score(x_train, y_train)) 

print("Test score:", XGBREG.score(x_test, y_test)) 

# MSE 

XGBREG_mse = mean_squared_error(y, y_pred) 

print("MSE:", XGBREG_mse) 

# RMSE 

XGBREG_rmse = sqrt(XGBREG_mse) 

print("RMSE:", XGBREG_rmse) 

 

# Classification 

# Preprocess data 

# Import libraries from regression part too 

from sklearn.preprocessing import LabelEncoder  

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

 

# Repeat the first case preprocess steps to transform the dataset for classification 

ts_data_raw.head() 

 

ts_data_raw["timestamp"] = pd.to_datetime(ts_data_raw["timestamp"]) 

ts_data = pd.melt(ts_data_raw, value_vars=ts_data_raw.columns.values[1:], id_vars=['timestamp']) 

ts_clean = ts_data.copy() 

 

# Drop nan rows 

ts_clean = ts_clean.dropna() 

# Extract the ordinal day of the year 

ts_clean["day_of_year"] = ts_clean["timestamp"].dt.dayofyear 

# Extract the hour from the timestamp 

ts_clean["hour"] = ts_clean["timestamp"].dt.hour 

# Rename columns  

ts_clean = ts_clean.rename(columns={"variable": "uid", "value": "load"}) 

# Drop irrelevant columns and reset index 

ts_clean = ts_clean.drop("timestamp", axis=1).reset_index(drop=True) 
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#building_data_raw = pd.read_csv(Path(DIR_DATA, BUILDING_DATA)) 

building_data = building_data_raw[["uid", "industry", "primaryspaceuse_abbrev", "sqm", "timezone"]] 

# Create 2 new features from Timezone 

building_data[["continent", "city"]] = building_data["timezone"].str.split("/", expand=True) 

# Drop Timezone as it is irrelevant 

building_data = building_data.drop("timezone", axis=1)  

# Rename columns for consistency 

building_data = building_data.rename(columns={"primaryspaceuse_abbrev": "usespace"}) 

 

primary = ts_clean.merge(building_data, on="uid") 

 

df = primary.copy() 

df = df.drop("uid", axis=1) 

df 

 

# Create the 'label' for classification 

df["label"] = df["industry"] + "-" + df["usespace"] 

# Drop the two features after the concatenation  

df = df.drop(["industry", "usespace"], axis=1) 

# Get dummy values for the features left 

df = pd.get_dummies(df, columns=["continent", "city"]) 

df.head() 

 

# Use of Lable Encoder for the transformation of the label from string to numbered categories 

df['label'] = LabelEncoder().fit_transform(df['label']) 

df.head() 

 

# Count the classes and check the balance 

df["label"].value_counts() 

 

# Split in train and test  

x = df.loc[:, df.columns != 'label'] 

y = df.loc[:, "label"] 

 

# Use of shuffle in split and flag stratify to YES because of imbalanced dataset 

x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=10, shuffle=True, stratify=y) 

 

# Gradient Boosting 

# Case 1 

start_time = time.time() 

 

gb_class = GradientBoostingClassifier(random_state=0) 

gb_class.fit(x_train, y_train) 

end_time = time.time() 

 

print("--- %s seconds ---" % (end_time - start_time)) 
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print("Train score:", gb_class.score(x_train, y_train)) 

print("Test score:", gb_class.score(x_test, y_test)) 

 

y_pred = gb_class.predict(x_test) 

 

# Classification report  

print(classification_report(y_test, y_pred)) 

 

# Confusion matrix 

confusion_matrix(y_test, y_pred) 

 

# Random Forest 

# Case 1 

start_time = time.time() 

rf_class = RandomForestClassifier(max_depth = 3, random_state=0, n_jobs=-1)   

rf_class.fit(x_train, y_train) 

end_time = time.time() 

 

print("--- %s seconds ---" % (end_time - start_time)) 

 

print("Train score:", rf_class.score(x_train, y_train)) 

print("Test score:", rf_class.score(x_test, y_test)) 

 

y_pred = rf_class.predict(x_test) 

 

# Classification report  

print(classification_report(y_test, y_pred)) 

 

# Confusion matrix 

confusion_matrix(y_test, y_pred) 


