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Abstract 

 

A well documented problem faced by software maintainers when understanding a 

software system is the lack of familiarity with it, combined with the lack of accurate 

documentation. Several problems in software maintenance occur because programs 

are modified with little understanding of the overall organization of the source code 

and of full impact of the modifications. Most programs are structured as a number of 

subsystems, consisting of code that collaborates to provide a common functionality to 

the program. An important aspect of program understanding in software maintenance 

is to perceive this subsystem structure. 

 

Cluster analysis can be of potential use in deriving a meaningful subsystem structure 

of a program from its source code, thus facilitating program comprehension and 

understanding. 

 

The product of this project is a clustering tool that is able to decompose a software 

code into meaningful subsystems (clusters). The tool uses input data extracted from a 

program and produces an abstraction of the program as a number of subsystems. The 

tool was evaluated against programs of various sizes and languages. Results showed 

that the clustering tool was able to derive accurate subsystem abstraction and identify 

interrelationships amongst the components.  
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1  

    Introduction 

 

The decomposition of a large software system into “meaningful” subsystems is 

essential for both the development and maintenance phases of a software project. 

 

The definition of the term “large software” is constantly changing as the size of a 

software system continues to grow rapidly. Advances in hardware technology 

concerning the speed, size and cost of primary and secondary storage devices, as well 

as the introduction of object oriented technology in programming practice have 

significantly increased the size of software systems. 

 

When the system become too large, it is very difficult to ensure that the structure of 

the present system is the intended one. System evolution over many years inevitably 

results in a very complex interconnected system structure. Due to this structure, minor 

changes in some part of the system may have unforeseen effects on other parts of the 

system which may not function correctly anymore without being changed themselves. 

Moreover, the original documentation, if it exists at all, becomes outdated as the 

system evolves, as keeping an updated documentation is mostly not the priority of the 

system developers who are much more concerned with meeting the deadlines. The 

fact that developers often discontinue their association with such large projects 

intensifies the problems, since they take a lot of knowledge about the system with 

them. 

 

These factors contribute to the transformation of a piece of software into what is 

known as “legacy code”, (a piece of code that one uses but does not necessarily 

understand). The drawback of having legacy code in a software system become 

obvious when the time comes to alter its functionality, to adapt it to a new hardware 

platform or operating system, or to improve its performance. One needs to understand 

the code over all again. 
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To address the problems mentioned above researchers in reverse engineering 

community have been developing clustering tools. Software clustering techniques can 

break a software system into smaller parts, such as subsystems or modules. This can 

provide a starting point towards the recovery of the systems structure. Typical 

resources found in subsystems include modules, classes, and possibly, other 

subsystems. Subsystems facilitate program understanding by treating sets of source 

code resources as high-level entities. 

 

1.1 Aim of the project 

This project is about developing a clustering tool that is able to decompose a software 

code into meaningful clusters. The tool uses unsupervised clustering techniques that 

meaningfully decompose a software system to help maintainers to recognize parts of 

source code that have common characteristics, thus facilitating program 

understanding. Data extracted from source code (of different languages) are clustered, 

in order to identify logical, behavioral and structural correlations amongst program 

components. 

 

1.1.1 Objectives 

The major challenge of this work is to adapt clustering techniques to the peculiarities 

present in the application domain of a source code. 

The main objectives of this work are 

 

➢ Specification of Input-Models: The input-models are concerned with the 

specification of program entities and their attributes. It is these entities that are 

then grouped into subsystems. The program components that are used as 

entities are constructs within the source code. These entities must have several 

attributes that provide the means for measuring similarity between entities. 

 

➢ Specification of Similarity Metrics: Similarity matrices determine the 

similarity between program entities based on their attributes. The choice of a 

proper similarity metric is a crucial part of the project, as it can have more 

influence on the result then the clustering algorithm itself [1]. Therefore, 

existing similarity metrics must be examined for use with different types of 
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attributes and the suitable ones selected, and tailored for the peculiarities of 

this domain. 

 

➢ Specification of the clustering algorithm: Clustering algorithms 

meaningfully group program entities into subsystems (clusters) based on 

similarities provided by the previous step. 

 

➢ Implementation of the software tool: The software tool is to be developed 

that takes input data extracted from a program’s source code and produces an 

abstraction of the program as a number of subsystems.  

 

The project is about producing a tool for automated approach to program 

understanding. Therefore it is assumed that the user has no expert knowledge of the 

program being analyzed. 

 

1.2 Results 

The results produced by the tool are very encouraging and constructive. Both primary 

and secondary requirements are achieved successfully.  

Three case studies were carried out in order to evaluate the results produced by the 

software tool. The accuracy of the results was evaluated by comparing the sub-system 

abstractions with expert’s mental models for two of the programs. The produced 

results were found to be meaningful in almost all the cases.  

 

1.2.1 Achievements 

The tool realizes the original design virtually in its entirety and effectively fulfils the 

majority of its requirements, including the core requirements. Major achievements of 

the project are 

 

➢ Specification of Input-Models: Classes and functions in a source code are 

selected as entities to be clustered. Input models for both functions and classes 

are specified that completely fulfil all of the requirements expected of the 

input models in the requirements phase. 
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➢ Specification of Similarity Matrices: Customized Association coefficients 

are used to determine the similarity between program entities. 

 

➢ Specification of clustering algorithms: Hierarchical agglomerative clustering 

algorithms (single-link and complete-link clustering) are used to cluster 

entities into meaningful subsystems. 

 

➢ Implementation of a software tool: Software tool is implemented that 

incorporates the input models, similarity measures and the clustering 

algorithms. The tool takes input data extracted from a program’s source code 

and produces an abstraction of the program as a number of subsystems. The 

results produced are then evaluated by comparing them with the expert’s 

mental model of the program. The tool is responsive and has a user friendly 

Graphical User Interface. As the GUI is developed according to the 

conventional software structure, most of the users who participated in the 

evaluation learnt its usage very quickly.  

 

1.3 Structure of the report 

The main body of the report is spread across six chapters. A brief overview of these 

chapters is provided below. 

 

Background 

This chapter presents the background research that was deemed necessary to be 

carried out in order to acquire a full understanding of the problem domain. It 

comprises of a general review of software maintenance and the importance of 

program comprehension in this process. The role of data mining, with especial 

emphasis on the clustering analysis and its role in program comprehension is 

analyzed. The steps involved in clustering a software system are discussed along with 

some relevant work previously done in this regard. 
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Requirements Analysis 

This Chapter presents the requirements analysis. Various functional and non 

functional requirements are discussed along with their relative priority in the project. 

 

Design 

This chapter explains the overall system architecture and design of the system 

components. It explains the whole process of creating the input models to extract data 

from the software, the similarity measures that are used to calculate similarities 

between different entities within the software, and the algorithms that are used to 

actually form the clusters for software remodulerizeation. All the aspects of the 

software system along with its interaction with the user are thoroughly discussed by 

using detailed UML and block diagrams. It also explains the data base design and 

mapping of the conceptual model to relational schema in Microsoft access database. 

 

Implementation 

Here, the realization of the design is described, in terms of both, the process and the 

implemented software system that resulted from it. An overview of all the modules 

(classes and the functions) along with some important code fragments that were used 

to implement the software system is given. Screen shots of the graphical user interface 

are also presented in order to show the vide range of options available to the user to 

perform the clustering process. 

 

Testing and Evaluation 

This chapter describes the internal testing of the product and evaluates the extent to 

which the product satisfies the stated requirements.  

 

Conclusion and Future Work 

The conclusion to the report presents overview of the project, some general 

conclusions about the project and its outcome and a consideration of the future work 

that stems from work that has already been undertaken. 
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2 

                          Background 

 

Background investigation covers a thorough review of all the relevant material and 

related approaches in the area of software maintenance (with especial emphasis on the 

topics more related to this particular project). At first the concept of Software 

Maintenance and the importance of Program Comprehension in this process are 

discussed. Then, it discusses the idea of Data Mining (a process in KDD), with more 

emphasis on Clustering, which is one of the data mining techniques and is the basis of 

this project. Finally some of the previous works done using data mining for program 

comprehension are summarized. 

 

2.1 Software Maintenance 

Software maintenance is defined as “Modification of a software product after 

delivery, to correct faults, to improve performance or other attributes, or to adapt 

the product to a modified environment” [2]. 

 

The maintenance of the software is motivated by a number of factors [2]. These 

factors involve providing continuity of service, which includes fixing bugs, 

recovering from failures, and accommodating changes in the operating system and 

hardware. Supporting mandatory upgrades, which are needed because of things like 

amendments to the government regulation, to maintain competitive edge over the 

rivals, and so on? Supporting user requests for improvements includes supporting 

requests such as enhancement of functionality, better performance and customization 

to local working patterns. Facilitating future maintenance work involves code, 

database restructuring, and updating documentation. 

 

In order to achieve the objectives of maintenance discussed above a wide spectrum of 

changes to the software product may be necessary. There are four categories of 
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changes to the software system: Corrective, Adaptive, Perfective and preventive 

changes [3] [2]. 

 

➢ Corrective change refers to modifications initiated by defects in the software. 

A defect can result from design errors, logic errors and coding errors. 

 

➢ Adaptive maintenance is performed to make a computer program usable in a 

changed environment. Different environment may involve moving software to 

a different hardware or software platform.  

 

➢ Perfective Change improves the performance, maintainability or other 

attributes of a computer program.  

 

➢ Preventive maintenance is undertaken to prevent malfunctions or to improve 

maintainability of the software. 

 

2.2 Program Comprehension in Software Maintenance 

The above discussion looked at the type of possible changes in the process of software 

maintenance. However, an area, which is fundamental to effective changes in the 

software, is Software understanding. [2] Explains some of the important steps that are 

carried out during the maintenance process, which are 

 

• Having a general knowledge about the functionality of the software system 

and how it relates to its environment.  

• Identify where in the system changes need to be made. 

• Having an in-depth knowledge how the parts to be corrected or modified 

work. 

 

The ultimate aim of program comprehension is to be able to successfully implement 

requested changes. This entails acquiring information about certain aspects of the 

software system such as the problem domain, execution effect, cause-effect relation, 

product-environment relation and decision support features of the software. 
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Program comprehension is a demanding task comprising up to 80% of the total time 

spent on software maintenance, which in turn is the most expensive process in the 

lifetime of software [2]. No commonly accepted framework exists that can be used to 

guide comprehension in the absence of familiarity with the code or the domain. 

Neither there is a well-defined set of metrics for measuring properties of the code 

such as structure, modularity and so on [4]. A major research challenge therefore is to 

understand key objectives in the program comprehension process and to provide an 

efficient automated (semi-automated) support for it.  

 

The sections that follow, explain the concept of the data mining process and its tasks, 

and explain the use of data mining techniques to formulate an automated method of 

program comprehension and understanding. 

 

2.3 Data Mining 

 “Data Mining is the use of algorithms to extract the information and patterns 

derived by the KDD (Knowledge Discovery in databases) process” [5].  

 

Data mining is an important step in the KDD process. Data mining involves many 

different algorithms to accomplish different tasks. All these algorithms attempt to fit a 

model to the data. The algorithms examine the data and determine a model that is 

closest to the characteristics of the data being examined. 

 

Data mining techniques can discover non-trivial and previously unknown 

relationships among records or attributes in large databases [6]. This observation 

highlights the capability of data mining to induce useful knowledge about the design 

of large legacy systems. Data mining has three fundamental features that make it a 

valuable tool for program comprehension and related maintenance tasks [7].   

 

• It can be applied to large volumes of data. This implies that data mining 

has the potential to analyze large legacy systems with complex structure. 

 

• It can be used to expose previously unknown non-trivial patterns and 

associations between items in a data base. Therefore, it can be utilized in 
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order to reveal hidden relationships between system or program 

components. 

 

• Its techniques can extract information regardless of any previous domain 

knowledge. This feature is ideal for maintaining software with poor 

knowledge about its functionality or implementation details. 

 

2.3.1 Basic Data Mining Tasks 

There are several components of data-mining algorithms discussed in literature. A 

detailed description of Clustering is given below (as this component is most related to 

this particular project), while the other components are discussed briefly [8] [5] [2] 

[9]. 

  

➢ Classification is the process of mapping a data item into one of several 

predefined categorical classes. It is often referred to as supervised learning 

because the classes are determined before examining the data. 

 

➢ Regression is used to map a data item to a real valued prediction variable. The 

regression involves the learning of the function that does this mapping. 

 

➢ Summarization provides a compact description for a subset of data. 

Summarization is also called characterization or generalization.  

 

➢ Rule generation extracts classification rules from the data. Association rule 

mining refers to discovering association relationship among different 

attributes. 

 

➢ Dependency modeling describes significant dependencies among variables.  

Dependency models exist at two levels, the structural and quantitative level 

[6]. The structural level of the model specifies which variables are locally 

dependent on each other, whereas the quantitative level of the model specifies 

the strengths of the dependencies using some numerical scale. 
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➢ Sequence analysis models sequential patterns, like time-series analysis, gene 

sequence and so on. These patterns are similar to associations in that data are 

related, but the relationship is based on time. 

 

➢ Clustering is a function that groups a set of data items into clusters. Cluster is 

a collection of data items similar to one another within the same cluster and 

dissimilar to the items in other cluster. It is often referred to as un-supervised 

learning because the clusters are not determined before examining the data. 

 

The major challenge of this work is to use cluster analysis, to meaningfully 

decompose software into subsystems. Therefore the rest of the sections in this chapter 

extensively deal with the process of clustering and its use in software comprehension 

and understanding. 

 

2.4. Clustering 

Clustering techniques are used in many different areas for a wide spectrum of 

problems. Among the areas in which cluster analysis is used are graph theories, 

business area analysis, information architecture, information retrieval, resource 

allocation, image processing, software testing, galaxy studies, chip design, pattern 

recognition, economics, statistics and biology. 

 

Cluster analysis or clustering is “a generic term for set of techniques which produce 

classifications from initially unclassified data.” [10]. It aims to solve the problem of 

classification, namely to divide a set of data objects into a set of classes, the objects of 

each of which are considered to be similar to others within the same class and 

dissimilar from those in others. According to [11], the two main approaches to cluster 

analysis are probabilistic and deterministic approaches, the latter of which often gives 

rise to what are classed as hierarchical techniques. 

 

Each data object, or individual may have any number of attributes, which may be 

either quantitative or qualitative. A deterministic approach involves measuring the 

similarity or distance (dissimilarity) between each pairing of data objects, based on 

the values of these attributes, via similarity/distance measures. A great number of 
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different examples of such measures are commonly used. The values arising from the 

pair-wise comparison of all individuals can be displayed within a symmetric distance 

or symmetric similarity matrix. The values in a distance matrix can be any non-

negative value, while the values in a similarity matrix are in the range 0 to 1, with 0 

representing a pairing of two completely dissimilar individuals and 1 representing that 

the two are identical. The values within such a matrix can be used as the basis for 

grouping together of individuals, the result of which is referred to as cluster. 

 

2.5 Issues in Clustering 

2.5.1 Data Model 

The first step in the clustering process is to produce a data model. That is, to build an 

abstraction of the real world in which the entities to be clustered are described 

according to some scheme. 

 

Algorithms for clustering traditionally use data model shown in the table 2.1. 

Entities Attribute1 Attribute2 Attribute3 Attribute4 

------------- ----------- ------------ ------------ ------------ 

------------- ----------- ------------ ------------ ------------ 

                 Table 2.1 Data Model traditionally used by clustering algorithms. 

 

Entities are specified in the entity column and the attributes which describe the 

entities constitute rest of the columns. Attributes which do not apply to the entity are 

left blank, or some other scheme is used depending on the requirement of the 

clustering process. 

It is these attribute on which similarity between the entities is calculated by the 

similarity metrics explained below. 

 

2.5.2 Similarity and Distance Metrics 

The most important property of a clustering algorithm is that items within one cluster 

should be more similar to the items in the same cluster than to the items outside it. 

The similarity and distance measures define the criteria for measuring the similarity or 

dissimilarity among the items in the input data.  
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There are a lot of different similarity measures which compute the similarity between 

items based on the similarity between the selected features. A similarity measure 

always yields a value between 0 and 1. Two items are more similar if their similarity 

measure is closer to 1.  

 

There are different categories of similarity/dissimilarity measures [12]: distance 

measures, association coefficients, correlation coefficients and probabilistic similarity 

measures. 

 

➢ Distance measures measure the dissimilarity of items. The greater the outcome 

the more dissimilar the items are. If two items have the same value for all features, 

the distance between them should be zero. The most popular distance measures 

are the (squared) Euclidean distance and the Manhattan distance. 

 

➢ Association coefficients calculate similarity based on the number of features 

present and absent in items and are suited to binary attributes. [13] Uses the Table 

2.2 to summarize this. 

 

 Xj  

Xi 1 0 Sum 

1 a b a + b 

0 c d c + d 

Sum a + c b + d N (Grand Total) 

                              Table 2.2 Contingency table for binary attributes 

 

In this table a represents the number of features present in both the entities (Xi and 

Xj). Analogously, d corresponds to the number of features absent in both the 

entities (Xi and Xj). b is the number of features present in Xi but absent in Xj, and 

c is the number of entities present in Xj but absent in Xi. 

 

Different coefficients treat the values of a and d differently and also put different 

weightings on any of the four entries of the table. The most common association 

coefficients are. 



Clustering Source Code To Facilitate Program Comprehension 

Student: Behram Khan                                                                                                                  Page 
Supervisor: Christos Tjortjis 

23 

The simple matching coefficient, defined as: b+c / a+b+c+d. 

The Jaccard coefficient, defined as: b+c / a+b+c. 

 

The matching coefficient treats a and d equally, both contribute to the similarity. 

The Jaccard coefficient does no take d matches into account at all. Therefore this 

measure is very well suited for asymmetric binary features. There are many 

association coefficients in the literature, depending on how they treat a, b, c, d 

matches and how they weight different similarities. 

 

➢ Correlation coefficients are originally used to correlate features. For clustering 

source code it is inappropriate to determine similarity between attributes as 

apposed to entities, because clustering relies on the latter rather than the former 

[14]. 

 

➢ Probabilistic measures are based on the idea that agreement on rare feature 

contributes more to the similarity between two entities than agreement on features 

that are frequently present. Probabilistic coefficients take into account the 

distribution of the frequencies of the features present over the set of entities. 

Probabilistic coefficients are developed to include feature distributions into 

similarity calculations. Given that probability coefficients are complex and must 

be tailored to suit a particular application, a similar function may be achieved by 

incorporating attribute-weight into association coefficients, which would be much 

simpler [14]. 

 

Figure 2.1 shows the similarity matrix that stores a collection of proximities that is 

available for all pairs of n items.  

 

                      1 

                      S(2,1)     1 

                      S(3,1)     S(3,2)     1 

                         

                      S(n,1)      S(n,2)                      1 

 

                                 Figure 2.1 Similarity Matrix 
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Were S( i, j ) is the measured similarity between items i  and j. In general S( i,j ) is 

a non-negative number that is close to 1 when items i and j are highly similar, and 

becomes smaller the more they differ. Since S( i,j ) = S( j,i ) and S( i,i ) = 1, we 

have the matrix as shown in the figure. 

 

2.5.3 Clustering Algorithms 

There exist large numbers of clustering algorithms in the literature. The choice of 

clustering algorithm depends both on the type of data available and on the particular 

purpose and application. Traditional clustering algorithms can be broadly categorized 

into two main types [15], Hierarchical clustering and Partitional clustering. 

Hierarchical clustering is discussed in detail as this type of clustering is more relevant 

to this project. 

 

➢ Hierarchical method  creates hierarchical nested partitions of the dataset, using a 

tree structured dendogram and some termination criterion. A hierarchical method 

can be classified as being either agglomerative or divisive, based on how the 

hierarchical decomposition is formed.  

 

The divisive approach, also called the top-down approach, starts with all the items 

in the same cluster. In a successive iteration, a cluster is split up into smaller 

clusters, until eventually each item is in one cluster, or until a termination 

condition holds. 

 

The agglomerative approach, also called the bottom-up approach, starts with 

individual items at the leaves as separate clusters. It then successively merges the 

items close to one another, until all of the items are merged into one (the top most 

level of the hierarchy), or until a termination condition holds. This result’s in a 

binary tree clusters. One advantage of the agglomerative algorithms is that they 

are unsupervised, they do not need any extra information such as the number of 

cluster expected and possible region of the search space where to look for each 

cluster. 

 



Clustering Source Code To Facilitate Program Comprehension 

Student: Behram Khan                                                                                                                  Page 
Supervisor: Christos Tjortjis 

25 

Another issue of importance with hierarchical agglomerative clustering algorithm 

is that of updating similarity measures. The similarity metrics discussed earlier are 

used to determine similarity between individual entities, but there is also the need 

to determine the similarity between clusters containing a number of entities. The 

main methods that are used in such cases are single-linkage rules, complete 

linkage rules, weighted-linkage rules and un-weighted linkage rules [16]. 

 

Each one differs in the way the new similarity is computed. For example, if A, B, 

C are clusters, after B and C are joined, one wishes to determine the similarity 

between A and BUC (B union C). Assuming the similarity between A and both B 

and C is known, the single linkage rule would set the new similarity as the 

maximum of Sim(A,B) and Sim(A,C). The complete-linkage rule would set the 

new similarity as the minimum of these. The weighted-linkage rule would 

calculate the new similarity as a weighted average of these, depending on the 

number of objects in cluster B and C, or some other criteria such as size or 

importance of objects in each cluster. The un-weighted-linkage rule would 

calculate the new similarity as the average of these similarities. 

 

The agglomerative hierarchical algorithm utilizes the similarity metrics described 

above. Entities are grouped together depending on the similarities calculated by 

similarity measures. This process can be visualized by a dendogram shown in 

figure 2.2.  

 

The leaves represent the starting point where all the clusters contain a single 

entity. Moving upwards the tree depicts an increasing aggregation of entities into 

clusters. The finishing point is the root of the tree where all entities are in the same 

cluster. Entities and clusters are merged with other entities and clusters, one at a 

time. 
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Step 4 

 

 

Step 3 

 

Step 2 

Step 1 

 

Step 0 

 

                     Figure 2.2 A dendogram for hierarchical clustering. 

 

In practice, if the clustering process is allowed to continue until all the entities are 

combined in one big cluster, then this may result in forced clustering, where 

entities may be forced into a cluster even though they are highly dissimilar to the 

entities in that cluster. This unwanted result is avoided by specifying a similarity 

threshold or a cut-point, where the clustering process is stopped if the maximum 

similarity between two clusters does not exceed the threshold value. 

 

➢ Partitioning method starts with an initial partition (clustering), in which entities 

are moved to other clusters in order to improve the partition according to some 

criterion. This relocation goes on until no further improvement of this criterion 

takes place. The final clustering is largely based on the initial partitioning. 

 

2.6 Clustering a software system 

Reverse engineering tries to help software engineers understand a presumable large 

piece of software. A key activity in reverse engineering consists of gathering the 

software entities (modules, routines, and so on.) that compose the system, into 

meaningful (highly cohesive) and independent (loosely coupled) groups. This activity 

is called clustering of software system. [1].  
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There are two common ways to approach the problem of identifying clusters in a 

software system [17]:  

 

1. Knowledge-based approach 

Using such an approach, one attempts to understand what different pieces of 

source   code do by utilizing reverse engineering techniques and pre-existing 

domain knowledge. Program modules that implement similar or complementary 

functionality can then be grouped together, for example, procedures implementing 

mathematical functions can be assumed to be part of the same library.  

 

2. Structure-based approach 

In this case, the decomposition of a software system is determined by looking at 

syntactic interactions (such as "call" or "fetch") between entities (such as 

procedures or variables). The problem of clustering a software system can be 

thought of as the partitioning of the vertex set of a graph, where the nodes are 

defined as procedures or variables, and the edges as relations between these 

entities.  

 

Although knowledge-based approaches have been shown to work well with small 

systems, they do not perform as effectively when dealing with large ones. Various 

reasons, such as the size of the knowledge base becoming prohibitively large, the lack 

of problem domain specific semantics, and knowledge spreading in the source code 

contribute to this phenomenon. The majority of software clustering researchers has 

concentrated on structure-based techniques. 

 

Most of the structure-based clustering activities in reverse engineering are based on 

the following four issues. 

 

1. Input Model 

This is concerned with the specification of program entities and their attributes. It   

is these entities that are then grouped into clusters (subsystems). 

For software remodularization, entities may be files, routines, classes, processes, 

and so forth. Multiple attributes can be used to describe entities, for example, for 

functions the attributes can be their names, return types, parameters, variables they 
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use and so on. Similarly for classes the attributes can be their base class, the data 

types and the functions they have and so on. Similarity measures use these types 

of attributes (depending on the entities) to calculate the similarity between entities. 

 

2. Similarity Metrics 

After defining the input model, the next issue is to define the criteria for 

similarity between the entities. That is, what should be the measure of determining 

the similarity between the program entities? 

Similarity matrices are used to define those criteria and to calculate the similarity 

between the entities.  

 

3. Clustering algorithm 

The next step is to apply a given clustering algorithm to meaningfully group 

entities into subsystem. 

 

4. Evaluation 

After performing the clustering the last step is to evaluate the clusters produced.  

One of the most important requirements for any software clustering algorithm is 

that the clusters produced should actually represent the system. Ideally the results 

of the clustering algorithm should match the decomposition of the software 

presented by an expert (the partitioning done by an expert of the code). 

 

Precision, recall [1], MoJo distance [18] and Edge similarity measurements [19] 

are some of the evaluation techniques used by the software clustering community 

in order to evaluate their clustering results. A brief description of these techniques 

is given below. For further details consult the given references. 

 

• Precision is the percentage of intra-pairs* proposed by the clustering method, 

which are also intra in the expert partition.  Recall is the percentage of intra-

pairs in the expert partition, which are also intra in the partition produced by 

clustering algorithm. 

 
*Intra-pair: If two entities are in the same cluster they are called intra-pair. 
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In other words precision of a subsystem is the percentage of entities in the 

subsystem (produced by clustering algorithm) that are also in the subsystem 

according to the expert mental model and the recall of a subsystem is the 

percentage of entities in the subsystem (of expert’s mental model) that are also 

in the subsystem according to the clustering tool.  

 

• MoJo measures the distance between the two decompositions (decomposition 

by the software and the one done by an expert) of a software system by 

calculating the number of operations needed to transform one decomposition 

into the other. The transformation process is accomplished by executing a 

series of Move and Join operations. 

 

Both the measurements described above only consider the assignment of source 

code components to clusters as the only criterion for similarity. The Edge 

similarity measurements also take into account the relations between the 

components as well. 

 

2.7. Related Work 

The use of data mining for system comprehension, and eventually for software 

maintenance has been considered in the past. Considerable amount of experiments 

have been conducted, often resulting in notable results. Some of the work done in this 

field is summarized below. 

 

[20] [21] approaches addressed C/C++ and Java code respectively. These systems 

aimed at understanding low/medium level concepts and relationships involving 

components at class and function level. 

The basic steps followed by these two approaches are: 

 

• Definition of an input model, to extract code and populating a database. 

• Clustering application is then applied to the pre-processed data. 

• Result evaluation (comparison of the result with experts). 
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[20] uses functions, classes, function-parameters and member data as entities to be 

clustered for C/C++ programs. Similarly [21] uses classes, packages, functions, and 

function parameters as entities to be clustered for java programs. 

 

There are few shortcomings of the above two approaches. Both of them use very few 

attributes to be used for function or class clustering. There are many other features of 

functions and classes that need to be considered in order to enhance the functionality 

of the clustering process. (These features are discussed in later chapters of this report). 

Furthermore, [21] Uses a commercial clustering tool rather then custom designed 

algorithms. 

 

[14] deals with clustering C/C++ source code. It uses functions as program entities for 

clustering purposes. The attributes used for calculating similarity between functions 

are: the use of global variables, function local variables, function parameter and return 

types. 

 

This project uses many of the algorithms mentioned in this work with very few 

changes. All the algorithms devised in [14] are mentioned in the Appendix II. 

 

[22] Uses a hill-climbing algorithm, trying to minimize an object function that 

subtracts the average “inter-connectivity” (Bunch’s measure of coupling) of the 

partition to average “intra-connectivity” (Bunch’s measure of cohesion). [23] Propose 

an approach, where architectural design recovery is based on design descriptions that 

are provided by the user in the form of queries. A language AQL (architectural query 

language) was formalized for this purpose.  

 

[24] Present an approach for the evaluation of dynamic clustering. One of the main 

features of dynamic dependency graphs is that they are weighted. Although weights 

can be assigned to static dependencies as well, the variance of dynamic weights is 

significantly larger. This experiment attempts to evaluate the usefulness of providing 

dynamic dependencies as input to software clustering algorithms. Both static and 

dynamic dependencies are provided as an input to the clustering algorithms and the 

results produced by them are compared.  

 



Clustering Source Code To Facilitate Program Comprehension 

Student: Behram Khan                                                                                                                  Page 
Supervisor: Christos Tjortjis 

31 

[17] Is a pattern-based software-clustering algorithm that attempts to recover 

subsystems commonly found in manually created decompositions of large software 

systems.  

 

[25] Proposes a “shared neighbors” technique in order to capture items that appear 

commonly in software systems, also the “maveric analysis” enable the clustering tool 

to refine a partition by indicating components that happen to belong to wrong 

subsystem, and placing them in the correct one. 

 

The clustering tool developed for this project resembles [20] [21] and [14] with 

considerable improvements. There are significant amount of changes made to the 

input model in order for this clustering tool to perform better and secondly unlike the 

[21], this clustering tool uses a custom designed clustering algorithm instead of 

merely using a commercial tool. 

 

In its future work, [20] suggests the use of weights for attributes to reflect their 

relative importance. The use of weights has been incorporated in this work in order to 

signify the relative importance of the attributes. 

 

This work uses the attributes used by [14] (for function clustering) along with few 

new ones, which include function properties and function calls. The details of which 

are given in the design and implementation phase of the project. In addition to that, 

classes are also used as program entities for clustering, in order to make the tool more 

effective for object oriented software, as most of the object oriented programs use 

classes, and classes can encapsulate a single specialized functionality, perform a 

cohesive specialized task (the abstraction level may be higher, as compared to the 

functions), and are clearly defined with in a program. 
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3  

   Requirement Analysis 

 

Software requirements express the requirements and constraints on a software product 

that contributes to the solution of a problem in the real world. The Requirements 

Gathering is a very important phase of any software product. This involves various 

techniques like “interviewing” or “market analysis” and so forth. In case of the 

clustering tool, the author has a well defined task with a set of fully elaborated 

requirements. Mostly, the requirements are collected through discussion with the 

project supervisor. However, to make the tool more useful and user-friendly, 

requirements have been collected from various discussion groups. The scope of the 

project has been continuously revised and changes have been made in it during the 

project design and implementation phase to enhance the functionality and usefulness 

of the project. 

 

The aim of this project is to develop a clustering tool that is able to decompose a 

software code into meaningful clusters. The tool will try to offer ways of 

understanding and improving the source code. The design of the tool allows it to 

perform cluster analysis on the code written in many different languages (for example 

C++, C#, Java and so on) with little or no changes. The project is about producing a 

tool for automated approach to program understanding. Therefore it is assumed that 

the user has no expert knowledge of the program being analyzed. 

 

A detailed description of requirements including functional and non functional 

requirements is given in this section.  

 

3.1 Functional Requirements 

Functional requirements capture the intended behavior of the system. This behavior 

may be expressed as services, tasks or functions the system is required to perform 
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[26]. The functional requirements of this project are: (The functional requirements are 

presented in the descending order based on their priority for this project). 

 

1. Specification of the input model 

It involves defining an input model needed to extract data from the source code 

and populate a database. This is concerned with the specification of program 

entities (functions, classes and so on) and their attributes. Program entities must 

have several attributes that provide a basis for measuring similarity between 

entities.  

 

The input model must be able to satisfy the following requirement that could lead 

to satisfactory performance of the clustering methodology [14]. 

 

• The entities defined should be homogeneous in nature, thus allowing for 

description by a common set of attributes. This would facilitate entity 

comparison by use of their attributes, which is the basis of cluster analysis. 

 

• Entities must have a sufficient number of features to provide informative 

description about them and also present a means of comparison among the 

entities. A very small number of features may result in providing very little 

information content and possibly leading to deceptive conclusion. On the 

other hand (unnecessarily) increasing the specificity would lead to more 

detailed description of the entities but would lead to less effective cluster 

analysis. 

 

• The attribute values of the entities must be clearly defined for any given 

program. Additionally, the definition of an entity must be universally 

applicable to programs in order for the methodology to be widely 

effective. Entities, attributes and their values must be easily detected. 

 

• The choice of entities should be such that when the program is abstracted 

as a collection of entities, an appropriate majority of the program code is 

associated with an entity. This ensures that the majority of the program is 



Clustering Source Code To Facilitate Program Comprehension 

Student: Behram Khan                                                                                                                  Page 
Supervisor: Christos Tjortjis 

34 

covered by the analysis, even though the analysis may show that some 

program entities do not belong to a subsystem. 

 

The input model should be defined in such a way that it can be easily applied to 

many programming languages (like java, c# and so on.) with little or no changes. 

 

2. Specification of the similarity metrics 

The similarity metric determines the degree of similarity between program 

entities. The choice of a proper similarity metric can have more influence on the 

result then the clustering algorithm itself [1]. Since similarity is fundamental to the 

definition of a cluster, a measure of the similarity between two entities drawn 

from same feature space is essential to the clustering algorithm.  

 

Because of the variety of feature types, scales, and difference in their relative 

importance, special care should be taken in specifying the similarity metric. The 

similarity metric should be customized in order for it to be best suited for the 

project’s requirements (That is, the similarity metric should clearly and correctly 

define similarities and difference among the program entities that are being 

populated in the database). The main requirements regarding similarity metrics are 

[14]. 

 

• The similarity metric must be suitable for comparison for binary, 

numerical and categorical data, as these are the types of attributes largely 

predominant in a source code application domain. 

 

• The similarity metric must take into account the relative importance of 

attributes, as the presence of some features may be more significant than 

the presence of others. 

 

• The similarity metric must consider the distribution and rarity of a feature 

throughout the whole set of entities. 
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• The similarity metric must normalize measure of similarity taking into 

account the probability of a match between attribute values of two entities. 

This is because the significance of a match on an attribute depends on the 

characteristics of the complete set of attributes. 

 

3. Specification of the clustering algorithm 

The clustering algorithms actually group the program entities into meaningful 

clusters, depending on the similarity values provided by the similarity metrics. 

The main requirements for the clustering strategy are as follows: 

• The clustering technique must create several solutions to the problem, as 

apposed to a single clustering distribution. Ideally it should form clusters 

incrementally so that if the eventual result is not correct to any suitable 

extent, then the exact step for where the results started to deviate from the 

original solution can be pin pointed. 

 

• The clustering technique must not require the final number of clusters to 

be specified. 

 

• The clustering technique must not rely on an initial partitioning to be made 

to the entities by the user, as this is only feasible when the user has some 

idea of the nature of the required clustering. Furthermore, the initial 

partition may influence the final result in an undesirable manner. 

 

4. Actual representation of the system 

It is the one of the most important requirement for the clustering tool. The 

clustering tool should actually represent the system (and not the ideal view of the 

domain for example). Ideally the results of the clustering algorithm should match 

the decomposition of the software presented by an expert. 

 

5. Design 

Clustering should reflect a good design, a design that makes sense to the software 

designer, that is, the tool should extract modules that implement known concepts. 
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6. Ability to handle different types of attributes 

Many algorithms are designed that work well on particular type of data (for 

example, numerical data) only. However in this project, which involves source 

code, the clustering tool is required to handle other different types of data as well, 

such as binary, categorical (nominal), and ordinal data, or mixtures of these types 

of data. 

 

7. Insensitivity to the order of input records 

Some clustering algorithms are sensitive to the order in which the input data is 

presented to them. They behave differently and produce different results (clusters) 

when given the same data in different order. The requirement is to develop a 

clustering tool that produces the same result regardless of the order in which the 

data is being provided. 

 

8. High dimensionality of the input data 

Most Clustering algorithms generally work well on low dimensional data, that is, 

data items containing fewer (2 or 3) attributes. In the case of this project an item 

can have several attributes, depending on the structure and functionality of the 

item. (For example, if a class is taken as an item or an entity, it can have several 

attributes like “classes it inherits from”, its “protected data members” “private 

data members” and “public data members”, its “public “ “private” and “protected” 

member functions and so on). Therefore the challenge for the clustering algorithm 

in this work is to effectively handle data items in high-dimensional space. 

 

9. Prescribed Methodology 

The software should aid the user to follow step-by-step data mining methodology 

to help avoid spurious results. The tool should form clusters incrementally, which 

will help the user to detect (in case of a problem) where the solution starts to 

deviate from the actual “expert decomposition”.  

 

10. Reporting 

The output of the data-mining tool should be presented as detailed results in 

variety of ways (textually and graphically) that will help in understanding the 
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system in a better way. The tool should provide summary as well as detailed 

results. 

11. Model exporting  

It will really be facilitating that the clustering tool provides ways to export the 

results produced by it for on going use (for example, C program, SQL and so on.). 

 

12. Model Validation: 

Model validation and verification are important tasks in any clustering 

methodology. The tool should provide model validation in addition to model 

creation. There are number of techniques that should be used to validate the model 

produced by the clustering software. 

 

13. Data Filtering 

The tool should allow the selection of subsets of the data based on user-defined 

selection criteria. 

 

14. Error reporting 

Meaningful error reporting is important for the clustering tool. The software 

should report error messages in a way that should help in the debugging process. 

 

15. Handling noise 

It would be better to produce an algorithm that can detect and handle noisy data, 

so that the incorrect data may not result in the poor quality of the clusters being 

produced. 

 

16. Data cleansing 

The tool should allow the user to modify spurious values in the data set. The tool 

will be dealing with the entities extracted from the source code, therefore the 

quality of the data will be the primary requirement of the software. 
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3.2 Non-Functional Requirements 

Non-functional requirements are constraints on the services and functions offered by 

the system. The non-functional requirements of this project are: (The non-functional 

requirements are presented in the descending order based on their priority for this 

project). 

 

1. Robustness 

The tool should be able to run consistently without crashing. The tool should not 

require monitoring and intervention by the user. 

 

2. Cluster Size 

Clustering should avoid solutions having many singleton clusters or only one huge 

cluster. Since hierarchical clustering algorithm is used for clustering in this project 

therefore special care must be taken in order to avoid situations where the 

algorithm tend to create one big cluster that grows regularly along the clustering 

process and drag all the entities to it one after the other, or the situation in which 

the algorithm tend to create very small clusters and then suddenly cluster all of 

them into one cluster at a higher height for a given similarity metrics.  

 

3. Automation 

Many clustering algorithms require some type of user input, such as defining the 

initial cluster, mentioning the desired number of clusters and so on. The clustering 

tool developed for this project should be able to work well without requiring the 

user to have any domain knowledge of the system to be clustered. 

 

4. User Interface and learning curve 

The user interface should be easy to navigate and uncomplicated, and the result 

should be produced in a meaningful way. Similarly the tool should be easy to 

learn and easy to use correctly. 

 

5. Stability 

The clustering tool is stable, if the clusters obtained by it are not significantly 

affected by slight modification in its input, that is, the software system in question 
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[27]. In other words if there are slight changes in the software (being clustered), 

then the clusters obtained as a result should not be significantly different to the 

clusters obtained previously. The software tool should be checked for stability, so 

that the results produced by the tool can be of practical use. 

 

6. Scalability  

A clustering algorithm should be scalable. There are many different clustering 

algorithms that work well with the small data sets containing few items, but as the 

amount of the data increases their efficiency is severely affected. Numerous tests 

should be made on the clustering tool in order to check its efficiency and its ability 

to handle large data set. 

 

7. Interpretability and usability 

The clustering tool should be able to produce results in a way that are easily 

interpretable, comprehensible and usable. In the case of software comprehension 

this property of the clustering algorithm is essential, as the clustering tool should 

be able to present results that are understandable to both, an expert user and a 

novice. 

 

8. Efficiency 

A data-mining tool is efficient if the results it produces are in reasonable amount 

of time, its memory and hard disk space requirement are reasonable relative to the 

data size. 

The clustering tool should be efficient in order for it to be useful in any actual 

maintenance work. 

 

9. Adaptability 

The clustering tool should be adaptable to the different needs posed by different 

users. For example it should help a novice understand the overall system, and help 

an expert to assert the consequence of a modification in the code. In addition the 

tool should be adaptable to different software, programming languages, and so on. 
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4 

Design 

 

This chapter gives a detailed explanation of the design of the software, the database, 

and the input models used for clustering of the source code. All the aspects of the 

software are discussed in details along with the UML and block diagrams for clear 

understanding of the project. 

 

4.1 Input Models 

One of the main challenges of this work is the definition of the input models that 

should be derived from a program code. Entities must be defined in such a way that 

provides useful and meaningful information for the clustering algorithms to perform 

their tasks. 

 

Classes and functions in a source code are selected as entities to be clustered. They 

fulfil most of the requirements expected of the input model for code clustering. 

 

The specification of the input models for both functions and classes is given in the 

sections below. 

 

4.1.1 Function Input Model 

Functions are considered to be an appropriate option to perform code clustering as 

they tend to encapsulate a single functionality, perform specialized cohesive tasks and 

they are clearly defined within a program. 

 

The next step now is to derive attributes with which to describe this program entity. 

Figure 4.1 depicts the diagram for the proposed function input model. 
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                                            Figure 4.1 Function Input Model. 

 

The similarity between functions is determined, using the attributes shown in the input 

model.  
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In brief, the similarity between the functions is calculated on the basis of  

 

1. The function properties. 

2. The functions use of global variables. 

3. Use of the local variables. 

4. Return types. 

5. Parameter types. 

6. The functions they call. 

 

The rationale behind this selection is given in the following: 

 

1. Functions use of global variable 

The usefulness of a global variable as an attribute depends on its nature, which is 

largely influenced by its type. The most effective global variables are likely to 

belong to the user-defined types. The reason behind this statement is that most 

user-defined types are specified to model a particular aspect of the problem 

domain, and the functions that use these are likely to be associated with this aspect 

of the problem domain, indicating the membership of a common sub-system. Thus 

the differentiation whether the type of an attribute is user-defined or pre-defined is 

considered to be necessary and is also used for other types of attributes, where 

applicable. 

 

2. Function use of local variable 

The idea behind using local variables is that, the overall purpose of a function can 

be predicted by examining the nature of the data items on which it operates. The 

nature of the data items can be determined by their types. It follows that the 

functions that operate on several common variable types are likely to have similar 

purpose and hence are likely to belong to a same subsystem. 

 

3. Function parameter types 

The concept behind using parameter types for calculating function similarity is 

same as that for local variables. However it will not be useful for functions that do 

not have parameters. 
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4. Functions return types 

It follows the same concept as that for parameter types. 

 

5. Function calls 

Function calls may also provide vital information in predicting the similarity 

between functions. It is hypothesised that the functions calling several common 

functions are likely to have a similar purpose, hence may belong to the same 

subsystem. 

 

6. Function Properties 

The properties of functions like their names, Category (static and so on), modifier 

(like Public, Private, Protected), the class they belong to and the source file in 

which they implemented may play an important role in determining the 

similarities between any two functions. Therefore these properties were added to 

the input model in order to determine their importance in understanding the 

software system. 

 

4.1.2 Class Input Model 

Other entity used for clustering is the classes defined within the program. Figure 4.2 

depicts the diagram for the proposed class input model. 

 

                                          Class

Class_ID

Class_Name

Inherets

Inherits_From

Header File

Has public member functions

Has private member functions 

Has protected member functions 

Has public member data 

Has private member data 

Has protected member data 

                Members

Member_ID

Member_Name

Member_Type

Is_User Defined

Complexity

Uses

 

                 Figure 4.2 Class Input Model. 

 

The similarity between the classes is on the bases of  

1. Class Properties. 

2. Class Member Variables. 
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1. Class Member Variables 

It is hypothesised that the classes having similar member data types are likely to 

have similar purpose and hence may belong to a same sub-system. 

 

2. Class Properties 

The properties of class like their name, inheritance status, the class from which 

they inherit, the header file in which they are defined, their public, private, 

protected members and functions play an important role in determining the 

similarities between any two classes. Therefore these properties are chosen to be 

catered for when determining the similarity between classes. 

 

4.2 Similarity Metrics 

This section defines the formulas and the equations that are used to calculate 

similarity between program entities (that is, functions and classes), on the basis of 

their attributes. 

 

4.2.1 Similarity Principles 

There are three principals on the basis of which the similarities between entities are 

calculated [14]. They are 

 

1. Basic Principle 

This principle uses the concept of Jaccard coefficient (explained in the 

background study) to calculate the similarity between two entities. 

 

This principle basis the similarity between the two entities on the number of 

attributes common between them. The greater the number of common attributes 

between two entities (relative to their total number of attributes) the greater is the 

similarity between them. 

 

2. Usage Principle 

Usage principle is based on the relative importance of the attributes of the entities 

that are compared. The importance is based on the frequency-of-use of the 

attributes. Some attributes are more common in all the entities as compared to 
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others. For example, there may be some variables that are used by many functions 

in a program than the others. In that case the variables that are less common in the 

program are given more weight then the variables that are more frequently used. 

 

3. Complexity Principle 

This principle is based on the relative importance amongst attributes, and depends 

on the type of the variables on which an attribute is based. The exact importance 

of any variable type can only be known to the programmer and therefore cannot 

be determined without the help of an expert. Therefore the concept used here is to 

give greater significance to more specialized or complex types. That is, greater the 

number of data items present in any complex variable type, the greater is its 

significance.  

 

4.2.2 Function Similarity Metrics 

The overall formula that is used for calculating the similarity between the two 

functions is. 

 

Function Similarity STOTAL: 

 

[WGV.SGV + WFC.SFC+ WLV.SLV + WPU.SPU + WFP.SFP + FRT.SRT]  

 [WGV + WFC + WLV + WPU + WRT + WFP] 
 

Where: 

WXX stands for the weight factor that is applied to show the relevant importance of the 

metrics specified by SXX. These weights are provided by the user as there importance 

may vary from program to program and they also help in the evaluation and testing 

purposes. The software sets the default values in case the user does not fill the 

weights. The values of all the similarities are between 1 and 0 inclusive. Similarly the 

value of STOTAL is also between 1 and 0 and the division factor is applied just for this 

purpose. 

 

The explanation of the terms used in the above equation is given below.  

SGV = Similarity based on the use of global variables. 

SFC = Similarity based on function-calls. 
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SLV = Similarity based on local variable types. 

SPT = Similarity based on parameter types. 

SRT = Similarity based on return types. 

SFP = Similarity base on functions properties. 

 

As previously mentioned, the similarities based on global variables, local variables, 

parameter types and return types are calculated by using equations very similar to  

[14] with minor changes. These equations are mentioned in the Appendix II. 

 

Similarity Based on Function Properties (SFP) 

The equation used for calculating the similarity between the two functions based on 

the function properties is given below. 

 

SFP = afp / afp + bfp + cfp. 

 

Where 

afp  = Number of common properties among the functions. 

bfp, cfp = Number of dissimilar properties among the functions. 

 

This similarity is based on basic similarity principle (mentioned in 4.2.1). 

 

Similarity based on function-calls (SFC) 

Similarity based on function-calls is given as: 

 

                   SBasic + Susage 

  SFC =   

       2 
 

Where SBasic and Susage implement basic and usage similarity principles respectively. 

The division factor is to keep the similarity value between 0 and 1. 

 

Basic similarity metric (SBasic) is given as 

SBasic = afc / afc + bfc + cfc. 

Where 

afc = Number of function-calls made by both the functions being compared.  

bfc , cfc = Number of  function-calls not common in the two functions being compared.  
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This metric gives an elementary indication of the similarity between any two 

functions. It is simply the ratio of the function-calls common to the two functions 

(That is, the functions being compared) to the total number of their function-calls.  

 

A similarity based on Usage principle is given as:  

             
fc

1

a
 2 / No. of functions calling the particular function. 

Susage =   

     afc 
 

Thus if a function is called predominantly by the two functions being compared, then 

it contributes more to the similarity metric as compared to the function that is used by 

many other functions. If a function is called exclusively by the two functions that are 

being compared, then this function will produce maximum contribution to the above 

metric. 

 

4.2.3 Class Similarity Metrics 

The overall formula that is used for calculating the similarity between the two classes 

is. 

 

Similarity of Classes STOTAL: 

 

                           [WMV.SMV + WCP SCP]  

 

                                   [WMV + WCP] 
 

Where: 

WXX stand for the weight factor that is applied to show the relevant importance of the 

metrics specified by SXX. The Values of the entire S is between 1 and 0 inclusive, 

similarly the value of STOTAL is also be between 1 and 0 and the division factor is 

applied exactly for this purpose. 

 

SMV = Similarity based on member variables type. 

SCP= Similarity based on the class properties. 
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Similarity Based on Class Properties (SCP) 

The equation used for calculating the similarity between the two classes based on the 

class properties is given below. 

 

SCP = aCP / aCP + bCP + cCP. 

 

Where 

aCP  = Number of common properties among the classes. 

bCP, cCP = Number of uncommon properties among the classes. 

This similarity is based on basic similarity principle mentioned above. 

 

Similarity based on Member variable types (SMV) 

Similarity between classes based on member variable types can be calculated as: 

 

SMV = WUMV.SUMV + WPMV.SPMV / WUMV + WPMV. 

 

Where: 

WXX stands for the weight factor that is applied to show the relevant importance of the 

metrics specified by SXXX. 

 

SUMV = Similarity based on user defined member variable type. 

SPMV = Similarity based on predefined member variable type. 

 

User Defined member variable types (SUMV): 

Similarity for user-defined variable types is given as 

 

                          SBasic + Scomplexity + Susage 

SUMV = 

            3 

 
 

Where SBasic, Susage and Scomplexity implement basic, usage and Complexity similarity 

principles respectively. 
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SBasic = aumv / aumv + bumv + cumv. 

 

Where 

aumv = Number of (user-defined) member variable types used by both the classes 

being compared.  

bumv , cumv = Number of (user-defined) member variable types not common in the two 

classes (The classes being compared). 

 

Similarity metric based on complexity principal is given by 

                           
umv

1

a
No. of entities in a MVT / max. No. of entities in a MVT. 

SComplxity =      

          aumv 

 

[MVT = Member variable type] 

 

The contribution of an attribute to this metric is higher if the attribute is based on a 

more specialized type, that is, the one with more data members. 

 

Similarly similarity based on usage principle is  

             
umv

1

a
 2 / No. of classes using the member variable type. 

Susage = 

     aumv 

 

 

Pre-Defined member Variable types (SPMV): 

Similarity for Pre-defined variable types is given as 

 

                       SBasic + Susage + Scomplexity 

SPMV   = 

                   3 

 

Where SBasic, Susage and Scomplexity implement basic, usage and Complexity similarity 

principles respectively. 
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SBasic = apmv / apmv + bpmv + cpmv. 

 

Where 

apmv = Number of (pre-defined) member variable types used by both the classes being 

compared.  

bpmv , cpmv = Number of (pre-defined) member variable types not common in the two 

classes (That is, the classes being compared). 

 

Similarity metric based on complexity principal is given by 

                           
pmv

1

a
No. of entities in a MVT / max. No. of entities in a MVT. 

SComplxity =      

          apmv 

 

[MVT = Member variable type] 

 

Similarly similarity based on usage principle is  

             
pmv

1

a
 2 / No. of classes using the member variable type. 

Susage = 

     apmv 

 

 

4.3 Clustering Algorithms 

Hierarchical (agglomerative) clustering algorithms are incorporated in the clustering 

tool to perform the clustering task in this project. There are different advantages of 

agglomerative hierarchical clustering algorithms over others, which make them a 

better choice for performing clustering in this type of application. 

 

• Hierarchical clustering algorithms create several solutions to the problem, 

as opposed to a single cluster distribution. 

 

• They form clusters incrementally, as opposed to a single step. The steps 

involved in the incremental formation of the clusters are small which helps 

in the debugging of the process in case the clustering algorithm does not 
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produce a suitable outcome (for example, it is easy to detect where the 

algorithm actually start to deviate from the actual result given by the 

software expert). 

 

• Hierarchical clustering algorithms are unsupervised, they do not need any 

extra information such as some initial partitioning being made by the user 

or the mentioning of the number of clusters expected. 

 

4.4 Block Diagram 

Figure 4.3 shows the block diagram (of this project), that explains the overview of the 

system and indicates the overall design and functionality of the software. A brief 

description of this diagram is as follows: 

 

The user interface provides the user with plenty of options (these options are 

discussed in the explanation of the user interface in the latter sections). At first the 

user has to select the database containing the (function or class) input model. The user 

can then choose to perform either function or class clustering (one at a time). Then 

comes the similarity matrices. The similarity between functions or classes (depending 

on the user selected options) is calculated by using the similarity principles and 

equations mention in the previous sections. These similarities are then passed on to 

the clustering algorithms. As mentioned before, agglomerative hierarchical clustering 

algorithms are used for clustering purposes. Single-Link clustering and Complete-

Link clustering will calculate similarities between the clusters (see section 2.5.3 for 

further details). The clusters produced are then passed on to the module that is 

concerned with the display and storage of the results. The results are stored in text 

files, the details of which are explained in the latter sections. 
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Class Input 
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Select Database Containing Class Input Model 
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Results 
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            Figure 4.3 Block Diagram (Code Clustering Application) 
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4.5 Use Case Diagram 

 Figure 4.4 shows the Use case diagram of the project. 

As mentioned previously the user has to select the database which contains the 

function or class information. The database contains the information about the 

functions and the classes in the format shown previously in the input models. The 

actual data fed into the database is through the parser which is not the part of this 

project. The code to be clustered is first parsed by the parser and the information is 

fed into the database with the help of this parser. The code clustering application then 

uses this information to perform clustering. Although the parser is not fully capable of 

parsing all the information need by the input model, there are some database operation 

that are done manually to fill all the information in the database, according to the 

input model created by the author. 

 

The user now has the option to perform function and class clustering. There are 

numerous options given to the user in order to get the desired results. All these 

options are discussed in details, in the section dealing with the user interface of this 

project. 

 

After the clustering process the user can see the results and then evaluate the 

clustering process by comparing its results with the results given by the expert. 

 

The output generated by the clustering application is in the form of text files. 

Although these files contain thorough information of each step performed during the 

clustering process. It still is much easier to understand the process, if there is some 

sort of visualization tool that converts the text file into a visual form. 

 

Generate Dendogram is another application that uses the text file generated by this 

application and then generates a visual form of the clustering process indicated in the 

text file. 
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       Figure 4.4 Use Case Diagram (Code Clustering Application) 
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                     Figure 4.4a Use Cases(Code Clustering Application) 

 

                     

 

                     USE CASES 

 

 

Select Database This use case is activated when the user wants to select the database 

which contains the parsed information about the software to be clustered. The software 

tool then uses this data base as a source of information for clustering the software entities. 

 

Cluster Classes This use case is activated when the user wants to perform Class 

clustering. Numerous options are provided to the user in order to perform clustering 

based on different similarity functions and principles. 

 

Perform Clustering This use case is extension to the Cluster Classes and Cluster 

Functions use cases, and is responsible for actually performing the clustering operations 

on the basis of principle and similarities calculated by these two use cases. 

 

Data base Operations This use case extracts the records from database and provides the 

required information from the database. 

 

Cluster Functions This use case is activated when the user wants to perform function 

clustering. Numerous options are provided to the user in order to perform clustering 

based on different similarity functions and principles. 

 

Generate and Store Results This use case actually saves all the resulting data in the 

format that is suitable for other applications to perform the visualization of the results 

produced. 
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  Figure 4.4b Actors (Code Clustering Application) 

 

4.6 Class Diagram 

Figure 4.5 shows the class diagram of the entire project. All the major classes and the 

relationships between them are indicated. The class responsible for user-interface 

(Form) is shown only to indicate its presence. The details and the relationships of this 

class are not shown in order to make the diagram simpler and easy to understand. 

Similarly the data type “user provided info” contains all the selections made by the 

user while interacting with the interface of the program. It is a very large data 

structure, the complete details of which are mentioned in the implementation section. 

Its details are not shown in this diagram for simplicity purposes. 

     ACTORS 

 

User  It represents the end user of the clustering tool. 

 

Parser It represents another application that is actually used to partially fill the database 

for the code clustering tool. It is a parser that is used in order to parse the software (to be 

clustered) and to provide the information (in the database) required by the clustering 

application. Although the parser is used to partially fill the database, the rest of the work 

has to be done manually. This is one area where further work needs to be done 

 

Generate Dendogram This is another application that uses the output provided by the 

clustering tool and provides a visual form of the output, in order to help better understand 

the clusters produced. 
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                                                                   Figure 4.5 Class Diagram 

The details of all the classes, their relationships and their functionalities are mentioned 

in the implementation section. 
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4.7 Sequence Diagram 

The figure 4.6 shows the sequence diagram that show the flow of the application, if 

the user chooses to perform function clustering on the basis of functions attributes, 

their use of global variables, local variables, parameter types, return types and the 

functions they call. The classes and the functions responsible for user interface are not 

shown in order to make the diagram much simpler, and easy to understand. By 

looking at the diagram it becomes obvious that many of the steps are repeated for 

every attribute, therefore an overview of all the steps is given in order to make the 

sequence diagram easier to understand. (All the names mentioned in inverted commas 

in the paragraph below are names of the classes taking part in the sequence diagram). 

  

At first the “DatabaseManager” class opens the database connection (on the request of 

“CentralDispatcher”), in order to get the function information from the database. The 

“SimilarityMetrics” then initialise the array that will contain the similarities between 

all the function pairs.   

 

The “CentralDispatcher”, now initiates the “FunctionComparison” class to perform 

the similarity comparisons and clustering tasks. 

 

The “FunctionComparison” class dictates the “CommonComparison” class to 

calculate similarities between functions, by using the similarity principles and 

equations mentioned in the previous sections. After calculating the similarities, the 

information is passed on to the “Cluster” class to perform the clustering operation. 

All the queries made to the database are through the “QueryGeneratorClass”, and the 

Queries are executed by the “DatabaseManager”.  
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FunctionComparison CommonComparisonCentralDispatcher Database Manager Clustering SimilarityMetrics QueryGenerator
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       Figure 4.6 Sequence Diagram 

 

 

 

 

 



Clustering Source Code To Facilitate Program Comprehension 

Student: Behram Khan                                                                                                                  Page 
Supervisor: Christos Tjortjis 

63 

4.8 Database Design 

Access database is used to implement the function and class input models explained in 

section 4.1. This section explains the design and relationships of the database tables 

that are used as a data source by the application to perform code clustering. 

 

4.8.1 Function Input Model 

Figure 4.7 shows the relationship diagram of the function input model implemented in 

the access database. 

 

                        Figure 4.7 Function Input Model (Access Database) 

 

The tables “FuncUsesLv”, “FunctionsCalled”, “FuncUsesGV”, “FunctionUsesParm” 

and “FunctionReturns” are used as bridge entities that implement the “many-to-many” 

relationship between two tables. 

 

Most of the tables contain similar fields, therefore the design of only a couple of 

tables is shown in order to explain the fields that were used to represent each of the 

attribute. 
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Figure 4.8 and 4.9 show the design-view of the FunctionProperties and 

GlobalVariables tables respectively. The description of all the fields is given in the 

description portion of the design. 

 

 

                                        Figure 4.8 Design of the FunctionProperties Table. 

 

 

                                       Figure 4.9 Design of the GlobalVariables Table. 
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4.8.2 Class Input Model 

Figure 4.10 shows the relationship diagram of the class input model implemented in 

the access database. 

 

 

Figure 4.10 Class Input Model (Access Database) 

 

The table “ClassHasMembers” acts as a bridge entity that implements the “many-to-many” 

relationship between the other two tables. 

 

Figure 4.11 shows the design-view of the “ClassProperties” table. The description of all the fields 

is given in the description portion of the design. 

 

 

Figure 4.11 Design of the ClassProperties Table. 
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5 

    Implementation 

 

5.1 Source Code Overview 

A description of some of the important classes and their functions is given below. The 

class diagram shows all the functions that the classes have but in this section the 

author explains only the effects of some major functions. In the explanation the 

classes and the functions responsible for the user interface are not discussed in great 

details, as they are of little importance. Although screen shorts are shown in order to 

show the wide range of options that the user has while using the software. 

 

1. File Handler  

The main purpose of this class is to write the results of the clustering algorithms to 

a text file. The eventual output of the software is a step by step representation of 

clusters formation in a text file. The text file is then used by another program, to 

produce its graphical representation. 

The File Handler class consists of three main functions 

 

void PrepareFileWrite(String* FileName) 

void WriteToFile(String *Str) 

void FileClose() 

 

These three functions are responsible for opening the text file, writing the 

clustering results and then eventually closing it. 

 

2. Clustering  

This class actually performs the clustering operations. Only single-link clustering 

and complete-link clustering are implemented due to lack of time. Major functions 

of this class are: 
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void ClusterFormation(DatabaseManager *DbManager) 

void FindMaxSimValue(int* row, int* column) 

void SingleLinkClustering(int column1, int column2) 

void CompleteLinkClustering(int column1, int column2) 

void GenerateClusters(Int32 Cluster1, Int32 Cluster2, Single max) 

 

The ClusterFormation is basically a central dispatcher for this class, it gets the 

information about the choices made by the user and then calls the functions 

according to these choices. 

 

The FindMaxSimValue function detects the most similar clusters at any particular 

instance. It detects the two most similar clusters at any particular stage and pass on 

their IDs and their similarities to the clustering algorithms. 

 

The main purpose of the GenerateClusters function is to setup the format in which 

the results are written to the text file. The format is specifically chosen, so that the 

output file generated is in the format which can be used by another program to 

generate the graphical representation of the clustering process. 

 

The SingleLinkClustering function actually performs the concept of single-link-

clustering. After getting the most similar clusters and their similarities from the 

FindMaxSimValue function. This function combines the two clusters and updates 

the similarities of all the clusters by using the concept of single-link-clustering 

which is explained in the previous chapters. 

 

The functionality of CompleteLinkClustering is the similar to that of 

SingleLinkclustering but it updates the similarities of all the clusters by using the 

concept of complete-link-clustering. 

 

3. Central Dispatcher  

It has only one function. 

 

int Start(String* CodeType) 

 



Clustering Source Code To Facilitate Program Comprehension 

Student: Behram Khan                                                                                                                  Page 
Supervisor: Christos Tjortjis 

68 

As the name of the class suggests, it is the central dispatcher for the application, it 

is this function that actually manages flow of the application. It initiates different 

operations depending on the input provided by the user. 

 

4. Function Comparison  

This class contains all the functions that setup the data and operations needed to 

perform function clustering. It contains following major functions. 

 

void ComparisonBasedOnFunctionProperties(); 

void ComparisonBasedOnLocalVariableTypes(); 

void ComparisonBasedOnParameterTypes(); 

void ComparisonBasedOnGlobalVariables(); 

void ComparisonBasedOnReturnedValueTypes(); 

void ComparisonBasedOnFunctionCalls(); 

 

Names of all the functions clearly indicate the operations they perform. They set 

all the values to perform comparison between functions on the basis of function 

properties, local variables types, parameter types, global variables, return types 

and function calls respectively. 

 

5. Class Comparison  

This class contains all the functions that setup the data and operations needed to 

perform class clustering. It contains following major functions. 

 

void ComparisonBasedOnClassProperties(); 

void ComparisonBasedOnMemberVariableTypes(); 

 

These functions set all the values to perform class comparisons on the basis of 

class properties and class member types respectively. 

 

6. CommonComparisonTasks  

This is the class that actually performs similarity measures. All the similarity 

matrices and equations discussed in the previous section are implemented by this 

class. 

It has many functions but only few significant are discussed here, which are 
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void ComparisonOfCodeBlockAttributes(String *, String *, Single 

Weight); 

void CommonComparisonFunction(GeneralPerposeStruct *, Single 

Weight); 

Single PerformCommonComparisons(GeneralPerposeStruct *); 

 

The ComparisonOfCodeBlockAttributes function calculates the similarities of 

functions and classes based on their properties and writes the data to the similarity 

metrics. 

 

The CommonComparisonFunction calculates similarity between classes and 

functions based on the rest of the attributes, that is, local variables, global 

variables, function calls, return types and parameter types for the functions 

entities, and member data types for the class entities. This functions calls 

PerformCommonComparisons that calculate the similarities based on the three 

principles, that is, Basic principle, Usage principle and complexity principle. Code 

fragment for the PerformCommonComparisons is shown below. 

 

Single 

CommonComparisonTasks::PerformCommonComparisons(GeneralPerposeStru

ct * Gpc) 

{ 

  ................. 

    

   if(CommonV != 0) 

   { 

     UnCommon   = ((Gpc->NoOfVarUsedByCodeBlockA+Gpc-  

     >NoOfVarUsedByCodeBlockB)-(2*CommonV)); 

     TotalV     = CommonV + UnCommon; 

     if(UserProvInfo->Complexity == true) 

     Complexity = Complexity/CommonV; //Implementing Complexity  

     Principle 

 

     if(UserProvInfo->Usage == true) 

     Usage      = Usage/CommonV; //Implementing Usage Principle 

 

 

     if(UserProvInfo->Basic == true) 

     Basic     = CommonV/TotalV; //Implementing Basic Principle 

 

 

     if(UserProvInfo->Basic == true){Devisor++;} 

     if(UserProvInfo->Complexity == true) {Devisor++;} 

     if(UserProvInfo->Usage == true){Devisor++;} 

 

     return ((Complexity+Usage+Basic)/Devisor);} 

     else return 0;} 
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7. Similarity Metrics  

This class manages the Similarity metrics array used by the application to store 

similarities between all the entities. All the results after performing the similarity 

measures are stored by this class in an array and it constantly maintains all the 

updates in any similarity between entities. 

Its major function is  

 

void UpdateSimilarityMetrics(Single Weight, Single Size) 

 

This function updates any changes in the similarity between functions or classes 

after calculating new similarities. 

The similarity metrics array is defined in this class as  

Single SimilarityMetricsArray [,]; 

It is a two dimensional array that contains the similarity between functions or 

classes. 

 

8. Database Manager  

As is clear from the name, this class maintains the opening, closing and access to 

the database. All the queries are executed and managed by this class. 

Its functions are 

 

OleDbConnection* OpenDatabaseConnection(); 

void CloseDatabaseConnection(); 

OleDbDataReader* ExecuteQuery(String* Query, OleDbConnection* 

ProgramDB); 

OleDbConnection * GetDatabaseConnection(); 

 

There functionality of the functions is clear from their names. 

 

9. Query Maker 

This class actually generates the queries to the database. It gets the requirement 

(the data needed for performing the similarity measures) and dynamically 

generates the query that will help in getting the exact information from the 

database that is required. 

Its functions are 
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String* Q_GetAttributeIDsUsedByBlockCode(String *Attribute, Int32 

ID) 

String* Q_GetComplecityOfAttribute(String* Attribute, Int32 ID) 

String* Q_GetUsageOfAttribute(String* Attribute, Int32 ID) 

String* Q_GetTableSubset(String* TableName, Int32 ID, String* 

Attributes) 

 

These functions dynamically generate queries. The code of 

Q_GetUsageOfAttribute is shown to indicate how the queries are generated 

dynamically. This is one of the simplest query generator functions. Its code is 

shown in order to help in better understanding of dynamic query generation 

process. 

 

String* Q_GetUsageOfAttribute(String* Attribute, Int32 ID) 

{ 

  if(String::Compare(Attribute,"FunctionCalls",true) == 0) 

  { 

    return 

    String::Concat("SELECT FunctionAttributes.No_Of_Func FROM   

    FunctionAttributes WHERE (((FunctionAttributes.ID)=",  

    ID.ToString(), "))" ); 

  } 

......} 

 

10. UserInterface (Namespace) 

As the name suggests, this namespace contains all the classes and functions 

responsible for graphical user interface for the project. All the classes in this name 

space inherit from the Form class (Form is one of the classes provided by .NET 

framework for user interface purposes). These classes are discussed briefly in this 

sub-section. 

 

• Form1 

This is the main class, for providing the core user interface facilities to the 

user. The application starts by displaying a form (using this class) containing 

majority of the options that the user can select in order to perform clustering. 

The form that is initially displayed is explained the user interface section. 
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• AdvancedOptionChecks and AdvancedWeightOptions 

These two classes provide specialized options for more thorough results, and 

for better evaluation of the software being examined. 

 

• AboutBox 

This class displays a dialog box that shows some general information about 

the software. 

 

• ClusteringProgressBar 

This class indicates the progress made by the software (during the clustering 

process) to the user. 

 

11. UserProvidedInfo (DataStructure) 

This is the data structure that contains all the information that the user can give in 

order to calculate the similarity between functions or classes and the type of 

clustering that is to be performed. The data structure along with the comments is 

given below. 

__gc struct UserProvidedInfo 

{ 

bool ParameterTypes; //Whether parameter types should be 

used //for calculating similarities 

 bool ReturnTypes; //Whether Return types should be used for  

//calculating similarities 

 bool UseOfLocalVariableTypes; //Whether local variable types  

//should be used for calculating similarities 

 bool UseOfGlobalVariables; //Whether global variables should be  

//used for calculating similarities 

 bool FunctionAttributes; //Whether function Attributes should  

//be used for calculating similarities 

 bool FunctionCalls; //Whether function calls should be used  

//for calculating similarities 

 bool Basic,Usage,Complexity; //Types of principles used 

 String *FuncAttr[]; //contains the attributes selected for  

//clustering 

 Single FaWeight; //weight given to function attributes 

 Single FcWeight; //weight given to function calls 

 Single RtWeight;//weight given to return types 

 Single UlvWeight, UulvWeight, UplvWeight;//weights given to  

//User-defined and pre-defined local variables 

 Single UgvWeight, UugvWeight, UpgvWeight;//weights given to  

//user-defined and pre-defined global variables 

 Single PtWeight, PtuWeight, PtpWeight; //weights given to user- 

//Defined and pre-defined parameter types 

 bool GvUPDiff, LvUPDiff, PtUPDiff; // whether to differentiate  

//between user-defined and pre-defined variables or not 

..........................  

     }; 
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5.2 User interface and options provided to the user 

The software in itself is very dynamic. There are many options provided to the user so 

that the user can have as many opportunities to understand the code being examined. 

In the sections below the GUI and the options provided to the users are explained. 

Only the options provided for function clustering are explained as for class clustering 

the options are more or less similar (the GUI  

for class clustering is shown in the Appendix III). Here one thing must be clarified 

that all the figures shown are to indicate all the functionalities of the software that a 

user can avail. If the user does not select many of these options, the software 

automatically fills the default values for the clustering process. Also there is error 

checking facility available to check whether the user has selected the correct options, 

and has entered correct values in the text boxes. 

 

Figure 5.1 shows the initial screen that is displayed when the software starts. It shows 

the general information about the project. 

 

 

                                     Figure 5.1 Initial Screen 

 

The first thing the user has to do is to select the database which contains the parsed 

information about the code. For that the user selects the “Connect to database” button 

and then selects the database. A filter is applied in the software that only allows the 
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user to select the .mdb files only (as the software expects that the database containing 

the source code information is an MS Access data base). 

 

 

                                            Figure 5.2 Select Database 

 

All the queries to get the data are made to the database which the user selects from 

this dialog box. 

 

Now the user has the option to select function or class clustering. The two buttons 

“FunctionClustering”, “ClassClusteing” are for this purpose. 

 

The discussion below explains the options given to the user in case of function 

clustering only (the options for class clustering are similar to that of function 

clustering and are shown in the Appendix III). 

 

As explained earlier, the function clustering can be performed on the basis of function 

properties, used of global variables, local variables, return types, parameter types and 

function calls. The check boxes (in Figure 5.3) show exactly these options. The user 

can select any of the options to be used in the functions clustering process. 
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              Figure 5.3 Select function attributes to perform clustering 

 

Then is the “SpecialiedOptions” tab. Here as shown in the Figure (Figure 5.4) the 

user can select the function properties to be used in order to perform clustering. 

Function properties can only be selected if the user selects the “FunctionProperties” 

checkbox in the “FunctionComparisonOptions” tab. (shown in the Figure 5.3), 

otherwise this functionality is disabled. 

 

As previously explained there are three principles (basic, usage and complexity) 

which are used to calculate similarity between functions (or classes). The checkboxes 

(Basic, Usage and Complexity) in Figure 5.4 give user the options to select any or all 

of the principles for clustering purposes. 
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                              Figure 5.4 Specialized Options 

 

There is an advanced button as well that helps the user to indicate whether he want to 

distinguish between user-defied and pre-defined types. The user can make this 

distinction in case of global variables, local variables, and parameter types only. 

After selecting these options the user can give different weights to user-defined and 

pre-defined types as mentioned in the note of the “Advanced Selection Options” 

dialog box. The weights options are discussed in the latter screen shots. 

 

Next is the Clustering Options (Figure 5.5). Here the user can select the type of 

clustering to be performed. 

Due to shortage of time only single-link and complete-link clustering has been 

implemented. 
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                                        Figure 5.5 Clustering Options 

 

In the end come the weight options (Figure 5.6). The user can select different weights 

for different attributes, in order to get valuable results and to understand the software 

being examined in a much better way. There is an advanced weight option available 

as well. As mentioned before, the advanced weight option is only available if the user 

chooses to distinguish between the user-defined and pre-defined types. In this dialog 

box the user can enter different weights for user-defined and pre-defined variables. 

 

There is a complete error checking facility available at every stage in the software. 

The diagram below shows just one of error checking facility, That is, the error 

checked by software if the user enters an incorrect value for the weight for Pre-

defined parameter type. 
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                                      Figure 5.6 Weight Options 

 

After selecting the options the user can now start the clustering procedure by pressing 

the Perform Function analysis button. After that, the processing starts and the clusters 

being generated are written to the text file. 

 

As mentioned before, the user is not required to enter all the options provided by the 

software. For example, if the user does not enter the weights for any of the attributes, 

the software enters the default values for those weights and then starts performing the 

calculations. 

 

Figure 5.7 indicates the progress made by the software while calculating the 

similarities between different attributes and notifies the user when performing a 

particular clustering process 
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                Figure 5.7 Progress made by the software tool.  

 

5.4 Output 

Figure 5.8 shows format of the text file that is generated by the software after 

performing function clustering. This text file contains the result of single-link 

clustering. The file shows step by step operations performed during the clustering 

operation and indicates which entities were clustered at which stage and what was the 

similarity between them. The numerical values within the brackets are the Ids of 

functions that are being clustered and the values outside the brackets represent the 

cluster number. The “sim” value shows the similarity between the two most similar 

clusters merged at any specific instance. 
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1{1} 2{2} 3{3} 4{4} 5{5} 6{6} 7{7} 8{8} 9{9} 10{10} 11{11} 12{12} 12 Clusters. 

Most similar clusters = 6 and 12, sim=0.658392 

 

1{1} 2{2} 3{3} 4{4} 5{5} 6{6,12} 7{7} 8{8} 9{9} 10{10} 11{11} 11 Clusters. 

Most similar clusters = 3 and 6, sim=0.5997509 

 

1{1} 2{2} 3{3,6,12} 4{4} 5{5} 6{7} 7{8} 8{9} 9{10} 10{11} 10 Clusters. Most 

similar clusters = 1 and 3, sim=0.5477273 

 

1{1,3,6,12} 2{2} 3{4} 4{5} 5{7} 6{8} 7{9} 8{10} 9{11} 9 Clusters. Most similar 

clusters = 1 and 2, sim=0.543332 

 

1{1,3,6,12,2} 2{4} 3{5} 4{7} 5{8} 6{9} 7{10} 8{11} 8 Clusters. Most similar 

clusters = 1 and 5, sim=0.4539995 

 

1{1,3,6,12,2,8} 2{4} 3{5} 4{7} 5{9} 6{10} 7{11} 7 Clusters. Most similar clusters = 

2 and 3, sim=0.3181818 

 

1{1,3,6,12,2,8} 2{4,5} 3{7} 4{9} 5{10} 6{11} 6 Clusters. Most similar clusters = 4 

and 6, sim=0.3181818 

 

1{1,3,6,12,2,8} 2{4,5} 3{7} 4{9,11} 5{10} 5 Clusters. Most similar clusters = 4 and 

5, sim=0.3181818 

 

1{1,3,6,12,2,8} 2{4,5} 3{7} 4{9,11,10} 4 Clusters. Most similar clusters = 1 and 3, 

sim=0.2727273 

 

1{1,3,6,12,2,8,7} 2{4,5} 3{9,11,10} 3 Clusters. Most similar clusters = 1 and 2, 

sim=0.2727273 

 

1{1,3,6,12,2,8,7,4,5} 2{9,11,10} 2 Clusters. Most similar clusters = 1 and 2, 

sim=0.2272727 

 

Figure 5.8 SingleLinkClustering.txt: an example output text file generated by the 

clustering tool. 
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This text file is then used as an input to another program, that converts this 

information into a visual form. (Note: The visual form shown in figure 5.9 is not the 

output for the text file shown in the previous diagram.).  

 

 

Figure 5.9 A Dendogram produced by the software, after taking as input, the text file 

produced by the CodeClusteringApplication. 

 

This figure actually shows a Dendogram, to indicate the clustering that takes place at 

each step in the clustering process. (Dendogram was explained in section 2.5.3). 
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6 

      Evaluation 

 

A methodology for deriving the input model from the source code by extracting 

entities and the relevant attributes is described in the previous chapters. The way that 

these entities could be clustered in order to retrieve a potentially meaningful 

modularization of a system is formulated. The approach needs to be evaluated in 

practice, assessing its effectiveness and possible improvements. A clustering tool is 

built for this reason, in order to experiment with real programs. 

 

The source code of three programs has been used for experimentation. First the author 

used “CodeClusteringApplication” (CCAP), a small/medium C++ program with 

known mental model, which contains 13 classes and 35 functions, to test the 

applicability of the approach. Secondly the author used “Credit scoring e-service”, a 

small/medium C# program with known mental model, which contains 25 classes and 

76 functions, to evaluate the suitability of the approach for C# programs. A 

medium/large C# program “Administration of Books Publishing” without a known 

mental model, consisting of 5976 functions in 1242 classes was used to assess the 

scalability of the approach and its suitability with dealing with unfamiliar software. 

 

The methodology comprises the following main steps. 

1. Derive the input model in a semi automatic fashion, using a parser and the facility 

of a .NET class view and solution explorer. 

 

2. Feed the input model to the tool. 

 

3. Derive a subsystem abstraction of the program using single and complete linkage 

methods. It is shown that the choice of the method affects the nature of the 

clustering produced. 
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4. Compare the derived subsystem abstraction to an expert’s mental model of the 

system if available. 

  

Precision and Recall were used as quantitative elements in judging the correctness of 

the results of the tool (refer to section 2.6 for explanation about precision and recall). 

The term accuracy is used in some places during the explanation in order to refer to 

both precision and recall. 

  

There was no similarity threshold imposed to stop the clustering process, so that all 

possible clustering could be derived and convergence or divergence towards the 

expert’s mental model could be observed. 

 

6.1 Case Study I (CodeClusteringApplication) 

In this case study, the code of CodeClusteringApplication (CCAP) was used for the 

evaluation purposes. CCAP is a small application with 13 classes and 35 functions. 

 

6.1.1 Function Clustering 

This section discusses function clustering done by the software tool, with different 

options selected by the user. The best results in each case are shown and compared 

with the expert’s mental model (the grouping of functions done by the expert). 

 

 Figure 6.1 shows the function clustering of the system done by the expert. 

The numbering given to each of the function is equal to its Id in the actual database 

which was used as a source (of information) by the clustering tool. These numberings 

are used to represent the functions in the discussion below in order to make the 

clustering process easier to explain. 
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                                     Figure 6.1 Case Study I: Expected results (Function Clustering) 

                                                          [CodeClusteringApplication] 
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Subsystem 1: This subsystem contains only one function. This function is like a 

central dispatcher of the application. It determines the flow of the whole application 

depending on the selections done by the user. 

 

Subsystem 2: This subsystem contains all the function that performs similarity 

measures on functions and classes based on the selections done by the user. 

 

Subsystem 3: The functions in this subsystem perform the clustering operations that 

form clusters of functions and classes on the basis of similarities provided by the 

previous subsystem. 

 

Subsystem 4: This subsystem contains all the functions that are responsible for 

performing operations on the data base of the system. 

 

Subsystem 5: This subsystem carries out the similarity principles (that is basic, 

complexity, and usage principle). 

 

Subsystem 6: This subsystem contains all the functions that generate queries 

dynamically in order to get the data needed from the database. 

 

Subsystem 7: Functions in this subsystem manage the similarity matrix that holds all 

the similarities among all the entities in the data base. 

 

                                     Figure 6.1a Case Study I: Expected results (Function Clustering) 

                                                          [CodeClusteringApplication] 

            Explanation of the Clusters suggested by the expert 

 

Figure 6.1 can be represented in a simpler format by showing the functions in groups, 

only in terms of their IDs. The representation then becomes. 

 

1{1}, 2{2,3,4,5,19,20,21,22,23,24,25}, 3{6,7,8,9,10,32,33}, 4{15,16,17,18}, 

5{11,12,13,14,34,35},  6{26,27,28,29}, 7{30,31}. 

                      Case study I: Expected results (Function Clustering) 

                                          [CodeClusteringApplication] 
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Numerous results were produced by selecting different options and were compared 

with the expert’s mental model. These results are as follows 

 

Results I 

The first results were produced by comparing functions only on the basis of function 

properties. Both, single-link and complete-link clustering algorithms were used to 

produce the results. The results generated by both these algorithms are explained 

below. 

 

Single-Link-Clustering 

Single-link method produced numerous clusters, and the results continuously 

improved at each step of the clustering process until the similarity fell below 

.7142857. After that point, the accuracy (Precision and Recall) started to decrease 

when clusters having smaller value of similarity were forced to merge because there 

was no threshold value set to stop forced clustering. The greatest accuracy (Precision 

and Recall) was obtained after 27 steps, and the clusters generated are shown below 

 

1{1}   2{2,3,4,5,19,20,21,22,23,24,25}   3{6,7,8,9,10,32,33}   4{11,12,13,14,34,35} 

5{15,17,16,18} 6{26,27,28,29} 7{30}   8{31}. 

                 Case Study I: Results Produced (Single-Link Clustering) [Results I] 

 

The values of precision and recall after comparing these results with the results of the 

expert are shown in table 6.1    

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 100%            Recall = 100%            

Subsystem 5               Subsystem 6             Subsystem 7                                          

Precision = 100%       Precision = 100%       Precision = 100%        

Recall = 100%            Recall = 100%            Recall = 50%             

                                   Table 6.1 Precision and Recall 

The value of recall was significantly less for subsystem 7 because of very small 

number of functions in that subsystem, but over all, the results were quite 

encouraging. 
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Complete-Link-Clustering 

The results produced by complete link clustering were quite accurate as well. The 

results improved continuously until the similarity fell below .7142857. After that the 

accuracy (Precision and Recall) deteriorated significantly due to the effect of forced 

clustering. The greatest accuracy (Precision and Recall) was obtained after 25 steps, 

and the clusters generated are shown below 

 

1{1,16,18,26,27,28,29} 2{2,19,3,20,21,22,23,24,4,25,5} 3{6,7,8,9,10,32,33} 

4{11,14,12,13,34,35}  5{15,17}  6{30,31} 

        Case Study I: Results Produced (Complete-Link Clustering) [Results I] 

 

The values of precision and recall after comparing these results with the results of the 

expert are  

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 14%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 100%            Recall = 100%            

Subsystem 5               Subsystem 6             Subsystem 7                                          

Precision = 100%       Precision = 57%       Precision = 100%        

Recall = 50%            Recall = 100%            Recall = 100%             

                                   Table 6.2 Precision and Recall 

 

The results for single-link clustering were better then complete-link clustering, due to 

small value of minimum entity-entity similarity across the clusters which would have 

otherwise been merged. 

 

Results II 

These results were obtained by comparing functions on the basis of function 

properties and function-calls. The experiment was done a couple of times by giving 

different weights to function-calls and function properties. Although the best results 

obtained by selecting these options were the same as that of the ‘Results I’, there were 

some interesting findings. The similarities between functions in the same cluster were 

greater then the similarity between them in ‘Result I’. This was due to the fact that 

most of the functions that were combined in the previous results, called the same 
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functions, and there were very few instances where dissimilar functions (as given by 

the expert) called the same functions. Thus the results confirming the fact the 

function-calls can play an important in determining correct function clusters. 

 

The most accurate clusters generated by selecting these options are indicated below 

 

Single-Link-Clustering 

1{1} 2{2,3,20,21,22,23,24,4,25,5,19} 3{6,7,8,9,10,32,33} 4{11,12,13,14,34,35} 

5{15,17,16,18}  6{26,27,28,29}  7{30}   8{31} 

           Case Study I: Results Produced (Single-Link Clustering) [Results II] 

 

The values of precision and recall for the each of the Subsystem (in Figure 6.1) based 

on these results are 

 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 100%            Recall = 100%            

Subsystem 5               Subsystem 6             Subsystem 7                                          

Precision = 100%       Precision = 100%       Precision = 100%        

Recall = 100%            Recall = 100%            Recall = 50%             

                                   Table 6.3 Precision and Recall 

 

Complete-Link-Clustering 

1{1,16,18,26,27,28,29} 2{2,5,3,20,21,22,23,24,4,25,19} 3{6,7,8,9,10,32,33} 

4{11,12,13,14,34,35}   5{15,17}  6{30,31} 

       Case Study I: Results Produced (Complete-Link Clustering) [Results II] 
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The values of precision and recall are 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 14%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 100%            Recall = 100%            

Subsystem 5               Subsystem 6             Subsystem 7                                          

Precision = 100%       Precision = 57%       Precision = 100%        

Recall = 50%            Recall = 100%            Recall = 100%             

                                   Table 6.4 Precision and Recall 

 

Results III 

The most interesting point in the evaluation came when the functions were compared 

on the bases of parameter types and function properties. This particular experiment 

clearly showed how important it was to distinguish between the user-defined and pre-

defined data types. 

 

Another importance of this test was that most of the functions in the code had 

parameters, so this test was always going to produce some important information 

regarding program understanding and particularly the testing of the software, as to 

whether it generated the correct results or not. 

 

Initially when the test was made, there was no distinction made between user-defined 

and pre-defined parameter types. The results produced were quite bad as compared to 

results produced earlier. 

 

Single-Link Clustering 

For single-link clustering, the first few steps produced correct results, after that, the 

clustering accuracy greatly reduced and it was resulting in a one large cluster into 

which all other entities were merged one-by-one. The best results produced are 

 

1{1,7,8,9,10,32,11,13,12,14,31,34,35,16,18,26,27,28,29,6} 2{2,3,4,5} 3{15,17} 

4{19,20,21,22,23,24,25}  5{30}   6{33} 

          Case Study I: Results Produced (Single-Link Clustering) [Results III] 
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The values of precision and recall are 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 5%       Precision = 100%       Precision = 30%       Precision = 100%       

Recall = 100%            Recall = 63%            Recall = 85%            Recall = 50%            

Subsystem 5               Subsystem 6             Subsystem 7                                          

Precision = 30%       Precision = 20%       Precision = 100%        

Recall = 100%            Recall = 100%            Recall = 50%             

                                   Table 6.5 Precision and Recall 

 

Complete-Link Clustering 

The results produced by complete-link clustering were much better then the single-

link clustering, but still, the accuracy was quite low as compared to the results in the 

earlier experiments. 

1{1,26,27,28,29,11,13,12,14,34,35}   2{2,3,4,5,19,20,21,22,23,24,25} 

3{6,7,8,9,10,32}  4{15,17,16,18}  5{30,31}  6{33} 

   Case Study I: Results Produced (Complete-Link Clustering) [Results III] 

 

The values of precision and recall are 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 9%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 85%            Recall = 100%            

Subsystem 5               Subsystem 6             Subsystem 7                                          

Precision = 54%       Precision = 36%       Precision = 100%        

Recall = 100%            Recall = 100%            Recall = 100%             

                                   Table 6.6 Precision and Recall 

 

If the weight of the functions properties was made two to three times more then the 

parameter types, then the contribution of the parameter types in determining the 

clusters was significantly reduced and the accuracy of the results became much better.  

But the important issue was to understand why the results deviated so much form the 

correct solution when parameter types were contributing more in finding the results. 
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After carefully examining the code, it became clear that most of the functions that had 

parameters, predominantly used “int” and “string” (both are pre-defined parameter 

types) as their parameter types along with other parameter types if any. Therefore 

most of the functions were using similar pre-defined parameter types. There were 

very few user-defined parameter types to make any difference, therefore the functions 

could not be distinguished correctly on the basis of their parameter types. 

 

The next reasonable step was to distinguish between user-defined and pre-defined 

parameter types. The weight given to the user-defined parameter types was twice that 

of the pre-defined parameter types. 

 

The best results produced are 

Single-Link Clustering 

1{1}   2{2,3,4,5,19,20,21,22,23,24,25} 3{6,7,8,9,10,32,33} 

4{11,13,12,14,34,35,31}  5{15,17,16,18}  6{26,27,28,29}   7{30} 

  Case Study I: Results Produced (Single-Link Clustering) [Results III] 

 

The accuracy improved tremendously as shown below 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 86%       

Recall = 100%            Recall = 100%            Recall = 100%            Recall = 100%            

Subsystem 5               Subsystem 6             Subsystem 7                                          

Precision = 100%       Precision = 100%       Precision = 100%        

Recall = 100%            Recall = 100%            Recall = 50%             

                                   Table 6.7 Precision and Recall 

 

Complete-Link Clustering 

1{1,26,27,28,29} 2{2,3,4,5,19,20,21,22,23,24,25} 3{6,7,8,9,10,32,33} 

4{11,13,12,14,34,35}   5{15,17,16,18}  6{30,31} 

     Case Study I: Results Produced (Complete-Link Clustering) [Results III] 
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The accuracy (Precision and Recall) of the results is 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 20%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 100%            Recall = 100%            

Subsystem 5               Subsystem 6             Subsystem 7                                          

Precision = 100%       Precision = 100%       Precision = 100%        

Recall = 100%            Recall = 100%            Recall = 100%             

                                   Table 6.8 Precision and Recall 

 

The results produced were significantly improved as compared to the results when 

user-defined and pre-defined parameter types were not distinguished or when they 

were given equal weights. 

 

Results IV 

These results were obtained when function properties were selected along with local 

variable types. The results showed exactly the same pattern as that of the ‘Results 

IV’. The clusters produced in both the cases (Single-Link clustering and Complete-

Link Clustering) were significantly improved when differentiation was made between 

user-defined and pre-defined types, and the user-defined types were given more 

weight as compared to pre-defined types. 

 

6.1.2 Class Clustering 

There are 13 classes in the CodeClusteringApplication. Only three major clusters 

were suggested by the expert. The expert mental model for the classes is given in the 

figure 6.2.  

 

As in the case of functions, the numbering given to each of the class is equal to its Id 

in the actual database, which was used as a source (of information) by the clustering 

application. These numberings are used to represent the classes in further discussions 

below in order to make the clustering process easier to explain. 
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Subsystem 1 Subsystem 2 Subsystem 3 

Class Names Class Names Class Names 

2. Clustering 9.  AboutBox 4. DatabaseManager 

3. CommonComparisonTasks 10.AdvancedOptionChecks 7. QueryMaker 

6. FunctionComparison 11.Form1  

12. ClassComparison 13.AdvancedWeightOptions 

Subsystem 4 Subsystem 5 Subsystem 6 

Class Names Class Names Class Names 

1. CentralDispatcher 5. FileHandler 8. SimilarityMetrics 

                        Figure 6.2 Case study I: Expected results (Class Clustering) 

                                                           [CodeClusteringApplication] 

 

Subsystem 1: All the classes in this group are responsible for calculating the 

similarity matrices and performing clustering of the code. 

 

Subsystem 2: All the classes in this group are responsible for user interface of the 

project. 

 

Subsystem 3:  The classes in this group are responsible for data base related 

activities. 

 

Subsystem 4: There is only one class in this group, and it is the central dispatcher of 

the application. It determines the flow of the whole application depending on the 

selections done by the user. 

 

Subsystem 5: This subsystem is responsible for all the file handling capabilities of 

the system, all the results of the system are written to file in specific format that helps 

other applications to use the files for further processing. 

 

Subsystem 6: The class in this subsystem is responsible for handling the similarity 

matrix that contains all the information about the similarities between entities in the 

data base. 

                                           Figure 6.2a Case Study I: Expected results (Function Clustering) 

                                                                  [CodeClusteringApplication] 

            Explanation of the Clusters suggested by the expert 
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The above diagram can be represented in a simpler format by showing the classes in 

groups, only in terms of their IDs. The representation then becomes. 

 

1{2,3,6,12},  2{9,10,11,13},       3{4,7},     4{1},  5{5},  6{8} 

              Case study I: Expected results. 

                          [CodeClusteringApplication] 

 

Numerous results were produced by selecting different options and were compared 

with the expert’s mental model. These results are as follows 

 

Results I 

These results show the single-link clustering and complete-link clustering behaviour 

when only class properties were selected for cluster formation. 

 

Single-Link Clustering 

The best results produced by single-link clustering algorithm are indicated below 

1{1}  2{2,3,6,12}  3{4}  4{5}  5{7}  6{8}  7{9,11,10,13} 

Case Study I: Results Produced (Single-Link Clustering) [Results I] 

 

The values for precision and recall are 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 50%            Recall = 100%            

Subsystem 5               Subsystem 6               

Precision = 100%       Precision = 100%         

Recall = 100%            Recall = 100%              

                                   Table 6.9 Precision and Recall 

 

The algorithm was unable to detect the similarity between two classes 4 and 7 as 

indicated by the expert. The major reason behind it was that, most of the properties of 

class 4 and 7 (That is, Query Maker and DatabaseManager) had null values (That is, 

the classes did not have any values for those properties), as a result the algorithm was 
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unable to detect any significant similarity between the two classes to join them in the 

same cluster. 

 

Complete-Link Clustering 

The results of complete-link clustering were similar to that of single-link clustering 

with few changes in the similarities between the classes (due to the difference in the 

way the two algorithms form clusters).  

 

The best results produced by Complete-link clustering algorithm are 

1{1}  2{2,3,6,12}  3{4}  4{5}  5{7}  6{8}  7{9,11,10,13} 

 Case Study I: Results Produced (Complete-Link Clustering) [Results I] 

 

The values for precision and recall are 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 50%            Recall = 100%            

Subsystem 5               Subsystem 6               

Precision = 100%       Precision = 100%         

Recall = 100%            Recall = 100%              

                                   Table 6.10 Precision and Recall 

 

Results II 

These results were obtained by selecting class member types along with the class 

properties to determine clusters.  

The results produced by both form of clustering algorithms (Single-link and 

Complete-link) were similar to the ones in ‘Results I’. The only difference was that 

the similarity between the classes with in same clusters increased due to the fact that 

the classes in same clusters used similar types of variables. 

 

Single-Link Clustering 

The best results produced by single-link clustering algorithm are as follows 

1{1}  2{2,3,6,12}  3{4}  4{5}  5{7}  6{8}  7{9,11,10,13} 

 Case Study I: Results Produced (Single-Link Clustering) [Results II] 
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The values for precision and recall are 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 50%            Recall = 100%            

Subsystem 5               Subsystem 6               

Precision = 100%       Precision = 100%         

Recall = 100%            Recall = 100%              

                                   Table 6.11 Precision and Recall 

 

Complete-Link Clustering 

The best results produced by Complete-link clustering algorithm are 

1{1}  2{2,3,6,12}  3{4}  4{5}  5{7}  6{8}  7{9,11,10,13} 

Case Study I: Results Produced (Complete-Link Clustering) [Results II] 

 

The values for precision and recall are 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 50%            Recall = 100%            

Subsystem 5               Subsystem 6               

Precision = 100%       Precision = 100%         

Recall = 100%            Recall = 100%              

                                   Table 6.12 Precision and Recall 

 

6.2 Case Study II (Credit scoring e-service) 

Credit scoring e-service contains 25 classes and 76 functions. This case study helped 

in getting some idea about the scalability of the software, but the real test of 

scalability is dealt with in the third case study. 

 

6.2.1 Function Clustering 

According to the expert mental model, functions are divided into five clusters. 

The division of the functions in five groups is shown in Figure 6.3. 
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The numbering given to each of the function follows the same concept as previously 

explained. 

 

The only information that the author have about the functions in this code is their 

properties and their return types, therefore only these two attributes are used in 

calculating the similarities between the functions. 

 

 

 

                                         Figure 6.3 Case Study II: Expected results (Function Clustering) 

                                                                  [Credit scoring e-service] 

 

Subsystem 2 

Function Names 

25. LoanDetails 
24. LoanDetails 
37. PersonalDetails 
36. PersonalDetails 
5.   setAccountNumber 
8.   setAccountType 
9.   setCreditLimit 
26. setCustID 
3.   setCustID 
21. setDate 
7.   setFIName 
19. setID 
29. setLoanAmount 
6.   setOpeningDate 
20. setPassword 
27. setPurpose 
30. setRepaymentPeriod 
4.   setSortCode 
28. setTotalCostOfItem 
2.   BankDetails 

1.   BankDetails 

17. FI 

18. FI 

 

Subsystem 3 

Function Names 

14. getAccountNumber 
11. getAccountType 
10. getCreditLimit 
35. getCustID 
16. getCustID 
22. getDate 
12. getFIName 
32. getLoanAmount 
13. getOpeningDate 
23. getPassword 
34. getPurpose 
31. getRepaymentPeriod 
15. getSortCode 
33. getTotalCostOfItem 

 

Subsystem 4 

Functions Names 

76. invokeWebservice 

 

Subsystem 5 

Function Name 

69. XMLHelper 

70. getInstance 

71. verifyXML 

72. generateCustID 

73. parseXML 

74. riteXMLPreferencesFile 

75. getQuery 

 

Subsystem 1 

Function Names 

38. Page_Load 
39. btnLogin_Click 
40. Page_Load 
41. fillGrid 
42. btnSubmit_Click 
43. Page_Load 
44. populateColorList 
45. populateLayoutList 
46. Page_Load 
47. lnkLogout_Click 
48. lnkUpload_Click 
49. lnkScore_Click 
50. lnkCustomize_Click 
51. Linkbutton1_Click 
52. Page_Load 
53. Page_Load 
54. checkAddedParams 
55. setMethodList 
56. uploadData 
57. verifyXML 
58. btnReset_Click 
59. btnUpload_Click 
60. Page_Load 
61. populateList 
62. lstID_SelectedIndexChanged 
63. btnSubmit_Click 
64. Page_Load 
65. populateTable 
66. populateDataGrid 
67. Page_Load 
68. Page_Load 
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Subsystem 1: interface (user defined and generated both) 

Subsystem 1 contains user-interface related functions. These functions include both 

user-defined functions as well as functions generated by the interface. The basic 

purpose of these functions is to change/ modify interface. 

 

Subsystem 2: (constructor and set) 

Every table in database have a corresponding class in implementation with the same 

parameters as found in the corresponding database table. Subsystem 2 contains the 

functions that set the value of these parameters to the argument provided in the 

function. These functions are of type setXX() as well as constructors of each class (as 

constructor also initializes the value of each parameter). 

 

Subsystem 3: (get) 

This group contains functions of type getXX(). These functions are used to retrieve 

the value of database entity. 

 

Subsystem 4: (invoke web service) 

This group contains only one function and its functionality is different from all other 

functions of the system because it invokes the web service which will apply credit 

scoring algorithm.  

 

Subsystem 5: (business methods) 

This group contains the functions which implement business logic of the system. 

These functions form the core functionality of the system and are different from rest 

of the functions of system. 

 

 

                                 Figure 6.3a Case Study II: Expected results (Function Clustering) 

                                                           [Credit scoring e-service] 

     Explanation of the Clusters suggested by the expert 

 

The above diagram can be shown in a simpler format by representing the functions in 

terms of their Ids. The representation then becomes. 
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1{38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64

,65,66,67,68}  

2{25,24,37,36,5,8,9,26,3,21,7,19,29,6,20,27,30,4,28,2,1,17,18} 

3{14,11,10,35,16,22,12,32,13,23,34,31,15,33} 4{76}  5{69,70,71,72,73,74,75} 

     Case study II: expected results 

                                             [Credit scoring e-service] 

 

The clustering results obtained by the software tool are as follows 

 

Results I 

These results were calculated by only selecting the function properties. Both, single-

link and complete-link clustering algorithms were used. The results obtained are 

shown below. 

 

Single-link Clustering 

This method produced encouraging results. From the beginning, each step was 

continuously improving upon the results of the previous step. The greatest similarity 

between any two pair of clusters was 1. This similarity was between constructors of 

the same class. The best results were produced after 70 steps, and the similarity 

(between clusters) at that point was reduced to 0.5714286.  Six clusters were left at 

that stage. After that similarity between clusters was significantly reduced because of 

forced clustering. 

 

The best results produced are shown below 

1{38,39,40,42,43,46,52,53,60,64,67,68,47,48,49,50,51,58,59,62,63,41,44,45,54,55,56

,57,61,65,66} 

2{1,2,3,4,5,6,7,8,9,19,20,21,26,27,28,29,30,17,18,36,37,24,25}. 

3{10,11,12,13,14,15,16,22,23,31,32,33,34,35}  

4{69}  5{ 70,72,71,73,75,74}  6{76} 

        Case Study II: Results Produced (Single-Link Clustering) [Results I] 
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The values of precision and recall for the subsystems are  

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 50%            Recall = 100%            

Subsystem 5                  

Precision = 100%          

Recall = 85%               

                                    Table 6.13 Precision and Recall 

 

The only function that was out of its cluster was the function No.69 (that is, 

XMLHelper ), which was a constructor of the XMLHelper class. After examining the 

function, it was discovered that almost none of the properties (which were used for 

clustering) of this function resembled any other function in the same cluster. 

 

Complete-link clustering 

The results produced by complete-link clustering were almost identical to the single-

link clustering. Although the sequence in which the functions were added to the 

clusters was a little different (because of the difference in the concept the two 

techniques follow, see section 2.5.3), the eventual best results were exactly the same 

to that of single-link clustering. The similarity value at which the best results were 

achieved was less then that of single-link clustering. The best results were achieved at 

sim=0.4285714.  

 

The best results produced are 

1{38,39,40,42,43,46,52,53,60,64,67,68,47,48,49,50,51,58,59,62,63,41,44,45,54,55,56

,57,61,65,66} 

2{1,2,3,4,5,6,7,8,9,19,20,21,26,27,28,29,30,17,18,36,37,24,25}. 

3{10,11,12,13,14,15,16,22,23,31,32,33,34,35}  

4{69}  5{ 70,72,71,73,75,74}  6{76} 

 Case Study II: Results Produced (Complete-Link Clustering) [Results I] 

 

 

The values of precision and recall for the subsystems are 
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Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 50%            Recall = 100%            

Subsystem 5                  

Precision = 100%          

Recall = 85%               

                                    Table 6.14 Precision and Recall 

 

Results II 

These results were generated by using function properties along with their return 

types. 

 

Single-Link Clustering 

As expected the results produced by selecting these options were identical to the ones 

produced above. The only difference was that the similarities between the functions 

in the same cluster were greater at each step then the similarity between them in the 

Result 1. The reason behind these observations was that most of the functions that 

belong to the same group (as mentioned by the expert) have similar return types. 

Therefore the similarity between them increased as the return types were included for 

evaluating the similarity between the functions. Similarly the difference between two 

different clusters also increased because the return types of the functions belonging to 

different clusters were different. So over all results obtained were stronger then the 

previous results. 

 

The best results produced are 

1{38,39,40,42,43,46,52,53,60,64,67,68,47,48,49,50,51,58,59,62,63,41,44,45,54,55,56

,57,61,65,66} 

2{1,2,3,4,5,6,7,8,9,19,20,21,26,27,28,29,30,17,18,36,37,24,25}. 

3{10,11,12,13,14,15,16,22,23,31,32,33,34,35}  

4{69}  5{ 70,72,71,73,75,74}  6{76} 

        Case Study II: Results Produced (Single-Link Clustering) [Results II] 
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The values of precision and recall for the subsystems are given below 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 50%            Recall = 100%            

Subsystem 5                  

Precision = 100%          

Recall = 85%               

                                    Table 6.15 Precision and Recall 

 

Complete-Link Clustering 

The results produced by complete-link clustering were identical to the single-link 

clustering. The sequence in which the functions were added to the clusters was a little 

different because of the difference in the concept the two techniques follow (section 

2.5.3). The eventual best results were exactly the same to that of single-link 

clustering. 

 

The best results produced are 

1{38,39,40,42,43,46,52,53,60,64,67,68,47,48,49,50,51,58,59,62,63,41,44,45,54,55,56

,57,61,65,66} 

2{1,2,3,4,5,6,7,8,9,19,20,21,26,27,28,29,30,17,18,36,37,24,25}. 

3{10,11,12,13,14,15,16,22,23,31,32,33,34,35}  

4{69}  5{ 70,72,71,73,75,74}  6{76} 

     Case Study II: Results Produced (Complete-Link Clustering) [Results II] 

 

The values of precision and recall for the subsystems are 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 50%            Recall = 100%            

Subsystem 5                  

Precision = 100%          

Recall = 85%               

                                    Table 6.16 Precision and Recall 
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6.2.2 Class Clustering 

According to the expert mental model, classes were divided onto five clusters. 

The division of the classes in five groups is shown in Figure 6.4. 

The numbering given to each of the class follows the same concept as previously 

explained. 

 

The only information that the author has about the classes in this code is their 

properties, therefore only the class properties were used in calculating the similarities 

between classes. 

 

 

 

 

 

 

 

 

        

        

 

 

 

 

                                         Figure 6.4 Case Study II: Expected results (Class Clustering) 

                                                                  [Credit scoring e-service] 

            Explanation of the Clusters suggested by the expert 

 

 

 

 

 

Subsystem 2 

Functions Names 

12. XMLHelper 

Subsystem 1 

Function Names 

11. DatabaseManager 

Subsystem 3 

Function Name 

25. systemIntegrationManage 

Subsystem 4 

Function Names 

1. BankDetails 
2. CreditScore 
3. FI 
4. LoanDetails 
5. PersonalDetails 
6. ResidentialDetails 
7. IncomeDetails 
8. ExpenditurePerMonthDetails 
9. EmploymentDetails 
10.Customer 

Subsystem 5 

Function Names 

13. creditscoringhome 

14. FIHome 
15. uploadData2 
16. uploadDataProcess 

17. dataSubmitted 
18. viewScore 
19. viewScoreResult 

20. AddParameters 
21. customization 
22. sendEnquiries 

23. plugAlgorithm 
24. systemSetting 
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Subsystem 1: This subsystem contains only one class. And it is responsible for all the 

actions performed on the database of the system.  

 

Subsystem 2: This group contains the classes which implement business logic of the 

system. These classes form the core module of the system and are different from rest 

of the classes of the system. 

 

Subsystem 3: This subsystem contains only one class and its purpose is different 

from all other classes of the system because it invokes the web service which will 

apply credit scoring algorithm.  

 

Subsystem 4: Every table in database have a corresponding class in implementation 

with the same parameters as found in the corresponding database table. Subsystem 4 

contains the classes that deal with setting and getting the value of these parameters. 

 

Subsystem 5: Subsystem 5 contains user-interface related classes. The 

basic purpose of these classes is to change/ modify interface 

                             

                                         Figure 6.4a Case Study II: Expected results (Class Clustering) 

                                                                  [Credit scoring e-service] 

            Explanation of the Clusters suggested by the expert 

 

The above diagram can be shown in a simpler format by representing the classes in 

terms of their class Ids. The representation then becomes. 

 

1{11}   2{12}  3{25}  4{1,2,3,4,5,6,7,8,9,10} 

5{13,14,15,16,17,18,19,20,21,22,23,24} 

        Case study II: Expected results 

                                    [Credit scoring e-service] 
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The clustering results obtained by the software tool are as follows 

 

Results I 

These results were calculated by selecting the class properties only. Both, single-link 

and complete-link clustering algorithms were used. The results are shown below. 

 

Single-link Clustering 

This method resulted in a perfect match. The best results produced by single-link 

clustering were exactly the same as that produced by the expert. The similarity value 

at which the best results were achieved was sim=0.7272727. 

 

The results are shown below 

1{11}   2{12}  3{25}  4{1,2,3,4,5,6,7,8,9,10} 

5{13,14,15,16,17,18,19,20,21,22,23,24} 

   Case Study II: Results Produced (Single-Link Clustering) [Results I] 

 

The values of precision and recall for the subsystems are given as 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 100%            Recall = 100%            

Subsystem 5                  

Precision = 100%          

Recall = 10%               

                                    Table 6.17 Precision and Recall 

 

Complete-link clustering 

The results produced by complete-link clustering were identical to the single-link 

clustering. The similarity value at which the best results were achieved was 

sim=0.7272727. 
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The best results produced are 

1{11}   2{12}  3{25}  4{1,2,3,4,5,6,7,8,9,10} 

5{13,14,15,16,17,18,19,20,21,22,23,24} 

             Case Study II: Results Produced (Complete-Link Clustering) [Results I] 

 

The values of precision and recall for the subsystems are given as 

Subsystem 1              Subsystem 2 Subsystem 3 Subsystem 4 

Precision = 100%       Precision = 100%       Precision = 100%       Precision = 100%       

Recall = 100%            Recall = 100%            Recall = 100%            Recall = 100%            

Subsystem 5                  

Precision = 100%          

Recall = 100%               

                                    Table 6.18 Precision and Recall 

 

6.3 Case Study III (Administration of Books Publishing) 

This case study is carried out solely to test the scalability of the software tool. The 

software that was tested contains large number of functions and classes. There are 

5976 functions and 1242 classes. Expert mental model for this software was not 

available, for this reason there is no way to check the results produced by the tool. 

This cases study is only to measure the suitability of the tool for large software 

systems. 

 

6.3.1 Class Clustering  

Results I 

The first test was made by clustering classes only on the basis of their properties. 

The results were obtained within a couple of minutes (1 to 1.5 minuets, depending on 

the specification of the computer with which the tests were carried out). These results 

were quite encouraging as the tool was able to cluster large systems in very less time.  

 

Results II 

This test was made by clustering classes on the basis of class member types. The time 

the software tool took (8 to 12 minutes depending on the specification of the 

computer with which the tests were carried out) to cluster the classes based on their 
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member types was quite long as compared to that of class properties. The reason 

behind this outcome is the design of the database that implemented the input model. It 

can be seen in the database design (Figure 4.7) that there are two tables whose 

combined information specifies which class has which type of member data. The two 

tables are “ClassHasMembers” and “ClassMemberType”. 

 

The “ClassHasMembers” table only has two fields ClassID and ClassMemberID. 

This table only indicates the link between the classes and their member data types. 

The “ClassMemberType” table contains all the information about the member data 

types. This arrangement was made in order to avoid unnecessary repetition of data in 

the tables and as a result the space requirement of the data base was significantly 

reduced. The side affect of this arrangement was that the tool now had to access data 

from two tables to get information about member types of any class (that is 

“ClassHasMembers” table and “ClassMemberType” table). As a result the 

complexity and the number of queries made to the database are greater for member 

data types as compared to function properties (The function Id and its properties were 

placed in the same table, because it was not causing any repetition of the entries in the 

tables).  

 

This is one major area where further work needs to be done in order to improve the 

scalability of the software for other attributes, while keeping the space requirement of 

the database to its minimum. 

 

6.3.2 Function Clustering  

The only information that is known about the functions (in this code) is their 

properties, therefore the results were obtained only on the basis of function properties. 

 

Results I 

The test was made by clustering functions only on the basis of their properties. 

The results were obtained within 15 to 20 minutes, depending on the specification of 

the computer with which the tests were carried out. 
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The number of functions is approximately five times that of classes but the time to 

calculate function clusters was in some cases 15 times more then that of classes. This 

observation can be explained by the equation 6.1. 

 

 

No. Of  Comparisons Required  =  (n(n-1) / 2)        Equation 6.1 

 

 

This equation indicates the number of comparisons required between n numbers of 

entities, to calculate all the similarities before starting the clustering process. It is 

evident from the equation that the number of comparisons required is directly 

proportional to the square root of total number of entities. Therefore as the number of 

entities grow the number of comparison between the entities increase at a much 

higher rate, and as a result takes much more time then in cases where entities are 

fewer. 

 

6.4 Requirements Fulfilled 

Numerous functional and non-functional requirements were specified in the 

requirement analysis section of this report. This section discusses all the requirements 

one by one with a little description of whether the requirement is completely fulfilled, 

partially fulfilled or unfulfilled. The reasons for the non-fulfilment of requirements 

are also provided.  

 

6.4.1 Functional requirements 

1. Specification of input model  

Function and class input model are specified and implemented that cover all the 

four requirements imposed on the input models.  

Status: Fulfilled 
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2. Specification of the similarity metrics 

Similarity matrices are specified (majority of them with the help of [14]), that 

completely cover all the four requirements imposed on the similarity measures in 

the requirement analysis section. 

Status: Fulfilled 

 

3. Specification of the clustering algorithm 

Hierarchical (agglomerative) clustering algorithms are incorporated in the 

clustering tool, and the reasons for this selection are given in sections 4.3. These 

algorithms cover majority of the requirements imposed on the clustering 

algorithms. 

Status: Fulfilled 

 

4. Actual representation of the system 

The two case studies carried out in this chapter clearly indicate that the clustering 

tool clustered the program entities according to the expert mental model with high 

degree of accuracy. Although there are cases where the tool do not entirely 

produce the correct results but still the results are quite encouraging and 

satisfactory. 

Status: Fulfilled. 

 

5. Design 

The tool specified a high-quality design, and extracted modules that implemented 

a known concept. 

Status: Fulfilled. 

   

6. Ability to handle different types of attributes 

As shown in the design in section 4.8 the attributes are defined by numerical, 

binary, and categorical fields. And the application is able to handle all the three 

types of data. Therefore this requirement was completely fulfilled.  

Status: Fulfilled. 
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7. Insensitivity to the order of input records 

The clustering tool is not affected by the change in the order in which data is 

provided to it. 

Status: Fulfilled. 

 

8. High dimensionality of the input data 

Most of the tables have dimensionality greater then 5. The class and function 

properties tables have even greater dimensionality (7 and 11 respectively). The 

functionality of the software does not reduce notably with the increase in the 

dimensionality of the input data. 

Status: Fulfilled. 

 

9. Prescribed Methodology 

The results produced by the clustering tool are incremental and step-by-step. The 

results clearly help in the user to detect (in case of a problem) where the solution 

starts to deviate from the actual “expert decomposition”. 

Status: Fulfilled. 

 

10. Reporting 

The results are produced in a textual format and the software is not developed to 

produce a graphical representation of the results. Instead another tool is used to 

produce the graphical output of the results obtained. 

Status: Partially Fulfilled. 

 

11. Model exporting  

This tool produces a result in a text file that can be easily used by other programs 

for ongoing use. In fact the results produced by the tool were used by software to 

produce graphical outputs. 

Status: Fulfilled. 
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12. Model Validation 

The process of validation and verification of the results is not automated. The 

software for automatically evaluating the results was not developed due to lack of 

time. 

Status: Not Fulfilled. 

 

13. Data Filtering 

      The user can select a subset of data and not all the data to produce clustering. 

Status: Fulfilled. 

 

14. Error reporting 

The software notifies the user if the user selects some incorrect options or 

specifies some incorrect values during the clustering process. However in case of 

the clustering results obtained, the software does not indicate where the results 

actually start to deviate from the actual representation. Similarly the software does 

not provide any feed back messages for the debugging process, this has to be done 

manually by checking the results produced by the software. 

Status: Partially Fulfilled. 

 

15. Handling noise 

The software has the functionality to cope up with the missing or null values. But 

it is not able to detect or correct values entered incorrectly.  

Status: Partially Fulfilled. 

 

16. Data cleansing 

The tool allows the user to modify spurious values in the data set, so that the data 

that the tool work on is of high-quality 

Status: Fulfilled. 
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6.4.1 Non-Functional requirements 

1. Robustness 

The clustering tool developed runs consistently without crashing and does not 

require any monitoring or intervention by the user. 

Status: Fulfilled. 

 

2. Cluster Size 

The clustering algorithm clusters the program entities on the basis of their 

similarities. In majority of the cases it does not form huge singleton clusters. How 

ever the nature of the output depends on the selection of the attributes and the 

information provided to the clustering tool. This requirement is too vague for the 

tool to be assessed against it. 

Status: Cannot be justified. 

 

3. Automation 

The clustering tool is completely automated and does not require any user 

intervention. The options provided to the user are optional, if the user does not 

wish to use these options, the tool selects them automatically. 

Status: Fulfilled. 

 

4. User Interface and learning curve 

The user interface of the tool is very easy to understand and work with and the 

user can easily adjust to its usage. 

Status: Fulfilled. 

 

5. Stability 

This requirement is not tested and evaluated against the clustering tool because of 

lack of time. 

Status: Not Fulfilled. 

 

6. Scalability 

The third case study was carried out solely to check the clustering tool against 

scalability. The results produced by the clustering tool are quite encouraging. The 
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clustering is done quite fast when working with only the function and class 

properties. 

In that situation, the tool clustered nearly 1300 classes and 6500 functions in just a 

couple of minuets. The time requirement of the tool increases significantly when 

other attributes are added for the clustering purposes (in the case of such large soft 

wares), and it is this area that need further research. 

Status: Partially Fulfilled. 

 

7. Results Interpretability and usability 

The results are produced in a form of a text file. Although these results are 

satisfactory in case of small applications, but the understanding of the results get 

quite difficult as the size if the software increases. Therefore the output was 

produced in such a format that could be used by another software application to 

produce its visual form that could be easily understood by the user. 

Status: Partially Fulfilled. 

 

8. Efficiency 

As the third case study suggest, the efficiency of the tool is quite satisfactory, 

though there is a great room for improvement and greater amount of testing is also 

required. The results produced by the software are in text files which are of 

normal size, considering the format of the output (that is, to save each and every 

step of the clustering process). 

Status: Partially Fulfilled. 

 

9. Adaptability 

The tool was used to cluster C++ and C# code. It can also be used easily with very 

few or no changes to work with other languages. So the adaptability of the tool is 

quite satisfactory. 

Status: Fulfilled. 
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                                                         7  

           Conclusion & Further Work 

 

The report concludes, firstly, with a retrospective overview of the work that has been 

undertaken. This is followed by some conclusions which have been made about the 

project as a whole. After that a consideration is made of what further work should 

stem from that performed here. 

 

7.1 Review 

Before any work could be commenced on formulating any kind of solution, a through 

investigation of the domain needed to be performed. To appreciate the current 

situation, background research was carried out in the field of data mining with special 

emphasis on the clustering techniques and cluster analysis. All the aspects of the 

clustering process and especially the use of clustering techniques for software 

maintenance were thoroughly investigated. 

 

To correctly capture the project requirements, an assessment of the needs of software 

maintainers, what problems they currently faced and the use of the clustering tools to 

help in the process of software maintenance was carried out.  A list of 16 functional 

and 9 on-functional requirements was defined. These requirements were then ranked 

by importance, so that the focus of the solution design could be shifted towards the 

core needs of the user and that the resulting implementation would be sure to at least 

deliver the more important features, should time run short. 

 

A design that would attempt to satisfy each and every requirement was then planned 

and constructed. The design was expressed through a combination of formal and 

informal techniques, including block diagram, use cases, class diagrams, sequence 

diagrams and natural language, so as to consider the tool’s functionality, use and 

internal operation. 
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A visual C++ implementation for this design was then produced over an intensive 10 

week period. Each aspect of the functionality was implemented in an order that reflect 

the priority of the requirements that it fulfilled. The more complex, difficult or 

interesting components of the source code were presented. 

 

After doing some testing in order to ensure that the resulting software behaved as 

desired, the tool had reached a finalised state. After that, an extensive evaluation of 

the tool was made in order to ensure that it fulfilled most of the requirements that 

were initially set in the requirements phase of the project. 

 

7.2 Conclusions 

This work addresses the issue of the feasibility of clustering functions and classes of 

programs, depending on the types and use of number of parameters. It also 

investigated the appropriateness of different clustering strategies. Finally it explored 

the suitability of the approach for different types of programming languages and sizes 

of programs. A software tool was developed for this reason. 

 

The tool was used to obtain the subsystem abstraction of 3 programs.  The accuracy 

of the results was evaluated by comparing the sub-system abstractions with expert’s 

mental models for two of the programs. The produced results were found to be 

meaningful in most cases. 

 

In addition to evaluating the accuracy of the results, the feasibility of this approach 

was evaluated by assessing the complete process of obtaining a subsystem abstraction 

of a program. Overall, the results of this initial investigation demonstrated the 

potential of this approach for obtaining a subsystem abstraction of a program and for 

identifying interrelations between classes and functions.  

 

The tool realises the original design virtually in its entirety and effectively fulfils the 

majority of its requirements, including the core requirements. The project is deemed 

to have been successful, overall, but the tool cannot be considered to be truly 

complete until some handful of issues with it has been removed. The process that this 
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project adhered to is considered to be satisfactory, but not without faults or room for 

improvements.  

 

The author has found this project to be an invaluable opportunity to consolidate and 

expand upon his skill set, in all areas, and has acquired a confidence that will allow 

his skills to be applied effectively to future projects. 

 

7.3 Further Work 

This section provides a number of possible enhancements to the approach and the tool 

in particular, that should be performed in order to achieve a complete solution to the 

problem of source code analysis. 

 

➢ Automatic derivation of input model 

The process of extracting the input model from program and performing the 

relevant pre-processing on these data is time consuming as there is no 

automated method for supporting it. Only a subset of the input data is acquired 

using a parser, rest of the information has to be filled manually by using 

different editors search facilities. The precise method needs to be further 

specified and enriched to facilitate as much automation of the derivation of the 

input model as possible. 

 

➢ Further testing on larger programs 

Evaluation was carried out for two small/medium size programs with few 

thousand lines of code. Evaluation of the tool in the third case study for larger 

software was carried out only to test the scalability of the software. The results 

could not be validated as there was no mental model available for the 

program. In order to achieve a better evaluation of the proposed results, more 

tests should be performed on larger programs to asses how method scales to 

deal with real industrial scale systems. However, in order to proceed to these 

tests, the previous enhancement should be implemented first, so as to get the 

input data from these programs automatically. 
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➢ Use of incremental Clustering technique 

The clustering technique used is not incremental. That is, the entire process 

has to be conducted all over again on all entities, if there are changes made to 

the software (which results in addition of new entities) being examined. It 

would be desirable if this method could be incremental in a manner 

accommodating changes in software (that is, the method could update clusters 

only by processing newly added entities) as the assumption of static software 

is unrealistic. 

 

➢ Clustering based on dynamic dependencies 

This work attempts to cluster large software systems based on static 

dependencies between software artefacts. However, it would be highly 

desirable to cluster software entities based on dynamic dependencies. For 

example, taking into consideration the number of times a particular procedure 

call or data reference took place during the runtime of the software. It is quite 

likely that dynamic clustering will also provide interesting insight into a 

system’s structure. 

 

➢ Testing other clustering algorithms 

Hierarchical agglomerative clustering is used with Single-link and complete-

link algorithms only. The effects of weighted-linkage rules and un-weighted 

linkage rules would also be interesting to analyse. Additional data mining 

techniques like classification, association rules could also be used for 

experimentation purposes. 

 

➢ Source code analysis at the statement level 

The suggested approach concentrated on a model consisting of modules 

(functions, classes and procedures) and the ultimate aim was to create 

program decomposition in groups containing interrelated modules. On the 

other hand, the tool can also be used in order to perform a source code 

analysis at the statement level. To do so, the input data should consist of 

records representing statements and the final results will produce groups of 

related statements. This kind of analysis is useful, when local parts of program 

need to be understood. 
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➢ Using other evaluation techniques 

In this work, only Precision and Recall are used as quantitative elements in 

judging the correctness of the results of the tool (refer to section 2.6 for 

explanation about precision and recall). There are other evaluation techniques 

like MoJo distance [18] Edge similarity measurements [19] and many others 

that need to be used in order to get better understanding of the results 

produced by the software tool. 
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 Appendix I 
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                    Figure AI: An overview of the steps comprising the KDD process. 
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    General Algorithm for Hierarchical Clustering  

 

• Step 1. Compute the proximity matrix containing the distance between each 

pair of patterns. Treat each pattern as a cluster. 

 

• Step 2. Find the most similar pair of clusters using the proximity matrix. 

Merge these two clusters into one cluster. Update the proximity matrix to 

reflect these merge operations. 

 

• Step 3.  Stop the clustering process if all patterns are in one cluster or some 

termination criteria is met. Otherwise, go to step 2. 
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          Appendix II 

 

This appendix shows all the equations used in this project for calculating similarities 

between functions based on global variables, local variables, parameter types and 

return types. All these equation are similar to [14] with few changes made to better 

suite the equations for testing purposes. 

 

Similarity Based on Global Variables (SGV): 

The equation for finding the Similarity between two functions based on the use of 

global variables is. 

 

SGV = WUGV.SUGV + WPGV.SPGV / WUGV + WPGV 

Where 

WXXX stands for the weight factor that is applied to show the relevant importance of 

the metrics specified by SXXX. 

SUGV = Similarity based on user-defined global variables. 

SPGV = Similarity based on pre-defined variables. 

 

User Defined Global Variable (SUGV): 

The similarity based on user-defined global variables can be calculated by the 

following equation. 

                              SBasic + SComplexity + Susage 

SUGV =             

3 

 

SBasic = augv / augv + bugv + cugv. 

Where 

augv = Number of (user-defined) global variables used by both the functions being 

compared.  

bugv , cugv = Number of uncommon (user-defined) global variables used by the two 

functions. 
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           
ugv

1

a

 No. of data itmes in a GV / max. No. of data items in any GV. 

SComplxity =       

augv 

 

Thus a global variable will contribute more to this metric if it is based on more 

specialized type, that is one with more data members, whereas an elementary global 

variable will have a smaller contribution. 

             
ugv

1

a

  2 / No. of functions using the global variable. 

Susage =   

      augv 

 

Thus if a global variable is used predominantly by the two functions being compared, 

then it will contribute more to the similarity metric as compared to the global variable 

that is used by many functions. 

 

Pre-Defined Global Variable (SPGV): 

 

                       SBasic + Susage + CComplexity 

SPGV   =  

                  3 

 

SBasic = apgv / apgv + bpgv + cpgv. 

 

Where 

apgv = Number of (pre-defined) global variables common in the two functions. 

bugv , cugv = Number of (pre-defined) global variables not common in the two 

functions.  

                
pgv

1

a

 2/No. of functions using the global variable. 

Susage = 

     apgv 
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
pgv

1

a

 No. of data itmes in a GV / max. No. of data items in any GV. 

SComplxity =       

apgv 

 

 

Similarity based on local variable types (SLV): 

The equation for finding the Similarity between two functions based on the use of 

local variables is.  

 

SLV = WULV.SULV + WPLV.SPLV / WULV + WPLV. 

Where: 

WXXX stands for the weight factor that is applied to show the relevant importance of 

the metrics specified by SXXX. 

SULV = Similarity based on user defined local variable type. 

SPLV = Similarity based on predefined local variable type. 

 

User Defined local Variable types (SULV): 

 

                              SBasic + Scomplexity + Susage 

SULV =   

    3 

Where: 

SBasic = aulv / aulv + bulv + culv. 

 


ulv

1

a
No. of dataitems in a LV / max. No. of dataitems in a LV. 

SComplxity =  

     aulv 

 

 

             
ulv

1

a

2 / No. of functions using the local variable type. 

Susage =   

     aulv 
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Pre-Defined local Variable type (SPLV): 

 

                       SBasic + Susage + Scomplexity 

SPLV   =  

               3 

 

Similarity based on formal parameter type (SPU): 

 

SPT = WUPT.SUPT + WPPT.SPPT / WUPT + WPPT. 

 

SUPT = Similarity based on user-defined formal parameter types. 

SPPT = Similarity based on pre-defined formal parameter types. 

 

User Defined formal parameter type (SUPT): 

 

                              SBasic + Scomplexity + Susage 

SUPT =   

    3 

 

SBasic = aupt / aupt + bupt + cupt. 

 


upt

1

a

 No. of entities in a PT / max. No. of entities in a PT. 

SComplxity =   

    aupt 

 

 

             
upt

1

a

 2 / No. of functions using the parameter type. 

Susage =   

     aupt 

 

Pre-Defined Parameter type (SPPT): 

 

                       SBasic + Susage + Scomplexity 

SPPT   =  

               3 
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Similarity based on return type (SRT): 

 

                              SBasic + Scomplexity + Susage 

SRT = 

     3 

 

Where SBasic = 1 if the two parameters are same type otherwise its zero, 

 

SComplxity        =      No. of data items in a RT  

   

  Max. No. of data item in a return type 

 

                                           2 

Susage          =  

  No. of functions using the parameter types. 
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   Appendix III 

 

The contents of this appendix are related to the User interface part of the project. 

 

User interface Options for class clustering are: 

 

              Figure AIII.1 Select class attributes to perform clustering 
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                      Figure AIII.2 Specialized Options for class clustering 

 

 

                                   Figure AIII.3 Class Clustering Options 
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                                      Figure AIII.4 Class Weight Options 

 

 


