
Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

1

Building a tool for clustering source code to

facilitate program comprehension

 2005

 MSc Dissertation submitted to

 The University of Manchester

Submitted By

Behram Khan

School of Informatics

Supervisor: Tjortjis, Christos

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

2

Declaration

No portion of the work referred to in the dissertation has been submitted in support of

an application for another degree or qualification of this or any other university or

other institution of learning.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

3

 Acknowledgments

I would like to express my deepest gratitude to my supervisor, Dr. Christos Tjortjis

for his immense support and guidance throughout this year in completing this

dissertation.

I would also like to thank my friends for their constant affection and support. They

have been a constant source of inspiration for me.

Most of all, I would like to specially thank my parents and my sister, for putting up

with me and supporting me throughout my life.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

4

Abstract

A well documented problem faced by software maintainers when understanding a

software system is the lack of familiarity with it, combined with the lack of accurate

documentation. Several problems in software maintenance occur because programs

are modified with little understanding of the overall organization of the source code

and of full impact of the modifications. Most programs are structured as a number of

subsystems, consisting of code that collaborates to provide a common functionality to

the program. An important aspect of program understanding in software maintenance

is to perceive this subsystem structure.

Cluster analysis can be of potential use in deriving a meaningful subsystem structure

of a program from its source code, thus facilitating program comprehension and

understanding.

The product of this project is a clustering tool that is able to decompose a software

code into meaningful subsystems (clusters). The tool uses input data extracted from a

program and produces an abstraction of the program as a number of subsystems. The

tool was evaluated against programs of various sizes and languages. Results showed

that the clustering tool was able to derive accurate subsystem abstraction and identify

interrelationships amongst the components.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

5

 Table of Contents

Introduction .. 1

1.1 Aim of the project .. 2

1.1.1 Objectives .. 2

1.2 Results .. 3

1.2.1 Achievements ... 2

1.3 Structure of the report .. 3

Background ... 6

2.1 Software Maintenance ... 6

2.2 Program Comprehension in Software Maintenance .. 7

2.3 Data Mining ... 8

2.3.1 Basic Data Mining Tasks .. 9

2.4. Clustering .. 10

2.5 Issues in Clustering .. 11

2.5.1 Data Model .. 11

2.5.2 Similarity and Distance Metrics .. 11

2.5.3 Clustering Algorithms ... 14

2.6 Clustering a software system ... 16

2.7. Related Work .. 19

Requirement Analysis ... 22

3.1 Functional Requirements ... 22

3.2 Non-Functional Requirements ... 28

Design .. 30

4.1 Input Models .. 30

4.1.1 Function Input Model ... 30

4.1.2 Class Input Model ... 33

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

6

4.2 Similarity Metrics .. 34

4.2.1 Similarity Principles .. 34

4.2.2 Function Similarity Metrics .. 35

4.2.3 Class Similarity Metrics .. 37

4.3 Clustering Algorithms .. 40

4.4 Block Diagram ... 41

4.5 Use Case Diagram .. 43

4.6 Class Diagram .. 46

4.7 Sequence Diagram ... 48

4.8 Database Design ... 53

4.8.1 Function Input Model ... 53

4.8.2 Class Input Model ... 55

Implementation .. 56

5.1 Source Code Overview .. 56

5.2 User interface and options provided to the user ... 63

5.4 Output .. 69

Evaluation .. 72

6.1 Case Study I ... 73

6.1.1 Function Clustering ... 73

6.1.2 Class Clustering .. 82

6.2 Case Study II .. 86

6.2.1 Function Clustering ... 86

6.2.2 Class Clustering .. 93

6.3 Case Study III .. 96

6.3.1 Class Clustering .. 96

6.3.2 Function Clustering ... 97

6.4 Requirements Fulfilled ... 98

6.4.1 Functional requirements .. 98

6.4.1 Non-Functional requirements ... 101

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

7

Conclusion & Further Work .. …. 114

7.1 Review ... 115

7.2 Conclusions .. 116

7.3 Further Work .. 117

References .. 117

Bibliography ... 123

Appendix I ... 124

Appendix II ... 127

Appendix III ... 132

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

8

 List of Figures

Figure 2.1 Similarity Matrix …………………….……….…....………………… 13

Figure 2.2 A dendogram for hierarchical clustering……...…....………………… 16

Figure 4.1 Function Input Model ………………………...…....………………… 31

Figure 4.2 Class Input Model ……..……………………...…....………………... 33

Figure 4.3 Block Diagram (Code Clustering Application).…....………………… 42

Figure 4.4 Use Case Diagram (code Clustering Application)....……………….... 44

Figure 4.4a Use Cases (Code Clustering Application)…………………………... 45

Figure 4.4b Actors (Code Clustering Application)………………………………. 46

Figure 4.5 Class Diagram………………………………….......……………….... 47

Figure 4.6 Sequence Diagram….………………………….......………………..... 52

Figure 4.7 Function Input Model (Access Database)..…….......……………….... 53

Figure 4.8 Design of the FunctionProperties Table.....…….......……………….... 54

Figure 4.9 Design of the GlobalVariables Table….....…….......……………….... 54

Figure 4.10 Class Input Model (Access Database)........…….....……………….... 55

Figure 4.11 Design of the ClassProperties Table..........…….....……………….... 55

Figure 5.1 Initial Screen………………………............…….....……………….... 63

Figure 5.2 Select Database ...…………………............…….....……………….... 64

Figure 5.3 Select function attributes to perform clustering...…………………..... 65

Figure 5.4 Specialized Options…………………………......…………………..... 66

Figure 5.5 Clustering Options .…………………………......…………………..... 67

Figure 5.6 Weight Options…..…………………………......…………………..... 68

Figure 5.7 Progress made by the software tool.…..………………………............ 69

Figure 5.8 SingleLinkClustering.txt:………….…..………………………........... 70

Figure 5.9 Dendogram……………..………….…..………………………........... 71

Figure 6.1 Case Study I: Expected results (Function Clustering)………….……. 74

Figure 6.1a Case Study I: Expected results (Function Clustering) [Explanation].. 75

Figure 6.2 Case study I: Expected results (Class Clustering)…..………….…….. 83

Figure 6.2 a Case study I: Expected results (Class Clustering) [Explanation]…... 83

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

9

Figure 6.3 Case study II: Expected results (Function Clustering)…..……..…….. 87

Figure 6.3a Case study II: Expected results (Function Clustering) [Explanation]. 88

Figure 6.4 Case study II: Expected results (Class Clustering)…..…..……..……. 93

Figure 6.4a Case study II: Expected results (Class Clustering) [Explanation]..…. 94

Figure AI KDD process………………....…………………. …..…..……..…….. 115

Figure AIII.1 Select class attributes to perform clustering.... …..…..……..…….. 122

Figure AIII.2 Specialized Options for class clustering…...... …..…..……..…….. 123

Figure AIII.3 Class Clustering Options ……………..…...... …..…..……..…….. 123

Figure AIII.4 Class Weight Options ….……………..…...... …..…..……..…….. 124

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

10

 List of Tables

Table 2.1 Data Model used by clustering algorithms…….…....………………..... 11

Table 2.2 Contingency table for binary attributes ……….…....………………...... 12

Table 6.1 Precision and Recall …………………..……….…....………………..... 76

Table 6.2 Precision and Recall …………………..……….…....………………..... 77

Table 6.3 Precision and Recall …………………..……….…....………………..... 78

Table 6.4 Precision and Recall …………………..……….…....………………..... 79

Table 6.5 Precision and Recall …………………..……….…....………………..... 80

Table 6.6 Precision and Recall …………………..……….…....………………..... 80

Table 6.7 Precision and Recall …………………..……….…....………………..... 81

Table 6.8 Precision and Recall …………………..……….…....…………………. 82

Table 6.9 Precision and Recall …………………..……….…....………………..... 84

Table 6.10 Precision and Recall …………………..……….…....………………... 85

Table 6.11 Precision and Recall …………………..……….…....………………... 86

Table 6.12 Precision and Recall …………………..……….…....………………... 86

Table 6.13 Precision and Recall …………………..……….…....………………... 90

Table 6.14 Precision and Recall …………………..……….…....………………... 91

Table 6.15 Precision and Recall …………………..……….…....………………... 92

Table 6.16 Precision and Recall …………………..……….…....………………... 92

Table 6.17 Precision and Recall …………………..……….…....………………... 95

Table 6.18 Precision and Recall …………………..……….…....………………... 96

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

11

1

 Introduction

The decomposition of a large software system into “meaningful” subsystems is

essential for both the development and maintenance phases of a software project.

The definition of the term “large software” is constantly changing as the size of a

software system continues to grow rapidly. Advances in hardware technology

concerning the speed, size and cost of primary and secondary storage devices, as well

as the introduction of object oriented technology in programming practice have

significantly increased the size of software systems.

When the system become too large, it is very difficult to ensure that the structure of

the present system is the intended one. System evolution over many years inevitably

results in a very complex interconnected system structure. Due to this structure, minor

changes in some part of the system may have unforeseen effects on other parts of the

system which may not function correctly anymore without being changed themselves.

Moreover, the original documentation, if it exists at all, becomes outdated as the

system evolves, as keeping an updated documentation is mostly not the priority of the

system developers who are much more concerned with meeting the deadlines. The

fact that developers often discontinue their association with such large projects

intensifies the problems, since they take a lot of knowledge about the system with

them.

These factors contribute to the transformation of a piece of software into what is

known as “legacy code”, (a piece of code that one uses but does not necessarily

understand). The drawback of having legacy code in a software system become

obvious when the time comes to alter its functionality, to adapt it to a new hardware

platform or operating system, or to improve its performance. One needs to understand

the code over all again.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

12

To address the problems mentioned above researchers in reverse engineering

community have been developing clustering tools. Software clustering techniques can

break a software system into smaller parts, such as subsystems or modules. This can

provide a starting point towards the recovery of the systems structure. Typical

resources found in subsystems include modules, classes, and possibly, other

subsystems. Subsystems facilitate program understanding by treating sets of source

code resources as high-level entities.

1.1 Aim of the project

This project is about developing a clustering tool that is able to decompose a software

code into meaningful clusters. The tool uses unsupervised clustering techniques that

meaningfully decompose a software system to help maintainers to recognize parts of

source code that have common characteristics, thus facilitating program

understanding. Data extracted from source code (of different languages) are clustered,

in order to identify logical, behavioral and structural correlations amongst program

components.

1.1.1 Objectives

The major challenge of this work is to adapt clustering techniques to the peculiarities

present in the application domain of a source code.

The main objectives of this work are

➢ Specification of Input-Models: The input-models are concerned with the

specification of program entities and their attributes. It is these entities that are

then grouped into subsystems. The program components that are used as

entities are constructs within the source code. These entities must have several

attributes that provide the means for measuring similarity between entities.

➢ Specification of Similarity Metrics: Similarity matrices determine the

similarity between program entities based on their attributes. The choice of a

proper similarity metric is a crucial part of the project, as it can have more

influence on the result then the clustering algorithm itself [1]. Therefore,

existing similarity metrics must be examined for use with different types of

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

13

attributes and the suitable ones selected, and tailored for the peculiarities of

this domain.

➢ Specification of the clustering algorithm: Clustering algorithms

meaningfully group program entities into subsystems (clusters) based on

similarities provided by the previous step.

➢ Implementation of the software tool: The software tool is to be developed

that takes input data extracted from a program’s source code and produces an

abstraction of the program as a number of subsystems.

The project is about producing a tool for automated approach to program

understanding. Therefore it is assumed that the user has no expert knowledge of the

program being analyzed.

1.2 Results

The results produced by the tool are very encouraging and constructive. Both primary

and secondary requirements are achieved successfully.

Three case studies were carried out in order to evaluate the results produced by the

software tool. The accuracy of the results was evaluated by comparing the sub-system

abstractions with expert’s mental models for two of the programs. The produced

results were found to be meaningful in almost all the cases.

1.2.1 Achievements

The tool realizes the original design virtually in its entirety and effectively fulfils the

majority of its requirements, including the core requirements. Major achievements of

the project are

➢ Specification of Input-Models: Classes and functions in a source code are

selected as entities to be clustered. Input models for both functions and classes

are specified that completely fulfil all of the requirements expected of the

input models in the requirements phase.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

14

➢ Specification of Similarity Matrices: Customized Association coefficients

are used to determine the similarity between program entities.

➢ Specification of clustering algorithms: Hierarchical agglomerative clustering

algorithms (single-link and complete-link clustering) are used to cluster

entities into meaningful subsystems.

➢ Implementation of a software tool: Software tool is implemented that

incorporates the input models, similarity measures and the clustering

algorithms. The tool takes input data extracted from a program’s source code

and produces an abstraction of the program as a number of subsystems. The

results produced are then evaluated by comparing them with the expert’s

mental model of the program. The tool is responsive and has a user friendly

Graphical User Interface. As the GUI is developed according to the

conventional software structure, most of the users who participated in the

evaluation learnt its usage very quickly.

1.3 Structure of the report

The main body of the report is spread across six chapters. A brief overview of these

chapters is provided below.

Background

This chapter presents the background research that was deemed necessary to be

carried out in order to acquire a full understanding of the problem domain. It

comprises of a general review of software maintenance and the importance of

program comprehension in this process. The role of data mining, with especial

emphasis on the clustering analysis and its role in program comprehension is

analyzed. The steps involved in clustering a software system are discussed along with

some relevant work previously done in this regard.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

15

Requirements Analysis

This Chapter presents the requirements analysis. Various functional and non

functional requirements are discussed along with their relative priority in the project.

Design

This chapter explains the overall system architecture and design of the system

components. It explains the whole process of creating the input models to extract data

from the software, the similarity measures that are used to calculate similarities

between different entities within the software, and the algorithms that are used to

actually form the clusters for software remodulerizeation. All the aspects of the

software system along with its interaction with the user are thoroughly discussed by

using detailed UML and block diagrams. It also explains the data base design and

mapping of the conceptual model to relational schema in Microsoft access database.

Implementation

Here, the realization of the design is described, in terms of both, the process and the

implemented software system that resulted from it. An overview of all the modules

(classes and the functions) along with some important code fragments that were used

to implement the software system is given. Screen shots of the graphical user interface

are also presented in order to show the vide range of options available to the user to

perform the clustering process.

Testing and Evaluation

This chapter describes the internal testing of the product and evaluates the extent to

which the product satisfies the stated requirements.

Conclusion and Future Work

The conclusion to the report presents overview of the project, some general

conclusions about the project and its outcome and a consideration of the future work

that stems from work that has already been undertaken.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

16

2

 Background

Background investigation covers a thorough review of all the relevant material and

related approaches in the area of software maintenance (with especial emphasis on the

topics more related to this particular project). At first the concept of Software

Maintenance and the importance of Program Comprehension in this process are

discussed. Then, it discusses the idea of Data Mining (a process in KDD), with more

emphasis on Clustering, which is one of the data mining techniques and is the basis of

this project. Finally some of the previous works done using data mining for program

comprehension are summarized.

2.1 Software Maintenance

Software maintenance is defined as “Modification of a software product after

delivery, to correct faults, to improve performance or other attributes, or to adapt

the product to a modified environment” [2].

The maintenance of the software is motivated by a number of factors [2]. These

factors involve providing continuity of service, which includes fixing bugs,

recovering from failures, and accommodating changes in the operating system and

hardware. Supporting mandatory upgrades, which are needed because of things like

amendments to the government regulation, to maintain competitive edge over the

rivals, and so on? Supporting user requests for improvements includes supporting

requests such as enhancement of functionality, better performance and customization

to local working patterns. Facilitating future maintenance work involves code,

database restructuring, and updating documentation.

In order to achieve the objectives of maintenance discussed above a wide spectrum of

changes to the software product may be necessary. There are four categories of

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

17

changes to the software system: Corrective, Adaptive, Perfective and preventive

changes [3] [2].

➢ Corrective change refers to modifications initiated by defects in the software.

A defect can result from design errors, logic errors and coding errors.

➢ Adaptive maintenance is performed to make a computer program usable in a

changed environment. Different environment may involve moving software to

a different hardware or software platform.

➢ Perfective Change improves the performance, maintainability or other

attributes of a computer program.

➢ Preventive maintenance is undertaken to prevent malfunctions or to improve

maintainability of the software.

2.2 Program Comprehension in Software Maintenance

The above discussion looked at the type of possible changes in the process of software

maintenance. However, an area, which is fundamental to effective changes in the

software, is Software understanding. [2] Explains some of the important steps that are

carried out during the maintenance process, which are

• Having a general knowledge about the functionality of the software system

and how it relates to its environment.

• Identify where in the system changes need to be made.

• Having an in-depth knowledge how the parts to be corrected or modified

work.

The ultimate aim of program comprehension is to be able to successfully implement

requested changes. This entails acquiring information about certain aspects of the

software system such as the problem domain, execution effect, cause-effect relation,

product-environment relation and decision support features of the software.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

18

Program comprehension is a demanding task comprising up to 80% of the total time

spent on software maintenance, which in turn is the most expensive process in the

lifetime of software [2]. No commonly accepted framework exists that can be used to

guide comprehension in the absence of familiarity with the code or the domain.

Neither there is a well-defined set of metrics for measuring properties of the code

such as structure, modularity and so on [4]. A major research challenge therefore is to

understand key objectives in the program comprehension process and to provide an

efficient automated (semi-automated) support for it.

The sections that follow, explain the concept of the data mining process and its tasks,

and explain the use of data mining techniques to formulate an automated method of

program comprehension and understanding.

2.3 Data Mining

 “Data Mining is the use of algorithms to extract the information and patterns

derived by the KDD (Knowledge Discovery in databases) process” [5].

Data mining is an important step in the KDD process. Data mining involves many

different algorithms to accomplish different tasks. All these algorithms attempt to fit a

model to the data. The algorithms examine the data and determine a model that is

closest to the characteristics of the data being examined.

Data mining techniques can discover non-trivial and previously unknown

relationships among records or attributes in large databases [6]. This observation

highlights the capability of data mining to induce useful knowledge about the design

of large legacy systems. Data mining has three fundamental features that make it a

valuable tool for program comprehension and related maintenance tasks [7].

• It can be applied to large volumes of data. This implies that data mining

has the potential to analyze large legacy systems with complex structure.

• It can be used to expose previously unknown non-trivial patterns and

associations between items in a data base. Therefore, it can be utilized in

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

19

order to reveal hidden relationships between system or program

components.

• Its techniques can extract information regardless of any previous domain

knowledge. This feature is ideal for maintaining software with poor

knowledge about its functionality or implementation details.

2.3.1 Basic Data Mining Tasks

There are several components of data-mining algorithms discussed in literature. A

detailed description of Clustering is given below (as this component is most related to

this particular project), while the other components are discussed briefly [8] [5] [2]

[9].

➢ Classification is the process of mapping a data item into one of several

predefined categorical classes. It is often referred to as supervised learning

because the classes are determined before examining the data.

➢ Regression is used to map a data item to a real valued prediction variable. The

regression involves the learning of the function that does this mapping.

➢ Summarization provides a compact description for a subset of data.

Summarization is also called characterization or generalization.

➢ Rule generation extracts classification rules from the data. Association rule

mining refers to discovering association relationship among different

attributes.

➢ Dependency modeling describes significant dependencies among variables.

Dependency models exist at two levels, the structural and quantitative level

[6]. The structural level of the model specifies which variables are locally

dependent on each other, whereas the quantitative level of the model specifies

the strengths of the dependencies using some numerical scale.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

20

➢ Sequence analysis models sequential patterns, like time-series analysis, gene

sequence and so on. These patterns are similar to associations in that data are

related, but the relationship is based on time.

➢ Clustering is a function that groups a set of data items into clusters. Cluster is

a collection of data items similar to one another within the same cluster and

dissimilar to the items in other cluster. It is often referred to as un-supervised

learning because the clusters are not determined before examining the data.

The major challenge of this work is to use cluster analysis, to meaningfully

decompose software into subsystems. Therefore the rest of the sections in this chapter

extensively deal with the process of clustering and its use in software comprehension

and understanding.

2.4. Clustering

Clustering techniques are used in many different areas for a wide spectrum of

problems. Among the areas in which cluster analysis is used are graph theories,

business area analysis, information architecture, information retrieval, resource

allocation, image processing, software testing, galaxy studies, chip design, pattern

recognition, economics, statistics and biology.

Cluster analysis or clustering is “a generic term for set of techniques which produce

classifications from initially unclassified data.” [10]. It aims to solve the problem of

classification, namely to divide a set of data objects into a set of classes, the objects of

each of which are considered to be similar to others within the same class and

dissimilar from those in others. According to [11], the two main approaches to cluster

analysis are probabilistic and deterministic approaches, the latter of which often gives

rise to what are classed as hierarchical techniques.

Each data object, or individual may have any number of attributes, which may be

either quantitative or qualitative. A deterministic approach involves measuring the

similarity or distance (dissimilarity) between each pairing of data objects, based on

the values of these attributes, via similarity/distance measures. A great number of

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

21

different examples of such measures are commonly used. The values arising from the

pair-wise comparison of all individuals can be displayed within a symmetric distance

or symmetric similarity matrix. The values in a distance matrix can be any non-

negative value, while the values in a similarity matrix are in the range 0 to 1, with 0

representing a pairing of two completely dissimilar individuals and 1 representing that

the two are identical. The values within such a matrix can be used as the basis for

grouping together of individuals, the result of which is referred to as cluster.

2.5 Issues in Clustering

2.5.1 Data Model

The first step in the clustering process is to produce a data model. That is, to build an

abstraction of the real world in which the entities to be clustered are described

according to some scheme.

Algorithms for clustering traditionally use data model shown in the table 2.1.

Entities Attribute1 Attribute2 Attribute3 Attribute4

------------- ----------- ------------ ------------ ------------

------------- ----------- ------------ ------------ ------------

 Table 2.1 Data Model traditionally used by clustering algorithms.

Entities are specified in the entity column and the attributes which describe the

entities constitute rest of the columns. Attributes which do not apply to the entity are

left blank, or some other scheme is used depending on the requirement of the

clustering process.

It is these attribute on which similarity between the entities is calculated by the

similarity metrics explained below.

2.5.2 Similarity and Distance Metrics

The most important property of a clustering algorithm is that items within one cluster

should be more similar to the items in the same cluster than to the items outside it.

The similarity and distance measures define the criteria for measuring the similarity or

dissimilarity among the items in the input data.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

22

There are a lot of different similarity measures which compute the similarity between

items based on the similarity between the selected features. A similarity measure

always yields a value between 0 and 1. Two items are more similar if their similarity

measure is closer to 1.

There are different categories of similarity/dissimilarity measures [12]: distance

measures, association coefficients, correlation coefficients and probabilistic similarity

measures.

➢ Distance measures measure the dissimilarity of items. The greater the outcome

the more dissimilar the items are. If two items have the same value for all features,

the distance between them should be zero. The most popular distance measures

are the (squared) Euclidean distance and the Manhattan distance.

➢ Association coefficients calculate similarity based on the number of features

present and absent in items and are suited to binary attributes. [13] Uses the Table

2.2 to summarize this.

 Xj

Xi 1 0 Sum

1 a b a + b

0 c d c + d

Sum a + c b + d N (Grand Total)

 Table 2.2 Contingency table for binary attributes

In this table a represents the number of features present in both the entities (Xi and

Xj). Analogously, d corresponds to the number of features absent in both the

entities (Xi and Xj). b is the number of features present in Xi but absent in Xj, and

c is the number of entities present in Xj but absent in Xi.

Different coefficients treat the values of a and d differently and also put different

weightings on any of the four entries of the table. The most common association

coefficients are.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

23

The simple matching coefficient, defined as: b+c / a+b+c+d.

The Jaccard coefficient, defined as: b+c / a+b+c.

The matching coefficient treats a and d equally, both contribute to the similarity.

The Jaccard coefficient does no take d matches into account at all. Therefore this

measure is very well suited for asymmetric binary features. There are many

association coefficients in the literature, depending on how they treat a, b, c, d

matches and how they weight different similarities.

➢ Correlation coefficients are originally used to correlate features. For clustering

source code it is inappropriate to determine similarity between attributes as

apposed to entities, because clustering relies on the latter rather than the former

[14].

➢ Probabilistic measures are based on the idea that agreement on rare feature

contributes more to the similarity between two entities than agreement on features

that are frequently present. Probabilistic coefficients take into account the

distribution of the frequencies of the features present over the set of entities.

Probabilistic coefficients are developed to include feature distributions into

similarity calculations. Given that probability coefficients are complex and must

be tailored to suit a particular application, a similar function may be achieved by

incorporating attribute-weight into association coefficients, which would be much

simpler [14].

Figure 2.1 shows the similarity matrix that stores a collection of proximities that is

available for all pairs of n items.

 1

 S(2,1) 1

 S(3,1) S(3,2) 1

 S(n,1) S(n,2) 1

 Figure 2.1 Similarity Matrix

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

24

Were S(i, j) is the measured similarity between items i and j. In general S(i,j) is

a non-negative number that is close to 1 when items i and j are highly similar, and

becomes smaller the more they differ. Since S(i,j) = S(j,i) and S(i,i) = 1, we

have the matrix as shown in the figure.

2.5.3 Clustering Algorithms

There exist large numbers of clustering algorithms in the literature. The choice of

clustering algorithm depends both on the type of data available and on the particular

purpose and application. Traditional clustering algorithms can be broadly categorized

into two main types [15], Hierarchical clustering and Partitional clustering.

Hierarchical clustering is discussed in detail as this type of clustering is more relevant

to this project.

➢ Hierarchical method creates hierarchical nested partitions of the dataset, using a

tree structured dendogram and some termination criterion. A hierarchical method

can be classified as being either agglomerative or divisive, based on how the

hierarchical decomposition is formed.

The divisive approach, also called the top-down approach, starts with all the items

in the same cluster. In a successive iteration, a cluster is split up into smaller

clusters, until eventually each item is in one cluster, or until a termination

condition holds.

The agglomerative approach, also called the bottom-up approach, starts with

individual items at the leaves as separate clusters. It then successively merges the

items close to one another, until all of the items are merged into one (the top most

level of the hierarchy), or until a termination condition holds. This result’s in a

binary tree clusters. One advantage of the agglomerative algorithms is that they

are unsupervised, they do not need any extra information such as the number of

cluster expected and possible region of the search space where to look for each

cluster.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

25

Another issue of importance with hierarchical agglomerative clustering algorithm

is that of updating similarity measures. The similarity metrics discussed earlier are

used to determine similarity between individual entities, but there is also the need

to determine the similarity between clusters containing a number of entities. The

main methods that are used in such cases are single-linkage rules, complete

linkage rules, weighted-linkage rules and un-weighted linkage rules [16].

Each one differs in the way the new similarity is computed. For example, if A, B,

C are clusters, after B and C are joined, one wishes to determine the similarity

between A and BUC (B union C). Assuming the similarity between A and both B

and C is known, the single linkage rule would set the new similarity as the

maximum of Sim(A,B) and Sim(A,C). The complete-linkage rule would set the

new similarity as the minimum of these. The weighted-linkage rule would

calculate the new similarity as a weighted average of these, depending on the

number of objects in cluster B and C, or some other criteria such as size or

importance of objects in each cluster. The un-weighted-linkage rule would

calculate the new similarity as the average of these similarities.

The agglomerative hierarchical algorithm utilizes the similarity metrics described

above. Entities are grouped together depending on the similarities calculated by

similarity measures. This process can be visualized by a dendogram shown in

figure 2.2.

The leaves represent the starting point where all the clusters contain a single

entity. Moving upwards the tree depicts an increasing aggregation of entities into

clusters. The finishing point is the root of the tree where all entities are in the same

cluster. Entities and clusters are merged with other entities and clusters, one at a

time.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

26

Step 4

Step 3

Step 2

Step 1

Step 0

 Figure 2.2 A dendogram for hierarchical clustering.

In practice, if the clustering process is allowed to continue until all the entities are

combined in one big cluster, then this may result in forced clustering, where

entities may be forced into a cluster even though they are highly dissimilar to the

entities in that cluster. This unwanted result is avoided by specifying a similarity

threshold or a cut-point, where the clustering process is stopped if the maximum

similarity between two clusters does not exceed the threshold value.

➢ Partitioning method starts with an initial partition (clustering), in which entities

are moved to other clusters in order to improve the partition according to some

criterion. This relocation goes on until no further improvement of this criterion

takes place. The final clustering is largely based on the initial partitioning.

2.6 Clustering a software system

Reverse engineering tries to help software engineers understand a presumable large

piece of software. A key activity in reverse engineering consists of gathering the

software entities (modules, routines, and so on.) that compose the system, into

meaningful (highly cohesive) and independent (loosely coupled) groups. This activity

is called clustering of software system. [1].

A

D

a

t

a

T

r

a

n

sf

o

r

m

a

ti

o

n

B

a

lc

.

S

i

m

il

a

ri

t

y

M

e

t

ri

c

s

C D E

 AB

 ABC

 DE

 ABCDE

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

27

There are two common ways to approach the problem of identifying clusters in a

software system [17]:

1. Knowledge-based approach

Using such an approach, one attempts to understand what different pieces of

source code do by utilizing reverse engineering techniques and pre-existing

domain knowledge. Program modules that implement similar or complementary

functionality can then be grouped together, for example, procedures implementing

mathematical functions can be assumed to be part of the same library.

2. Structure-based approach

In this case, the decomposition of a software system is determined by looking at

syntactic interactions (such as "call" or "fetch") between entities (such as

procedures or variables). The problem of clustering a software system can be

thought of as the partitioning of the vertex set of a graph, where the nodes are

defined as procedures or variables, and the edges as relations between these

entities.

Although knowledge-based approaches have been shown to work well with small

systems, they do not perform as effectively when dealing with large ones. Various

reasons, such as the size of the knowledge base becoming prohibitively large, the lack

of problem domain specific semantics, and knowledge spreading in the source code

contribute to this phenomenon. The majority of software clustering researchers has

concentrated on structure-based techniques.

Most of the structure-based clustering activities in reverse engineering are based on

the following four issues.

1. Input Model

This is concerned with the specification of program entities and their attributes. It

is these entities that are then grouped into clusters (subsystems).

For software remodularization, entities may be files, routines, classes, processes,

and so forth. Multiple attributes can be used to describe entities, for example, for

functions the attributes can be their names, return types, parameters, variables they

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

28

use and so on. Similarly for classes the attributes can be their base class, the data

types and the functions they have and so on. Similarity measures use these types

of attributes (depending on the entities) to calculate the similarity between entities.

2. Similarity Metrics

After defining the input model, the next issue is to define the criteria for

similarity between the entities. That is, what should be the measure of determining

the similarity between the program entities?

Similarity matrices are used to define those criteria and to calculate the similarity

between the entities.

3. Clustering algorithm

The next step is to apply a given clustering algorithm to meaningfully group

entities into subsystem.

4. Evaluation

After performing the clustering the last step is to evaluate the clusters produced.

One of the most important requirements for any software clustering algorithm is

that the clusters produced should actually represent the system. Ideally the results

of the clustering algorithm should match the decomposition of the software

presented by an expert (the partitioning done by an expert of the code).

Precision, recall [1], MoJo distance [18] and Edge similarity measurements [19]

are some of the evaluation techniques used by the software clustering community

in order to evaluate their clustering results. A brief description of these techniques

is given below. For further details consult the given references.

• Precision is the percentage of intra-pairs* proposed by the clustering method,

which are also intra in the expert partition. Recall is the percentage of intra-

pairs in the expert partition, which are also intra in the partition produced by

clustering algorithm.

*Intra-pair: If two entities are in the same cluster they are called intra-pair.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

29

In other words precision of a subsystem is the percentage of entities in the

subsystem (produced by clustering algorithm) that are also in the subsystem

according to the expert mental model and the recall of a subsystem is the

percentage of entities in the subsystem (of expert’s mental model) that are also

in the subsystem according to the clustering tool.

• MoJo measures the distance between the two decompositions (decomposition

by the software and the one done by an expert) of a software system by

calculating the number of operations needed to transform one decomposition

into the other. The transformation process is accomplished by executing a

series of Move and Join operations.

Both the measurements described above only consider the assignment of source

code components to clusters as the only criterion for similarity. The Edge

similarity measurements also take into account the relations between the

components as well.

2.7. Related Work

The use of data mining for system comprehension, and eventually for software

maintenance has been considered in the past. Considerable amount of experiments

have been conducted, often resulting in notable results. Some of the work done in this

field is summarized below.

[20] [21] approaches addressed C/C++ and Java code respectively. These systems

aimed at understanding low/medium level concepts and relationships involving

components at class and function level.

The basic steps followed by these two approaches are:

• Definition of an input model, to extract code and populating a database.

• Clustering application is then applied to the pre-processed data.

• Result evaluation (comparison of the result with experts).

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

30

[20] uses functions, classes, function-parameters and member data as entities to be

clustered for C/C++ programs. Similarly [21] uses classes, packages, functions, and

function parameters as entities to be clustered for java programs.

There are few shortcomings of the above two approaches. Both of them use very few

attributes to be used for function or class clustering. There are many other features of

functions and classes that need to be considered in order to enhance the functionality

of the clustering process. (These features are discussed in later chapters of this report).

Furthermore, [21] Uses a commercial clustering tool rather then custom designed

algorithms.

[14] deals with clustering C/C++ source code. It uses functions as program entities for

clustering purposes. The attributes used for calculating similarity between functions

are: the use of global variables, function local variables, function parameter and return

types.

This project uses many of the algorithms mentioned in this work with very few

changes. All the algorithms devised in [14] are mentioned in the Appendix II.

[22] Uses a hill-climbing algorithm, trying to minimize an object function that

subtracts the average “inter-connectivity” (Bunch’s measure of coupling) of the

partition to average “intra-connectivity” (Bunch’s measure of cohesion). [23] Propose

an approach, where architectural design recovery is based on design descriptions that

are provided by the user in the form of queries. A language AQL (architectural query

language) was formalized for this purpose.

[24] Present an approach for the evaluation of dynamic clustering. One of the main

features of dynamic dependency graphs is that they are weighted. Although weights

can be assigned to static dependencies as well, the variance of dynamic weights is

significantly larger. This experiment attempts to evaluate the usefulness of providing

dynamic dependencies as input to software clustering algorithms. Both static and

dynamic dependencies are provided as an input to the clustering algorithms and the

results produced by them are compared.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

31

[17] Is a pattern-based software-clustering algorithm that attempts to recover

subsystems commonly found in manually created decompositions of large software

systems.

[25] Proposes a “shared neighbors” technique in order to capture items that appear

commonly in software systems, also the “maveric analysis” enable the clustering tool

to refine a partition by indicating components that happen to belong to wrong

subsystem, and placing them in the correct one.

The clustering tool developed for this project resembles [20] [21] and [14] with

considerable improvements. There are significant amount of changes made to the

input model in order for this clustering tool to perform better and secondly unlike the

[21], this clustering tool uses a custom designed clustering algorithm instead of

merely using a commercial tool.

In its future work, [20] suggests the use of weights for attributes to reflect their

relative importance. The use of weights has been incorporated in this work in order to

signify the relative importance of the attributes.

This work uses the attributes used by [14] (for function clustering) along with few

new ones, which include function properties and function calls. The details of which

are given in the design and implementation phase of the project. In addition to that,

classes are also used as program entities for clustering, in order to make the tool more

effective for object oriented software, as most of the object oriented programs use

classes, and classes can encapsulate a single specialized functionality, perform a

cohesive specialized task (the abstraction level may be higher, as compared to the

functions), and are clearly defined with in a program.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

32

3

 Requirement Analysis

Software requirements express the requirements and constraints on a software product

that contributes to the solution of a problem in the real world. The Requirements

Gathering is a very important phase of any software product. This involves various

techniques like “interviewing” or “market analysis” and so forth. In case of the

clustering tool, the author has a well defined task with a set of fully elaborated

requirements. Mostly, the requirements are collected through discussion with the

project supervisor. However, to make the tool more useful and user-friendly,

requirements have been collected from various discussion groups. The scope of the

project has been continuously revised and changes have been made in it during the

project design and implementation phase to enhance the functionality and usefulness

of the project.

The aim of this project is to develop a clustering tool that is able to decompose a

software code into meaningful clusters. The tool will try to offer ways of

understanding and improving the source code. The design of the tool allows it to

perform cluster analysis on the code written in many different languages (for example

C++, C#, Java and so on) with little or no changes. The project is about producing a

tool for automated approach to program understanding. Therefore it is assumed that

the user has no expert knowledge of the program being analyzed.

A detailed description of requirements including functional and non functional

requirements is given in this section.

3.1 Functional Requirements

Functional requirements capture the intended behavior of the system. This behavior

may be expressed as services, tasks or functions the system is required to perform

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

33

[26]. The functional requirements of this project are: (The functional requirements are

presented in the descending order based on their priority for this project).

1. Specification of the input model

It involves defining an input model needed to extract data from the source code

and populate a database. This is concerned with the specification of program

entities (functions, classes and so on) and their attributes. Program entities must

have several attributes that provide a basis for measuring similarity between

entities.

The input model must be able to satisfy the following requirement that could lead

to satisfactory performance of the clustering methodology [14].

• The entities defined should be homogeneous in nature, thus allowing for

description by a common set of attributes. This would facilitate entity

comparison by use of their attributes, which is the basis of cluster analysis.

• Entities must have a sufficient number of features to provide informative

description about them and also present a means of comparison among the

entities. A very small number of features may result in providing very little

information content and possibly leading to deceptive conclusion. On the

other hand (unnecessarily) increasing the specificity would lead to more

detailed description of the entities but would lead to less effective cluster

analysis.

• The attribute values of the entities must be clearly defined for any given

program. Additionally, the definition of an entity must be universally

applicable to programs in order for the methodology to be widely

effective. Entities, attributes and their values must be easily detected.

• The choice of entities should be such that when the program is abstracted

as a collection of entities, an appropriate majority of the program code is

associated with an entity. This ensures that the majority of the program is

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

34

covered by the analysis, even though the analysis may show that some

program entities do not belong to a subsystem.

The input model should be defined in such a way that it can be easily applied to

many programming languages (like java, c# and so on.) with little or no changes.

2. Specification of the similarity metrics

The similarity metric determines the degree of similarity between program

entities. The choice of a proper similarity metric can have more influence on the

result then the clustering algorithm itself [1]. Since similarity is fundamental to the

definition of a cluster, a measure of the similarity between two entities drawn

from same feature space is essential to the clustering algorithm.

Because of the variety of feature types, scales, and difference in their relative

importance, special care should be taken in specifying the similarity metric. The

similarity metric should be customized in order for it to be best suited for the

project’s requirements (That is, the similarity metric should clearly and correctly

define similarities and difference among the program entities that are being

populated in the database). The main requirements regarding similarity metrics are

[14].

• The similarity metric must be suitable for comparison for binary,

numerical and categorical data, as these are the types of attributes largely

predominant in a source code application domain.

• The similarity metric must take into account the relative importance of

attributes, as the presence of some features may be more significant than

the presence of others.

• The similarity metric must consider the distribution and rarity of a feature

throughout the whole set of entities.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

35

• The similarity metric must normalize measure of similarity taking into

account the probability of a match between attribute values of two entities.

This is because the significance of a match on an attribute depends on the

characteristics of the complete set of attributes.

3. Specification of the clustering algorithm

The clustering algorithms actually group the program entities into meaningful

clusters, depending on the similarity values provided by the similarity metrics.

The main requirements for the clustering strategy are as follows:

• The clustering technique must create several solutions to the problem, as

apposed to a single clustering distribution. Ideally it should form clusters

incrementally so that if the eventual result is not correct to any suitable

extent, then the exact step for where the results started to deviate from the

original solution can be pin pointed.

• The clustering technique must not require the final number of clusters to

be specified.

• The clustering technique must not rely on an initial partitioning to be made

to the entities by the user, as this is only feasible when the user has some

idea of the nature of the required clustering. Furthermore, the initial

partition may influence the final result in an undesirable manner.

4. Actual representation of the system

It is the one of the most important requirement for the clustering tool. The

clustering tool should actually represent the system (and not the ideal view of the

domain for example). Ideally the results of the clustering algorithm should match

the decomposition of the software presented by an expert.

5. Design

Clustering should reflect a good design, a design that makes sense to the software

designer, that is, the tool should extract modules that implement known concepts.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

36

6. Ability to handle different types of attributes

Many algorithms are designed that work well on particular type of data (for

example, numerical data) only. However in this project, which involves source

code, the clustering tool is required to handle other different types of data as well,

such as binary, categorical (nominal), and ordinal data, or mixtures of these types

of data.

7. Insensitivity to the order of input records

Some clustering algorithms are sensitive to the order in which the input data is

presented to them. They behave differently and produce different results (clusters)

when given the same data in different order. The requirement is to develop a

clustering tool that produces the same result regardless of the order in which the

data is being provided.

8. High dimensionality of the input data

Most Clustering algorithms generally work well on low dimensional data, that is,

data items containing fewer (2 or 3) attributes. In the case of this project an item

can have several attributes, depending on the structure and functionality of the

item. (For example, if a class is taken as an item or an entity, it can have several

attributes like “classes it inherits from”, its “protected data members” “private

data members” and “public data members”, its “public “ “private” and “protected”

member functions and so on). Therefore the challenge for the clustering algorithm

in this work is to effectively handle data items in high-dimensional space.

9. Prescribed Methodology

The software should aid the user to follow step-by-step data mining methodology

to help avoid spurious results. The tool should form clusters incrementally, which

will help the user to detect (in case of a problem) where the solution starts to

deviate from the actual “expert decomposition”.

10. Reporting

The output of the data-mining tool should be presented as detailed results in

variety of ways (textually and graphically) that will help in understanding the

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

37

system in a better way. The tool should provide summary as well as detailed

results.

11. Model exporting

It will really be facilitating that the clustering tool provides ways to export the

results produced by it for on going use (for example, C program, SQL and so on.).

12. Model Validation:

Model validation and verification are important tasks in any clustering

methodology. The tool should provide model validation in addition to model

creation. There are number of techniques that should be used to validate the model

produced by the clustering software.

13. Data Filtering

The tool should allow the selection of subsets of the data based on user-defined

selection criteria.

14. Error reporting

Meaningful error reporting is important for the clustering tool. The software

should report error messages in a way that should help in the debugging process.

15. Handling noise

It would be better to produce an algorithm that can detect and handle noisy data,

so that the incorrect data may not result in the poor quality of the clusters being

produced.

16. Data cleansing

The tool should allow the user to modify spurious values in the data set. The tool

will be dealing with the entities extracted from the source code, therefore the

quality of the data will be the primary requirement of the software.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

38

3.2 Non-Functional Requirements

Non-functional requirements are constraints on the services and functions offered by

the system. The non-functional requirements of this project are: (The non-functional

requirements are presented in the descending order based on their priority for this

project).

1. Robustness

The tool should be able to run consistently without crashing. The tool should not

require monitoring and intervention by the user.

2. Cluster Size

Clustering should avoid solutions having many singleton clusters or only one huge

cluster. Since hierarchical clustering algorithm is used for clustering in this project

therefore special care must be taken in order to avoid situations where the

algorithm tend to create one big cluster that grows regularly along the clustering

process and drag all the entities to it one after the other, or the situation in which

the algorithm tend to create very small clusters and then suddenly cluster all of

them into one cluster at a higher height for a given similarity metrics.

3. Automation

Many clustering algorithms require some type of user input, such as defining the

initial cluster, mentioning the desired number of clusters and so on. The clustering

tool developed for this project should be able to work well without requiring the

user to have any domain knowledge of the system to be clustered.

4. User Interface and learning curve

The user interface should be easy to navigate and uncomplicated, and the result

should be produced in a meaningful way. Similarly the tool should be easy to

learn and easy to use correctly.

5. Stability

The clustering tool is stable, if the clusters obtained by it are not significantly

affected by slight modification in its input, that is, the software system in question

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

39

[27]. In other words if there are slight changes in the software (being clustered),

then the clusters obtained as a result should not be significantly different to the

clusters obtained previously. The software tool should be checked for stability, so

that the results produced by the tool can be of practical use.

6. Scalability

A clustering algorithm should be scalable. There are many different clustering

algorithms that work well with the small data sets containing few items, but as the

amount of the data increases their efficiency is severely affected. Numerous tests

should be made on the clustering tool in order to check its efficiency and its ability

to handle large data set.

7. Interpretability and usability

The clustering tool should be able to produce results in a way that are easily

interpretable, comprehensible and usable. In the case of software comprehension

this property of the clustering algorithm is essential, as the clustering tool should

be able to present results that are understandable to both, an expert user and a

novice.

8. Efficiency

A data-mining tool is efficient if the results it produces are in reasonable amount

of time, its memory and hard disk space requirement are reasonable relative to the

data size.

The clustering tool should be efficient in order for it to be useful in any actual

maintenance work.

9. Adaptability

The clustering tool should be adaptable to the different needs posed by different

users. For example it should help a novice understand the overall system, and help

an expert to assert the consequence of a modification in the code. In addition the

tool should be adaptable to different software, programming languages, and so on.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

40

4

Design

This chapter gives a detailed explanation of the design of the software, the database,

and the input models used for clustering of the source code. All the aspects of the

software are discussed in details along with the UML and block diagrams for clear

understanding of the project.

4.1 Input Models

One of the main challenges of this work is the definition of the input models that

should be derived from a program code. Entities must be defined in such a way that

provides useful and meaningful information for the clustering algorithms to perform

their tasks.

Classes and functions in a source code are selected as entities to be clustered. They

fulfil most of the requirements expected of the input model for code clustering.

The specification of the input models for both functions and classes is given in the

sections below.

4.1.1 Function Input Model

Functions are considered to be an appropriate option to perform code clustering as

they tend to encapsulate a single functionality, perform specialized cohesive tasks and

they are clearly defined within a program.

The next step now is to derive attributes with which to describe this program entity.

Figure 4.1 depicts the diagram for the proposed function input model.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

41

Global Variables

1. 1. ID

2. Name

3. Type

4. IsUserDefined

5. Complexity (No. of data items present in it)

6. Usage (No of functions accessing the global variable)

 Return Types

1. ID

2. Name

3. Type

4. IsUserDefined

5. Complexity (No. of data items present in it)

6. Usage (No of functions having this return type)

 Function Properties

1. ID

2. Name

3. Category (static etc)

4. Modifier (IsPublic, IsPrivate, IsProtected.)

5. No. Of Parameters

6. Class Name (the class in which the function is defined)

7. Source Files (the file containing the implementation of

the function).

 Parameter Types

1. ID

2. Name

3. Type

4. IsUserDefined

5. Complexity (No. of data items present in it)

6. Usage (No of functions having this parameter type)

 LocalVariable Types

1. ID

2. Name

3. Type

4. IsUserDefined

5. Complexity (No. of data items present in it)

6. Usage (No of functions having this local variable type)

Uses Uses

Uses Uses

Calls

 Figure 4.1 Function Input Model.

The similarity between functions is determined, using the attributes shown in the input

model.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

42

In brief, the similarity between the functions is calculated on the basis of

1. The function properties.

2. The functions use of global variables.

3. Use of the local variables.

4. Return types.

5. Parameter types.

6. The functions they call.

The rationale behind this selection is given in the following:

1. Functions use of global variable

The usefulness of a global variable as an attribute depends on its nature, which is

largely influenced by its type. The most effective global variables are likely to

belong to the user-defined types. The reason behind this statement is that most

user-defined types are specified to model a particular aspect of the problem

domain, and the functions that use these are likely to be associated with this aspect

of the problem domain, indicating the membership of a common sub-system. Thus

the differentiation whether the type of an attribute is user-defined or pre-defined is

considered to be necessary and is also used for other types of attributes, where

applicable.

2. Function use of local variable

The idea behind using local variables is that, the overall purpose of a function can

be predicted by examining the nature of the data items on which it operates. The

nature of the data items can be determined by their types. It follows that the

functions that operate on several common variable types are likely to have similar

purpose and hence are likely to belong to a same subsystem.

3. Function parameter types

The concept behind using parameter types for calculating function similarity is

same as that for local variables. However it will not be useful for functions that do

not have parameters.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

43

4. Functions return types

It follows the same concept as that for parameter types.

5. Function calls

Function calls may also provide vital information in predicting the similarity

between functions. It is hypothesised that the functions calling several common

functions are likely to have a similar purpose, hence may belong to the same

subsystem.

6. Function Properties

The properties of functions like their names, Category (static and so on), modifier

(like Public, Private, Protected), the class they belong to and the source file in

which they implemented may play an important role in determining the

similarities between any two functions. Therefore these properties were added to

the input model in order to determine their importance in understanding the

software system.

4.1.2 Class Input Model

Other entity used for clustering is the classes defined within the program. Figure 4.2

depicts the diagram for the proposed class input model.

 Class

Class_ID

Class_Name

Inherets

Inherits_From

Header File

Has public member functions

Has private member functions

Has protected member functions

Has public member data

Has private member data

Has protected member data

 Members

Member_ID

Member_Name

Member_Type

Is_User Defined

Complexity

Uses

 Figure 4.2 Class Input Model.

The similarity between the classes is on the bases of

1. Class Properties.

2. Class Member Variables.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

44

1. Class Member Variables

It is hypothesised that the classes having similar member data types are likely to

have similar purpose and hence may belong to a same sub-system.

2. Class Properties

The properties of class like their name, inheritance status, the class from which

they inherit, the header file in which they are defined, their public, private,

protected members and functions play an important role in determining the

similarities between any two classes. Therefore these properties are chosen to be

catered for when determining the similarity between classes.

4.2 Similarity Metrics

This section defines the formulas and the equations that are used to calculate

similarity between program entities (that is, functions and classes), on the basis of

their attributes.

4.2.1 Similarity Principles

There are three principals on the basis of which the similarities between entities are

calculated [14]. They are

1. Basic Principle

This principle uses the concept of Jaccard coefficient (explained in the

background study) to calculate the similarity between two entities.

This principle basis the similarity between the two entities on the number of

attributes common between them. The greater the number of common attributes

between two entities (relative to their total number of attributes) the greater is the

similarity between them.

2. Usage Principle

Usage principle is based on the relative importance of the attributes of the entities

that are compared. The importance is based on the frequency-of-use of the

attributes. Some attributes are more common in all the entities as compared to

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

45

others. For example, there may be some variables that are used by many functions

in a program than the others. In that case the variables that are less common in the

program are given more weight then the variables that are more frequently used.

3. Complexity Principle

This principle is based on the relative importance amongst attributes, and depends

on the type of the variables on which an attribute is based. The exact importance

of any variable type can only be known to the programmer and therefore cannot

be determined without the help of an expert. Therefore the concept used here is to

give greater significance to more specialized or complex types. That is, greater the

number of data items present in any complex variable type, the greater is its

significance.

4.2.2 Function Similarity Metrics

The overall formula that is used for calculating the similarity between the two

functions is.

Function Similarity STOTAL:

[WGV.SGV + WFC.SFC+ WLV.SLV + WPU.SPU + WFP.SFP + FRT.SRT]

 [WGV + WFC + WLV + WPU + WRT + WFP]

Where:

WXX stands for the weight factor that is applied to show the relevant importance of the

metrics specified by SXX. These weights are provided by the user as there importance

may vary from program to program and they also help in the evaluation and testing

purposes. The software sets the default values in case the user does not fill the

weights. The values of all the similarities are between 1 and 0 inclusive. Similarly the

value of STOTAL is also between 1 and 0 and the division factor is applied just for this

purpose.

The explanation of the terms used in the above equation is given below.

SGV = Similarity based on the use of global variables.

SFC = Similarity based on function-calls.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

46

SLV = Similarity based on local variable types.

SPT = Similarity based on parameter types.

SRT = Similarity based on return types.

SFP = Similarity base on functions properties.

As previously mentioned, the similarities based on global variables, local variables,

parameter types and return types are calculated by using equations very similar to

[14] with minor changes. These equations are mentioned in the Appendix II.

Similarity Based on Function Properties (SFP)

The equation used for calculating the similarity between the two functions based on

the function properties is given below.

SFP = afp / afp + bfp + cfp.

Where

afp = Number of common properties among the functions.

bfp, cfp = Number of dissimilar properties among the functions.

This similarity is based on basic similarity principle (mentioned in 4.2.1).

Similarity based on function-calls (SFC)

Similarity based on function-calls is given as:

 SBasic + Susage

 SFC =

 2

Where SBasic and Susage implement basic and usage similarity principles respectively.

The division factor is to keep the similarity value between 0 and 1.

Basic similarity metric (SBasic) is given as

SBasic = afc / afc + bfc + cfc.

Where

afc = Number of function-calls made by both the functions being compared.

bfc , cfc = Number of function-calls not common in the two functions being compared.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

47

This metric gives an elementary indication of the similarity between any two

functions. It is simply the ratio of the function-calls common to the two functions

(That is, the functions being compared) to the total number of their function-calls.

A similarity based on Usage principle is given as:

 
fc

1

a
 2 / No. of functions calling the particular function.

Susage =

 afc

Thus if a function is called predominantly by the two functions being compared, then

it contributes more to the similarity metric as compared to the function that is used by

many other functions. If a function is called exclusively by the two functions that are

being compared, then this function will produce maximum contribution to the above

metric.

4.2.3 Class Similarity Metrics

The overall formula that is used for calculating the similarity between the two classes

is.

Similarity of Classes STOTAL:

 [WMV.SMV + WCP SCP]

 [WMV + WCP]

Where:

WXX stand for the weight factor that is applied to show the relevant importance of the

metrics specified by SXX. The Values of the entire S is between 1 and 0 inclusive,

similarly the value of STOTAL is also be between 1 and 0 and the division factor is

applied exactly for this purpose.

SMV = Similarity based on member variables type.

SCP= Similarity based on the class properties.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

48

Similarity Based on Class Properties (SCP)

The equation used for calculating the similarity between the two classes based on the

class properties is given below.

SCP = aCP / aCP + bCP + cCP.

Where

aCP = Number of common properties among the classes.

bCP, cCP = Number of uncommon properties among the classes.

This similarity is based on basic similarity principle mentioned above.

Similarity based on Member variable types (SMV)

Similarity between classes based on member variable types can be calculated as:

SMV = WUMV.SUMV + WPMV.SPMV / WUMV + WPMV.

Where:

WXX stands for the weight factor that is applied to show the relevant importance of the

metrics specified by SXXX.

SUMV = Similarity based on user defined member variable type.

SPMV = Similarity based on predefined member variable type.

User Defined member variable types (SUMV):

Similarity for user-defined variable types is given as

 SBasic + Scomplexity + Susage

SUMV =

 3

Where SBasic, Susage and Scomplexity implement basic, usage and Complexity similarity

principles respectively.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

49

SBasic = aumv / aumv + bumv + cumv.

Where

aumv = Number of (user-defined) member variable types used by both the classes

being compared.

bumv , cumv = Number of (user-defined) member variable types not common in the two

classes (The classes being compared).

Similarity metric based on complexity principal is given by

 
umv

1

a
No. of entities in a MVT / max. No. of entities in a MVT.

SComplxity =

 aumv

[MVT = Member variable type]

The contribution of an attribute to this metric is higher if the attribute is based on a

more specialized type, that is, the one with more data members.

Similarly similarity based on usage principle is

 
umv

1

a
 2 / No. of classes using the member variable type.

Susage =

 aumv

Pre-Defined member Variable types (SPMV):

Similarity for Pre-defined variable types is given as

 SBasic + Susage + Scomplexity

SPMV =

 3

Where SBasic, Susage and Scomplexity implement basic, usage and Complexity similarity

principles respectively.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

50

SBasic = apmv / apmv + bpmv + cpmv.

Where

apmv = Number of (pre-defined) member variable types used by both the classes being

compared.

bpmv , cpmv = Number of (pre-defined) member variable types not common in the two

classes (That is, the classes being compared).

Similarity metric based on complexity principal is given by

 
pmv

1

a
No. of entities in a MVT / max. No. of entities in a MVT.

SComplxity =

 apmv

[MVT = Member variable type]

Similarly similarity based on usage principle is

 
pmv

1

a
 2 / No. of classes using the member variable type.

Susage =

 apmv

4.3 Clustering Algorithms

Hierarchical (agglomerative) clustering algorithms are incorporated in the clustering

tool to perform the clustering task in this project. There are different advantages of

agglomerative hierarchical clustering algorithms over others, which make them a

better choice for performing clustering in this type of application.

• Hierarchical clustering algorithms create several solutions to the problem,

as opposed to a single cluster distribution.

• They form clusters incrementally, as opposed to a single step. The steps

involved in the incremental formation of the clusters are small which helps

in the debugging of the process in case the clustering algorithm does not

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

51

produce a suitable outcome (for example, it is easy to detect where the

algorithm actually start to deviate from the actual result given by the

software expert).

• Hierarchical clustering algorithms are unsupervised, they do not need any

extra information such as some initial partitioning being made by the user

or the mentioning of the number of clusters expected.

4.4 Block Diagram

Figure 4.3 shows the block diagram (of this project), that explains the overview of the

system and indicates the overall design and functionality of the software. A brief

description of this diagram is as follows:

The user interface provides the user with plenty of options (these options are

discussed in the explanation of the user interface in the latter sections). At first the

user has to select the database containing the (function or class) input model. The user

can then choose to perform either function or class clustering (one at a time). Then

comes the similarity matrices. The similarity between functions or classes (depending

on the user selected options) is calculated by using the similarity principles and

equations mention in the previous sections. These similarities are then passed on to

the clustering algorithms. As mentioned before, agglomerative hierarchical clustering

algorithms are used for clustering purposes. Single-Link clustering and Complete-

Link clustering will calculate similarities between the clusters (see section 2.5.3 for

further details). The clusters produced are then passed on to the module that is

concerned with the display and storage of the results. The results are stored in text

files, the details of which are explained in the latter sections.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

52

Text Files

Clusters

Calculated

Similarities

User

Interface

View

Results

Select Function Clustering Options

Select Class Clustering Options

Select Database Containing Function Input Model

Class Input

Model

Function Input

Model

Apply Similarity Metrics

➢ Basic Principle

➢ Complexity Principle

➢ Usage Principle

Select Database Containing Class Input Model

Apply Clustering Algorithms

➢ Single-Link Clustering

➢ Complete-Link Clustering

Results

Generate And Store Results

 Figure 4.3 Block Diagram (Code Clustering Application)

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

53

4.5 Use Case Diagram

 Figure 4.4 shows the Use case diagram of the project.

As mentioned previously the user has to select the database which contains the

function or class information. The database contains the information about the

functions and the classes in the format shown previously in the input models. The

actual data fed into the database is through the parser which is not the part of this

project. The code to be clustered is first parsed by the parser and the information is

fed into the database with the help of this parser. The code clustering application then

uses this information to perform clustering. Although the parser is not fully capable of

parsing all the information need by the input model, there are some database operation

that are done manually to fill all the information in the database, according to the

input model created by the author.

The user now has the option to perform function and class clustering. There are

numerous options given to the user in order to get the desired results. All these

options are discussed in details, in the section dealing with the user interface of this

project.

After the clustering process the user can see the results and then evaluate the

clustering process by comparing its results with the results given by the expert.

The output generated by the clustering application is in the form of text files.

Although these files contain thorough information of each step performed during the

clustering process. It still is much easier to understand the process, if there is some

sort of visualization tool that converts the text file into a visual form.

Generate Dendogram is another application that uses the text file generated by this

application and then generates a visual form of the clustering process indicated in the

text file.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

54

Parser

User

Generate Dendogram

 Figure 4.4 Use Case Diagram (Code Clustering Application)

 Code Clustering Application

Cluster Classes

Cluster Functions

Evaluate

Generate and

Store Results

Perform Clustering

Select Database Data base

Operations

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

55

 Figure 4.4a Use Cases(Code Clustering Application)

 USE CASES

Select Database This use case is activated when the user wants to select the database

which contains the parsed information about the software to be clustered. The software

tool then uses this data base as a source of information for clustering the software entities.

Cluster Classes This use case is activated when the user wants to perform Class

clustering. Numerous options are provided to the user in order to perform clustering

based on different similarity functions and principles.

Perform Clustering This use case is extension to the Cluster Classes and Cluster

Functions use cases, and is responsible for actually performing the clustering operations

on the basis of principle and similarities calculated by these two use cases.

Data base Operations This use case extracts the records from database and provides the

required information from the database.

Cluster Functions This use case is activated when the user wants to perform function

clustering. Numerous options are provided to the user in order to perform clustering

based on different similarity functions and principles.

Generate and Store Results This use case actually saves all the resulting data in the

format that is suitable for other applications to perform the visualization of the results

produced.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

56

 Figure 4.4b Actors (Code Clustering Application)

4.6 Class Diagram

Figure 4.5 shows the class diagram of the entire project. All the major classes and the

relationships between them are indicated. The class responsible for user-interface

(Form) is shown only to indicate its presence. The details and the relationships of this

class are not shown in order to make the diagram simpler and easy to understand.

Similarly the data type “user provided info” contains all the selections made by the

user while interacting with the interface of the program. It is a very large data

structure, the complete details of which are mentioned in the implementation section.

Its details are not shown in this diagram for simplicity purposes.

 ACTORS

User It represents the end user of the clustering tool.

Parser It represents another application that is actually used to partially fill the database

for the code clustering tool. It is a parser that is used in order to parse the software (to be

clustered) and to provide the information (in the database) required by the clustering

application. Although the parser is used to partially fill the database, the rest of the work

has to be done manually. This is one area where further work needs to be done

Generate Dendogram This is another application that uses the output provided by the

clustering tool and provides a visual form of the output, in order to help better understand

the clusters produced.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

57

+Start() : int

+UserProvInfo : UserProvidedInfo

Central Dispatcher

+Complete-linkClusterg() : void

+Single-linkClustering() : void

+ClusterFormation() : void

+FindMaxSimilarityValue() : void

+GenerateClusters()

+InitializeClusters()

+UserProv : UserProvidedInfo

-SimilarityMetrics

Clustering

+ComparisonOfClassAttributes() : void

+ComparisonBasedOnMemberVariables() : void

+CalculateClassSimilarity() : void

+InitializeData()

-TotalNumOfClasses : int

-MaxNoOfMemberVariables : int

-DatabaseManager

-Cct : CommonComparisonTasks

ClassComparison

+InitializeSimilarityMetrics()

+UpdateSimilarityMetrics()

+GetSimilarityMetrics()

-SimilarityMetricsArray

-SizeOfSimilarityMetrics

SimilarityMetrics

+OpenDatabaseConnection()

+CloseDatabaseConnection()

+ExecuteQuery()

+GetOleDbCommandPtr()

+GetDatabaseConnection()

-DatabaseConnection

DatabaseManager

+ComparisonOfFunctionAttributes()

+ComparisonBasedOnGlobalVariables()

+ComparisonBasedOnLocalVariables()

+ComparisonBasedOnFunctionCalls()

+ComparisonBasedOnParameterTypes()

+CalculateFunctionSimilarity()

+ComparisonBasedOnReturnedValueTypes()

+InitializeData()

+UserProvInfo : UserProvidedInfo

+SimilarityMetrics

-TotalNumOfFunctions : int

-MaxNoOfGlobalVariables : int

+MaxNoOfParameterTypes : int

+MaxNoOfReturnTypes : int

+MaxNoOfLocalVariableTypes : int

-DatabaseManager

FunctionsComparison

+ComparisonOfCodeBlockAttributes() : void

+CommonComparisonFunction() : void

+PerformCommonComparisons() : double

+GetUsageOfAttribute() : double

+GetComplexityOfAttribute() : double

+SimpleTableCompareFunction() : int

+UserProvInfo : UserProvidedInfo

+SimilarityMetrics : int

-MaxGlobalVarComplexity : int

-MaxLocalVarComplexity : int

-MaxReturnTypeComplexity : int

-MaxParameterComplexity : int

-MaxClassMemberComplexity : int

-MaxFuncComplexity : int

-DatabaseManager

CommonComparisonTasks

+Q_GetAttributeIDsUsedByBlockCode()

+Q_GetAttributeIDsUsedByBlockCode()

+Q_GetComplecityOfAttribute()

+Q_GetUsageOfAttribute()

+Q_GetTableSubset()

QueryMaker

«datatype»

UserProvidedInfo

+PrepareFileWrite()

+WriteToFile()

+FileClose()

+Flush()

-FileStream

-StreamWriter

FileHandler «uses»

«uses»

«uses»

«uses»

«uses» «uses»

«uses» «uses»

«uses»

«uses»

«uses»

Form

 Figure 4.5 Class Diagram

The details of all the classes, their relationships and their functionalities are mentioned

in the implementation section.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

58

4.7 Sequence Diagram

The figure 4.6 shows the sequence diagram that show the flow of the application, if

the user chooses to perform function clustering on the basis of functions attributes,

their use of global variables, local variables, parameter types, return types and the

functions they call. The classes and the functions responsible for user interface are not

shown in order to make the diagram much simpler, and easy to understand. By

looking at the diagram it becomes obvious that many of the steps are repeated for

every attribute, therefore an overview of all the steps is given in order to make the

sequence diagram easier to understand. (All the names mentioned in inverted commas

in the paragraph below are names of the classes taking part in the sequence diagram).

At first the “DatabaseManager” class opens the database connection (on the request of

“CentralDispatcher”), in order to get the function information from the database. The

“SimilarityMetrics” then initialise the array that will contain the similarities between

all the function pairs.

The “CentralDispatcher”, now initiates the “FunctionComparison” class to perform

the similarity comparisons and clustering tasks.

The “FunctionComparison” class dictates the “CommonComparison” class to

calculate similarities between functions, by using the similarity principles and

equations mentioned in the previous sections. After calculating the similarities, the

information is passed on to the “Cluster” class to perform the clustering operation.

All the queries made to the database are through the “QueryGeneratorClass”, and the

Queries are executed by the “DatabaseManager”.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

59

FunctionComparison CommonComparisonCentralDispatcher Database Manager Clustering SimilarityMetrics QueryGenerator

Q_GetAttributeIDsUsedByBlockCode

ExecuteQuery

UpdateSimilarityMetrics

DatabaseConnection

OpenDatabaseConnection

InitializeSimilarityMetrics

CalculateFunctionSimilarity

Query

Results

ComparisonOfFunctionAttributes

ComparisonOfCodeBlockAttributes

Simple Table Comparison

CommonComparisonFunction

CompBasedOnGlobalVar

BasicComparison

GetUsageOfAttribute

Q_GetAttributeIDsUsedByBlockCode

ExecuteQuery

UpdateSimilarityMetrics

Query

Results

GetComplexityOfAttribute

Q_GetComplecityOfAttribute

Query

Q_GetUsageOfAttribute

Query

ExecuteQuery

Results

ExecuteQuery

Results

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

60

FunctionComparison SpecializedComparisonCentralDispatcher DatabaseManipulator Clustering SimilarityMetrics QueryGenerator

CommonComparisonFunction

ComparisonBasedOnLocalVariables

BasicComparison

GetUsageOfAttribute

Q_GetAttributeIDsUsedByBlockCode

ExecuteQuery

UpdateSimilarityMetrics

Query

Results

GetComplexityOfAttribute

Q_GetComplecityOfAttribute

Query

Q_GetUsageOfAttribute

Query

CommonComparisonFunction

CompBasedOnParameterTypes

BasicComparison

GetUsageOfAttribute

Q_GetAttributeIDsUsedByBlockCode

ExecuteQuery

UpdateSimilarityMetrics

Query

Results

GetComplexityOfAttribute

Q_GetComplecityOfAttribute

Query

Query

Q_GetUsageOfAttribute

ExecuteQuery

Results

ExecuteQuery

Results

ExecuteQuery

Results

ExecuteQuery

Results

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

61

FunctionComparison CommonComparisonCentralDispatcher Database Manager Clustering SimilarityMetrics QueryGenerator

CommonComparisonFunction

BasicComparison

GetUsageOfAttribute

Q_GetAttributeIDsUsedByBlockCode

ExecuteQuery

UpdateSimilarityMetrics

Query

Results

GetComplexityOfAttribute

Q_GetComplecityOfAttribute

Query

Q_GetUsageOfAttribute

Query

ExecuteQuery

Results

ExecuteQuery

Results

ComparisonBasedOnReturnTypes

CommonComparisonFunction

BasicComparison

Q_GetAttributeIDsUsedByBlockCode

ExecuteQuery

Query

Results

GetComplexityOfAttribute

Q_GetComplecityOfAttribute

QueryExecuteQuery

Results

ComparisonBasedOnFunctionCalls

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

62

FunctionComparison CommonComparisonCentralDispatcher Database Manager Clustering SimilarityMetrics QueryGenerator

GetUsageOfAttribute

UpdateSimilarityMetrics

Q_GetUsageOfAttribute

Query

ExecuteQuery

Results

PerformClusteringBasedOnFunctionSimilarities

GetSimilarityMetrics

SmilarityMatric

GenerateClusters

CloseDatabaseConnection

UpdateSimilarityMetrics

 Figure 4.6 Sequence Diagram

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

63

4.8 Database Design

Access database is used to implement the function and class input models explained in

section 4.1. This section explains the design and relationships of the database tables

that are used as a data source by the application to perform code clustering.

4.8.1 Function Input Model

Figure 4.7 shows the relationship diagram of the function input model implemented in

the access database.

 Figure 4.7 Function Input Model (Access Database)

The tables “FuncUsesLv”, “FunctionsCalled”, “FuncUsesGV”, “FunctionUsesParm”

and “FunctionReturns” are used as bridge entities that implement the “many-to-many”

relationship between two tables.

Most of the tables contain similar fields, therefore the design of only a couple of

tables is shown in order to explain the fields that were used to represent each of the

attribute.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

64

Figure 4.8 and 4.9 show the design-view of the FunctionProperties and

GlobalVariables tables respectively. The description of all the fields is given in the

description portion of the design.

 Figure 4.8 Design of the FunctionProperties Table.

 Figure 4.9 Design of the GlobalVariables Table.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

65

4.8.2 Class Input Model

Figure 4.10 shows the relationship diagram of the class input model implemented in

the access database.

Figure 4.10 Class Input Model (Access Database)

The table “ClassHasMembers” acts as a bridge entity that implements the “many-to-many”

relationship between the other two tables.

Figure 4.11 shows the design-view of the “ClassProperties” table. The description of all the fields

is given in the description portion of the design.

Figure 4.11 Design of the ClassProperties Table.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

66

5

 Implementation

5.1 Source Code Overview

A description of some of the important classes and their functions is given below. The

class diagram shows all the functions that the classes have but in this section the

author explains only the effects of some major functions. In the explanation the

classes and the functions responsible for the user interface are not discussed in great

details, as they are of little importance. Although screen shorts are shown in order to

show the wide range of options that the user has while using the software.

1. File Handler

The main purpose of this class is to write the results of the clustering algorithms to

a text file. The eventual output of the software is a step by step representation of

clusters formation in a text file. The text file is then used by another program, to

produce its graphical representation.

The File Handler class consists of three main functions

void PrepareFileWrite(String* FileName)

void WriteToFile(String *Str)

void FileClose()

These three functions are responsible for opening the text file, writing the

clustering results and then eventually closing it.

2. Clustering

This class actually performs the clustering operations. Only single-link clustering

and complete-link clustering are implemented due to lack of time. Major functions

of this class are:

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

67

void ClusterFormation(DatabaseManager *DbManager)

void FindMaxSimValue(int* row, int* column)

void SingleLinkClustering(int column1, int column2)

void CompleteLinkClustering(int column1, int column2)

void GenerateClusters(Int32 Cluster1, Int32 Cluster2, Single max)

The ClusterFormation is basically a central dispatcher for this class, it gets the

information about the choices made by the user and then calls the functions

according to these choices.

The FindMaxSimValue function detects the most similar clusters at any particular

instance. It detects the two most similar clusters at any particular stage and pass on

their IDs and their similarities to the clustering algorithms.

The main purpose of the GenerateClusters function is to setup the format in which

the results are written to the text file. The format is specifically chosen, so that the

output file generated is in the format which can be used by another program to

generate the graphical representation of the clustering process.

The SingleLinkClustering function actually performs the concept of single-link-

clustering. After getting the most similar clusters and their similarities from the

FindMaxSimValue function. This function combines the two clusters and updates

the similarities of all the clusters by using the concept of single-link-clustering

which is explained in the previous chapters.

The functionality of CompleteLinkClustering is the similar to that of

SingleLinkclustering but it updates the similarities of all the clusters by using the

concept of complete-link-clustering.

3. Central Dispatcher

It has only one function.

int Start(String* CodeType)

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

68

As the name of the class suggests, it is the central dispatcher for the application, it

is this function that actually manages flow of the application. It initiates different

operations depending on the input provided by the user.

4. Function Comparison

This class contains all the functions that setup the data and operations needed to

perform function clustering. It contains following major functions.

void ComparisonBasedOnFunctionProperties();

void ComparisonBasedOnLocalVariableTypes();

void ComparisonBasedOnParameterTypes();

void ComparisonBasedOnGlobalVariables();

void ComparisonBasedOnReturnedValueTypes();

void ComparisonBasedOnFunctionCalls();

Names of all the functions clearly indicate the operations they perform. They set

all the values to perform comparison between functions on the basis of function

properties, local variables types, parameter types, global variables, return types

and function calls respectively.

5. Class Comparison

This class contains all the functions that setup the data and operations needed to

perform class clustering. It contains following major functions.

void ComparisonBasedOnClassProperties();

void ComparisonBasedOnMemberVariableTypes();

These functions set all the values to perform class comparisons on the basis of

class properties and class member types respectively.

6. CommonComparisonTasks

This is the class that actually performs similarity measures. All the similarity

matrices and equations discussed in the previous section are implemented by this

class.

It has many functions but only few significant are discussed here, which are

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

69

void ComparisonOfCodeBlockAttributes(String *, String *, Single

Weight);

void CommonComparisonFunction(GeneralPerposeStruct *, Single

Weight);

Single PerformCommonComparisons(GeneralPerposeStruct *);

The ComparisonOfCodeBlockAttributes function calculates the similarities of

functions and classes based on their properties and writes the data to the similarity

metrics.

The CommonComparisonFunction calculates similarity between classes and

functions based on the rest of the attributes, that is, local variables, global

variables, function calls, return types and parameter types for the functions

entities, and member data types for the class entities. This functions calls

PerformCommonComparisons that calculate the similarities based on the three

principles, that is, Basic principle, Usage principle and complexity principle. Code

fragment for the PerformCommonComparisons is shown below.

Single

CommonComparisonTasks::PerformCommonComparisons(GeneralPerposeStru

ct * Gpc)

{

 if(CommonV != 0)

 {

 UnCommon = ((Gpc->NoOfVarUsedByCodeBlockA+Gpc-

 >NoOfVarUsedByCodeBlockB)-(2*CommonV));

 TotalV = CommonV + UnCommon;

 if(UserProvInfo->Complexity == true)

 Complexity = Complexity/CommonV; //Implementing Complexity

 Principle

 if(UserProvInfo->Usage == true)

 Usage = Usage/CommonV; //Implementing Usage Principle

 if(UserProvInfo->Basic == true)

 Basic = CommonV/TotalV; //Implementing Basic Principle

 if(UserProvInfo->Basic == true){Devisor++;}

 if(UserProvInfo->Complexity == true) {Devisor++;}

 if(UserProvInfo->Usage == true){Devisor++;}

 return ((Complexity+Usage+Basic)/Devisor);}

 else return 0;}

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

70

7. Similarity Metrics

This class manages the Similarity metrics array used by the application to store

similarities between all the entities. All the results after performing the similarity

measures are stored by this class in an array and it constantly maintains all the

updates in any similarity between entities.

Its major function is

void UpdateSimilarityMetrics(Single Weight, Single Size)

This function updates any changes in the similarity between functions or classes

after calculating new similarities.

The similarity metrics array is defined in this class as

Single SimilarityMetricsArray [,];

It is a two dimensional array that contains the similarity between functions or

classes.

8. Database Manager

As is clear from the name, this class maintains the opening, closing and access to

the database. All the queries are executed and managed by this class.

Its functions are

OleDbConnection* OpenDatabaseConnection();

void CloseDatabaseConnection();

OleDbDataReader* ExecuteQuery(String* Query, OleDbConnection*

ProgramDB);

OleDbConnection * GetDatabaseConnection();

There functionality of the functions is clear from their names.

9. Query Maker

This class actually generates the queries to the database. It gets the requirement

(the data needed for performing the similarity measures) and dynamically

generates the query that will help in getting the exact information from the

database that is required.

Its functions are

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

71

String* Q_GetAttributeIDsUsedByBlockCode(String *Attribute, Int32

ID)

String* Q_GetComplecityOfAttribute(String* Attribute, Int32 ID)

String* Q_GetUsageOfAttribute(String* Attribute, Int32 ID)

String* Q_GetTableSubset(String* TableName, Int32 ID, String*

Attributes)

These functions dynamically generate queries. The code of

Q_GetUsageOfAttribute is shown to indicate how the queries are generated

dynamically. This is one of the simplest query generator functions. Its code is

shown in order to help in better understanding of dynamic query generation

process.

String* Q_GetUsageOfAttribute(String* Attribute, Int32 ID)

{

 if(String::Compare(Attribute,"FunctionCalls",true) == 0)

 {

 return

 String::Concat("SELECT FunctionAttributes.No_Of_Func FROM

 FunctionAttributes WHERE (((FunctionAttributes.ID)=",

 ID.ToString(), "))");

 }

......}

10. UserInterface (Namespace)

As the name suggests, this namespace contains all the classes and functions

responsible for graphical user interface for the project. All the classes in this name

space inherit from the Form class (Form is one of the classes provided by .NET

framework for user interface purposes). These classes are discussed briefly in this

sub-section.

• Form1

This is the main class, for providing the core user interface facilities to the

user. The application starts by displaying a form (using this class) containing

majority of the options that the user can select in order to perform clustering.

The form that is initially displayed is explained the user interface section.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

72

• AdvancedOptionChecks and AdvancedWeightOptions

These two classes provide specialized options for more thorough results, and

for better evaluation of the software being examined.

• AboutBox

This class displays a dialog box that shows some general information about

the software.

• ClusteringProgressBar

This class indicates the progress made by the software (during the clustering

process) to the user.

11. UserProvidedInfo (DataStructure)

This is the data structure that contains all the information that the user can give in

order to calculate the similarity between functions or classes and the type of

clustering that is to be performed. The data structure along with the comments is

given below.

__gc struct UserProvidedInfo

{

bool ParameterTypes; //Whether parameter types should be

used //for calculating similarities

 bool ReturnTypes; //Whether Return types should be used for

//calculating similarities

 bool UseOfLocalVariableTypes; //Whether local variable types

//should be used for calculating similarities

 bool UseOfGlobalVariables; //Whether global variables should be

//used for calculating similarities

 bool FunctionAttributes; //Whether function Attributes should

//be used for calculating similarities

 bool FunctionCalls; //Whether function calls should be used

//for calculating similarities

 bool Basic,Usage,Complexity; //Types of principles used

 String *FuncAttr[]; //contains the attributes selected for

//clustering

 Single FaWeight; //weight given to function attributes

 Single FcWeight; //weight given to function calls

 Single RtWeight;//weight given to return types

 Single UlvWeight, UulvWeight, UplvWeight;//weights given to

//User-defined and pre-defined local variables

 Single UgvWeight, UugvWeight, UpgvWeight;//weights given to

//user-defined and pre-defined global variables

 Single PtWeight, PtuWeight, PtpWeight; //weights given to user-

//Defined and pre-defined parameter types

 bool GvUPDiff, LvUPDiff, PtUPDiff; // whether to differentiate

//between user-defined and pre-defined variables or not

..........................

 };

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

73

5.2 User interface and options provided to the user

The software in itself is very dynamic. There are many options provided to the user so

that the user can have as many opportunities to understand the code being examined.

In the sections below the GUI and the options provided to the users are explained.

Only the options provided for function clustering are explained as for class clustering

the options are more or less similar (the GUI

for class clustering is shown in the Appendix III). Here one thing must be clarified

that all the figures shown are to indicate all the functionalities of the software that a

user can avail. If the user does not select many of these options, the software

automatically fills the default values for the clustering process. Also there is error

checking facility available to check whether the user has selected the correct options,

and has entered correct values in the text boxes.

Figure 5.1 shows the initial screen that is displayed when the software starts. It shows

the general information about the project.

 Figure 5.1 Initial Screen

The first thing the user has to do is to select the database which contains the parsed

information about the code. For that the user selects the “Connect to database” button

and then selects the database. A filter is applied in the software that only allows the

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

74

user to select the .mdb files only (as the software expects that the database containing

the source code information is an MS Access data base).

 Figure 5.2 Select Database

All the queries to get the data are made to the database which the user selects from

this dialog box.

Now the user has the option to select function or class clustering. The two buttons

“FunctionClustering”, “ClassClusteing” are for this purpose.

The discussion below explains the options given to the user in case of function

clustering only (the options for class clustering are similar to that of function

clustering and are shown in the Appendix III).

As explained earlier, the function clustering can be performed on the basis of function

properties, used of global variables, local variables, return types, parameter types and

function calls. The check boxes (in Figure 5.3) show exactly these options. The user

can select any of the options to be used in the functions clustering process.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

75

 Figure 5.3 Select function attributes to perform clustering

Then is the “SpecialiedOptions” tab. Here as shown in the Figure (Figure 5.4) the

user can select the function properties to be used in order to perform clustering.

Function properties can only be selected if the user selects the “FunctionProperties”

checkbox in the “FunctionComparisonOptions” tab. (shown in the Figure 5.3),

otherwise this functionality is disabled.

As previously explained there are three principles (basic, usage and complexity)

which are used to calculate similarity between functions (or classes). The checkboxes

(Basic, Usage and Complexity) in Figure 5.4 give user the options to select any or all

of the principles for clustering purposes.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

76

 Figure 5.4 Specialized Options

There is an advanced button as well that helps the user to indicate whether he want to

distinguish between user-defied and pre-defined types. The user can make this

distinction in case of global variables, local variables, and parameter types only.

After selecting these options the user can give different weights to user-defined and

pre-defined types as mentioned in the note of the “Advanced Selection Options”

dialog box. The weights options are discussed in the latter screen shots.

Next is the Clustering Options (Figure 5.5). Here the user can select the type of

clustering to be performed.

Due to shortage of time only single-link and complete-link clustering has been

implemented.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

77

 Figure 5.5 Clustering Options

In the end come the weight options (Figure 5.6). The user can select different weights

for different attributes, in order to get valuable results and to understand the software

being examined in a much better way. There is an advanced weight option available

as well. As mentioned before, the advanced weight option is only available if the user

chooses to distinguish between the user-defined and pre-defined types. In this dialog

box the user can enter different weights for user-defined and pre-defined variables.

There is a complete error checking facility available at every stage in the software.

The diagram below shows just one of error checking facility, That is, the error

checked by software if the user enters an incorrect value for the weight for Pre-

defined parameter type.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

78

 Figure 5.6 Weight Options

After selecting the options the user can now start the clustering procedure by pressing

the Perform Function analysis button. After that, the processing starts and the clusters

being generated are written to the text file.

As mentioned before, the user is not required to enter all the options provided by the

software. For example, if the user does not enter the weights for any of the attributes,

the software enters the default values for those weights and then starts performing the

calculations.

Figure 5.7 indicates the progress made by the software while calculating the

similarities between different attributes and notifies the user when performing a

particular clustering process

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

79

 Figure 5.7 Progress made by the software tool.

5.4 Output

Figure 5.8 shows format of the text file that is generated by the software after

performing function clustering. This text file contains the result of single-link

clustering. The file shows step by step operations performed during the clustering

operation and indicates which entities were clustered at which stage and what was the

similarity between them. The numerical values within the brackets are the Ids of

functions that are being clustered and the values outside the brackets represent the

cluster number. The “sim” value shows the similarity between the two most similar

clusters merged at any specific instance.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

80

1{1} 2{2} 3{3} 4{4} 5{5} 6{6} 7{7} 8{8} 9{9} 10{10} 11{11} 12{12} 12 Clusters.

Most similar clusters = 6 and 12, sim=0.658392

1{1} 2{2} 3{3} 4{4} 5{5} 6{6,12} 7{7} 8{8} 9{9} 10{10} 11{11} 11 Clusters.

Most similar clusters = 3 and 6, sim=0.5997509

1{1} 2{2} 3{3,6,12} 4{4} 5{5} 6{7} 7{8} 8{9} 9{10} 10{11} 10 Clusters. Most

similar clusters = 1 and 3, sim=0.5477273

1{1,3,6,12} 2{2} 3{4} 4{5} 5{7} 6{8} 7{9} 8{10} 9{11} 9 Clusters. Most similar

clusters = 1 and 2, sim=0.543332

1{1,3,6,12,2} 2{4} 3{5} 4{7} 5{8} 6{9} 7{10} 8{11} 8 Clusters. Most similar

clusters = 1 and 5, sim=0.4539995

1{1,3,6,12,2,8} 2{4} 3{5} 4{7} 5{9} 6{10} 7{11} 7 Clusters. Most similar clusters =

2 and 3, sim=0.3181818

1{1,3,6,12,2,8} 2{4,5} 3{7} 4{9} 5{10} 6{11} 6 Clusters. Most similar clusters = 4

and 6, sim=0.3181818

1{1,3,6,12,2,8} 2{4,5} 3{7} 4{9,11} 5{10} 5 Clusters. Most similar clusters = 4 and

5, sim=0.3181818

1{1,3,6,12,2,8} 2{4,5} 3{7} 4{9,11,10} 4 Clusters. Most similar clusters = 1 and 3,

sim=0.2727273

1{1,3,6,12,2,8,7} 2{4,5} 3{9,11,10} 3 Clusters. Most similar clusters = 1 and 2,

sim=0.2727273

1{1,3,6,12,2,8,7,4,5} 2{9,11,10} 2 Clusters. Most similar clusters = 1 and 2,

sim=0.2272727

Figure 5.8 SingleLinkClustering.txt: an example output text file generated by the

clustering tool.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

81

This text file is then used as an input to another program, that converts this

information into a visual form. (Note: The visual form shown in figure 5.9 is not the

output for the text file shown in the previous diagram.).

Figure 5.9 A Dendogram produced by the software, after taking as input, the text file

produced by the CodeClusteringApplication.

This figure actually shows a Dendogram, to indicate the clustering that takes place at

each step in the clustering process. (Dendogram was explained in section 2.5.3).

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

82

6

 Evaluation

A methodology for deriving the input model from the source code by extracting

entities and the relevant attributes is described in the previous chapters. The way that

these entities could be clustered in order to retrieve a potentially meaningful

modularization of a system is formulated. The approach needs to be evaluated in

practice, assessing its effectiveness and possible improvements. A clustering tool is

built for this reason, in order to experiment with real programs.

The source code of three programs has been used for experimentation. First the author

used “CodeClusteringApplication” (CCAP), a small/medium C++ program with

known mental model, which contains 13 classes and 35 functions, to test the

applicability of the approach. Secondly the author used “Credit scoring e-service”, a

small/medium C# program with known mental model, which contains 25 classes and

76 functions, to evaluate the suitability of the approach for C# programs. A

medium/large C# program “Administration of Books Publishing” without a known

mental model, consisting of 5976 functions in 1242 classes was used to assess the

scalability of the approach and its suitability with dealing with unfamiliar software.

The methodology comprises the following main steps.

1. Derive the input model in a semi automatic fashion, using a parser and the facility

of a .NET class view and solution explorer.

2. Feed the input model to the tool.

3. Derive a subsystem abstraction of the program using single and complete linkage

methods. It is shown that the choice of the method affects the nature of the

clustering produced.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

83

4. Compare the derived subsystem abstraction to an expert’s mental model of the

system if available.

Precision and Recall were used as quantitative elements in judging the correctness of

the results of the tool (refer to section 2.6 for explanation about precision and recall).

The term accuracy is used in some places during the explanation in order to refer to

both precision and recall.

There was no similarity threshold imposed to stop the clustering process, so that all

possible clustering could be derived and convergence or divergence towards the

expert’s mental model could be observed.

6.1 Case Study I (CodeClusteringApplication)

In this case study, the code of CodeClusteringApplication (CCAP) was used for the

evaluation purposes. CCAP is a small application with 13 classes and 35 functions.

6.1.1 Function Clustering

This section discusses function clustering done by the software tool, with different

options selected by the user. The best results in each case are shown and compared

with the expert’s mental model (the grouping of functions done by the expert).

 Figure 6.1 shows the function clustering of the system done by the expert.

The numbering given to each of the function is equal to its Id in the actual database

which was used as a source (of information) by the clustering tool. These numberings

are used to represent the functions in the discussion below in order to make the

clustering process easier to explain.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

84

 Figure 6.1 Case Study I: Expected results (Function Clustering)

 [CodeClusteringApplication]

Subsystem 1

Function Names

1. Start

Subsystem 2

Function Names

2. CalculateClassSimilarity
3. ComparisonBasedOnMemberVariableTypes

4. ComparisonOfClassAttributes

5. InitializeData
19.CalculateFunctionSimilarity
20.ComparisonBasedOnFunctionCalls

21.ComparisonBasedOnGlobalVariables
22.ComparisonBasedOnLocalVariableTypes

23.ComparisonBasedOnParameterTypes

24.ComparisonBasedOnReturnedValueTypes
25.ComparisonOfFunctionAttributes

Subsystem 3

Function Names

6. ClusterFormation

7. CompleteLinkClustering

8. FindMaxSimValue

9. FormClusters

10. SingleLinkClustering

33. InitializeClusters

32. GenerateClusters

Subsystem 4

Function Names

15. CloseDatabaseConnection

16. GetOleDbCommandPtr

17. GetDatabaseConnection

18. ExecuteQuery

Subsystem 5

Function Names

34. GetComplexityOfAttribute

35. GetUsageOfAttribute

11. CommonComparisonFunction

12. ComparisonOfCodeBlockAttributes

13. PerformCommonComparisons

14. SimpleTableCompareFunction

Subsystem 6

Function Names

26. Q_ GetAttributeIDsUsedByBlockCode

27. Q_ GetComplecityOfAttribute

28. Q_GetTableSubset

29. Q_GetUsageOfAttribute

Subsystem 7

Function Names

30. GetSimilarityMetrics

31. UpdateSimilarityMetrics

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

85

Subsystem 1: This subsystem contains only one function. This function is like a

central dispatcher of the application. It determines the flow of the whole application

depending on the selections done by the user.

Subsystem 2: This subsystem contains all the function that performs similarity

measures on functions and classes based on the selections done by the user.

Subsystem 3: The functions in this subsystem perform the clustering operations that

form clusters of functions and classes on the basis of similarities provided by the

previous subsystem.

Subsystem 4: This subsystem contains all the functions that are responsible for

performing operations on the data base of the system.

Subsystem 5: This subsystem carries out the similarity principles (that is basic,

complexity, and usage principle).

Subsystem 6: This subsystem contains all the functions that generate queries

dynamically in order to get the data needed from the database.

Subsystem 7: Functions in this subsystem manage the similarity matrix that holds all

the similarities among all the entities in the data base.

 Figure 6.1a Case Study I: Expected results (Function Clustering)

 [CodeClusteringApplication]

 Explanation of the Clusters suggested by the expert

Figure 6.1 can be represented in a simpler format by showing the functions in groups,

only in terms of their IDs. The representation then becomes.

1{1}, 2{2,3,4,5,19,20,21,22,23,24,25}, 3{6,7,8,9,10,32,33}, 4{15,16,17,18},

5{11,12,13,14,34,35}, 6{26,27,28,29}, 7{30,31}.

 Case study I: Expected results (Function Clustering)

 [CodeClusteringApplication]

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

86

Numerous results were produced by selecting different options and were compared

with the expert’s mental model. These results are as follows

Results I

The first results were produced by comparing functions only on the basis of function

properties. Both, single-link and complete-link clustering algorithms were used to

produce the results. The results generated by both these algorithms are explained

below.

Single-Link-Clustering

Single-link method produced numerous clusters, and the results continuously

improved at each step of the clustering process until the similarity fell below

.7142857. After that point, the accuracy (Precision and Recall) started to decrease

when clusters having smaller value of similarity were forced to merge because there

was no threshold value set to stop forced clustering. The greatest accuracy (Precision

and Recall) was obtained after 27 steps, and the clusters generated are shown below

1{1} 2{2,3,4,5,19,20,21,22,23,24,25} 3{6,7,8,9,10,32,33} 4{11,12,13,14,34,35}

5{15,17,16,18} 6{26,27,28,29} 7{30} 8{31}.

 Case Study I: Results Produced (Single-Link Clustering) [Results I]

The values of precision and recall after comparing these results with the results of the

expert are shown in table 6.1

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 100% Recall = 100%

Subsystem 5 Subsystem 6 Subsystem 7

Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 50%

 Table 6.1 Precision and Recall

The value of recall was significantly less for subsystem 7 because of very small

number of functions in that subsystem, but over all, the results were quite

encouraging.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

87

Complete-Link-Clustering

The results produced by complete link clustering were quite accurate as well. The

results improved continuously until the similarity fell below .7142857. After that the

accuracy (Precision and Recall) deteriorated significantly due to the effect of forced

clustering. The greatest accuracy (Precision and Recall) was obtained after 25 steps,

and the clusters generated are shown below

1{1,16,18,26,27,28,29} 2{2,19,3,20,21,22,23,24,4,25,5} 3{6,7,8,9,10,32,33}

4{11,14,12,13,34,35} 5{15,17} 6{30,31}

 Case Study I: Results Produced (Complete-Link Clustering) [Results I]

The values of precision and recall after comparing these results with the results of the

expert are

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 14% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 100% Recall = 100%

Subsystem 5 Subsystem 6 Subsystem 7

Precision = 100% Precision = 57% Precision = 100%

Recall = 50% Recall = 100% Recall = 100%

 Table 6.2 Precision and Recall

The results for single-link clustering were better then complete-link clustering, due to

small value of minimum entity-entity similarity across the clusters which would have

otherwise been merged.

Results II

These results were obtained by comparing functions on the basis of function

properties and function-calls. The experiment was done a couple of times by giving

different weights to function-calls and function properties. Although the best results

obtained by selecting these options were the same as that of the ‘Results I’, there were

some interesting findings. The similarities between functions in the same cluster were

greater then the similarity between them in ‘Result I’. This was due to the fact that

most of the functions that were combined in the previous results, called the same

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

88

functions, and there were very few instances where dissimilar functions (as given by

the expert) called the same functions. Thus the results confirming the fact the

function-calls can play an important in determining correct function clusters.

The most accurate clusters generated by selecting these options are indicated below

Single-Link-Clustering

1{1} 2{2,3,20,21,22,23,24,4,25,5,19} 3{6,7,8,9,10,32,33} 4{11,12,13,14,34,35}

5{15,17,16,18} 6{26,27,28,29} 7{30} 8{31}

 Case Study I: Results Produced (Single-Link Clustering) [Results II]

The values of precision and recall for the each of the Subsystem (in Figure 6.1) based

on these results are

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 100% Recall = 100%

Subsystem 5 Subsystem 6 Subsystem 7

Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 50%

 Table 6.3 Precision and Recall

Complete-Link-Clustering

1{1,16,18,26,27,28,29} 2{2,5,3,20,21,22,23,24,4,25,19} 3{6,7,8,9,10,32,33}

4{11,12,13,14,34,35} 5{15,17} 6{30,31}

 Case Study I: Results Produced (Complete-Link Clustering) [Results II]

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

89

The values of precision and recall are

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 14% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 100% Recall = 100%

Subsystem 5 Subsystem 6 Subsystem 7

Precision = 100% Precision = 57% Precision = 100%

Recall = 50% Recall = 100% Recall = 100%

 Table 6.4 Precision and Recall

Results III

The most interesting point in the evaluation came when the functions were compared

on the bases of parameter types and function properties. This particular experiment

clearly showed how important it was to distinguish between the user-defined and pre-

defined data types.

Another importance of this test was that most of the functions in the code had

parameters, so this test was always going to produce some important information

regarding program understanding and particularly the testing of the software, as to

whether it generated the correct results or not.

Initially when the test was made, there was no distinction made between user-defined

and pre-defined parameter types. The results produced were quite bad as compared to

results produced earlier.

Single-Link Clustering

For single-link clustering, the first few steps produced correct results, after that, the

clustering accuracy greatly reduced and it was resulting in a one large cluster into

which all other entities were merged one-by-one. The best results produced are

1{1,7,8,9,10,32,11,13,12,14,31,34,35,16,18,26,27,28,29,6} 2{2,3,4,5} 3{15,17}

4{19,20,21,22,23,24,25} 5{30} 6{33}

 Case Study I: Results Produced (Single-Link Clustering) [Results III]

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

90

The values of precision and recall are

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 5% Precision = 100% Precision = 30% Precision = 100%

Recall = 100% Recall = 63% Recall = 85% Recall = 50%

Subsystem 5 Subsystem 6 Subsystem 7

Precision = 30% Precision = 20% Precision = 100%

Recall = 100% Recall = 100% Recall = 50%

 Table 6.5 Precision and Recall

Complete-Link Clustering

The results produced by complete-link clustering were much better then the single-

link clustering, but still, the accuracy was quite low as compared to the results in the

earlier experiments.

1{1,26,27,28,29,11,13,12,14,34,35} 2{2,3,4,5,19,20,21,22,23,24,25}

3{6,7,8,9,10,32} 4{15,17,16,18} 5{30,31} 6{33}

 Case Study I: Results Produced (Complete-Link Clustering) [Results III]

The values of precision and recall are

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 9% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 85% Recall = 100%

Subsystem 5 Subsystem 6 Subsystem 7

Precision = 54% Precision = 36% Precision = 100%

Recall = 100% Recall = 100% Recall = 100%

 Table 6.6 Precision and Recall

If the weight of the functions properties was made two to three times more then the

parameter types, then the contribution of the parameter types in determining the

clusters was significantly reduced and the accuracy of the results became much better.

But the important issue was to understand why the results deviated so much form the

correct solution when parameter types were contributing more in finding the results.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

91

After carefully examining the code, it became clear that most of the functions that had

parameters, predominantly used “int” and “string” (both are pre-defined parameter

types) as their parameter types along with other parameter types if any. Therefore

most of the functions were using similar pre-defined parameter types. There were

very few user-defined parameter types to make any difference, therefore the functions

could not be distinguished correctly on the basis of their parameter types.

The next reasonable step was to distinguish between user-defined and pre-defined

parameter types. The weight given to the user-defined parameter types was twice that

of the pre-defined parameter types.

The best results produced are

Single-Link Clustering

1{1} 2{2,3,4,5,19,20,21,22,23,24,25} 3{6,7,8,9,10,32,33}

4{11,13,12,14,34,35,31} 5{15,17,16,18} 6{26,27,28,29} 7{30}

 Case Study I: Results Produced (Single-Link Clustering) [Results III]

The accuracy improved tremendously as shown below

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 86%

Recall = 100% Recall = 100% Recall = 100% Recall = 100%

Subsystem 5 Subsystem 6 Subsystem 7

Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 50%

 Table 6.7 Precision and Recall

Complete-Link Clustering

1{1,26,27,28,29} 2{2,3,4,5,19,20,21,22,23,24,25} 3{6,7,8,9,10,32,33}

4{11,13,12,14,34,35} 5{15,17,16,18} 6{30,31}

 Case Study I: Results Produced (Complete-Link Clustering) [Results III]

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

92

The accuracy (Precision and Recall) of the results is

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 20% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 100% Recall = 100%

Subsystem 5 Subsystem 6 Subsystem 7

Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 100%

 Table 6.8 Precision and Recall

The results produced were significantly improved as compared to the results when

user-defined and pre-defined parameter types were not distinguished or when they

were given equal weights.

Results IV

These results were obtained when function properties were selected along with local

variable types. The results showed exactly the same pattern as that of the ‘Results

IV’. The clusters produced in both the cases (Single-Link clustering and Complete-

Link Clustering) were significantly improved when differentiation was made between

user-defined and pre-defined types, and the user-defined types were given more

weight as compared to pre-defined types.

6.1.2 Class Clustering

There are 13 classes in the CodeClusteringApplication. Only three major clusters

were suggested by the expert. The expert mental model for the classes is given in the

figure 6.2.

As in the case of functions, the numbering given to each of the class is equal to its Id

in the actual database, which was used as a source (of information) by the clustering

application. These numberings are used to represent the classes in further discussions

below in order to make the clustering process easier to explain.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

93

Subsystem 1 Subsystem 2 Subsystem 3

Class Names Class Names Class Names

2. Clustering 9. AboutBox 4. DatabaseManager

3. CommonComparisonTasks 10.AdvancedOptionChecks 7. QueryMaker

6. FunctionComparison 11.Form1

12. ClassComparison 13.AdvancedWeightOptions

Subsystem 4 Subsystem 5 Subsystem 6

Class Names Class Names Class Names

1. CentralDispatcher 5. FileHandler 8. SimilarityMetrics

 Figure 6.2 Case study I: Expected results (Class Clustering)

 [CodeClusteringApplication]

Subsystem 1: All the classes in this group are responsible for calculating the

similarity matrices and performing clustering of the code.

Subsystem 2: All the classes in this group are responsible for user interface of the

project.

Subsystem 3: The classes in this group are responsible for data base related

activities.

Subsystem 4: There is only one class in this group, and it is the central dispatcher of

the application. It determines the flow of the whole application depending on the

selections done by the user.

Subsystem 5: This subsystem is responsible for all the file handling capabilities of

the system, all the results of the system are written to file in specific format that helps

other applications to use the files for further processing.

Subsystem 6: The class in this subsystem is responsible for handling the similarity

matrix that contains all the information about the similarities between entities in the

data base.

 Figure 6.2a Case Study I: Expected results (Function Clustering)

 [CodeClusteringApplication]

 Explanation of the Clusters suggested by the expert

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

94

The above diagram can be represented in a simpler format by showing the classes in

groups, only in terms of their IDs. The representation then becomes.

1{2,3,6,12}, 2{9,10,11,13}, 3{4,7}, 4{1}, 5{5}, 6{8}

 Case study I: Expected results.

 [CodeClusteringApplication]

Numerous results were produced by selecting different options and were compared

with the expert’s mental model. These results are as follows

Results I

These results show the single-link clustering and complete-link clustering behaviour

when only class properties were selected for cluster formation.

Single-Link Clustering

The best results produced by single-link clustering algorithm are indicated below

1{1} 2{2,3,6,12} 3{4} 4{5} 5{7} 6{8} 7{9,11,10,13}

Case Study I: Results Produced (Single-Link Clustering) [Results I]

The values for precision and recall are

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 50% Recall = 100%

Subsystem 5 Subsystem 6

Precision = 100% Precision = 100%

Recall = 100% Recall = 100%

 Table 6.9 Precision and Recall

The algorithm was unable to detect the similarity between two classes 4 and 7 as

indicated by the expert. The major reason behind it was that, most of the properties of

class 4 and 7 (That is, Query Maker and DatabaseManager) had null values (That is,

the classes did not have any values for those properties), as a result the algorithm was

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

95

unable to detect any significant similarity between the two classes to join them in the

same cluster.

Complete-Link Clustering

The results of complete-link clustering were similar to that of single-link clustering

with few changes in the similarities between the classes (due to the difference in the

way the two algorithms form clusters).

The best results produced by Complete-link clustering algorithm are

1{1} 2{2,3,6,12} 3{4} 4{5} 5{7} 6{8} 7{9,11,10,13}

 Case Study I: Results Produced (Complete-Link Clustering) [Results I]

The values for precision and recall are

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 50% Recall = 100%

Subsystem 5 Subsystem 6

Precision = 100% Precision = 100%

Recall = 100% Recall = 100%

 Table 6.10 Precision and Recall

Results II

These results were obtained by selecting class member types along with the class

properties to determine clusters.

The results produced by both form of clustering algorithms (Single-link and

Complete-link) were similar to the ones in ‘Results I’. The only difference was that

the similarity between the classes with in same clusters increased due to the fact that

the classes in same clusters used similar types of variables.

Single-Link Clustering

The best results produced by single-link clustering algorithm are as follows

1{1} 2{2,3,6,12} 3{4} 4{5} 5{7} 6{8} 7{9,11,10,13}

 Case Study I: Results Produced (Single-Link Clustering) [Results II]

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

96

The values for precision and recall are

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 50% Recall = 100%

Subsystem 5 Subsystem 6

Precision = 100% Precision = 100%

Recall = 100% Recall = 100%

 Table 6.11 Precision and Recall

Complete-Link Clustering

The best results produced by Complete-link clustering algorithm are

1{1} 2{2,3,6,12} 3{4} 4{5} 5{7} 6{8} 7{9,11,10,13}

Case Study I: Results Produced (Complete-Link Clustering) [Results II]

The values for precision and recall are

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 50% Recall = 100%

Subsystem 5 Subsystem 6

Precision = 100% Precision = 100%

Recall = 100% Recall = 100%

 Table 6.12 Precision and Recall

6.2 Case Study II (Credit scoring e-service)

Credit scoring e-service contains 25 classes and 76 functions. This case study helped

in getting some idea about the scalability of the software, but the real test of

scalability is dealt with in the third case study.

6.2.1 Function Clustering

According to the expert mental model, functions are divided into five clusters.

The division of the functions in five groups is shown in Figure 6.3.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

97

The numbering given to each of the function follows the same concept as previously

explained.

The only information that the author have about the functions in this code is their

properties and their return types, therefore only these two attributes are used in

calculating the similarities between the functions.

 Figure 6.3 Case Study II: Expected results (Function Clustering)

 [Credit scoring e-service]

Subsystem 2

Function Names

25. LoanDetails
24. LoanDetails
37. PersonalDetails
36. PersonalDetails
5. setAccountNumber
8. setAccountType
9. setCreditLimit
26. setCustID
3. setCustID
21. setDate
7. setFIName
19. setID
29. setLoanAmount
6. setOpeningDate
20. setPassword
27. setPurpose
30. setRepaymentPeriod
4. setSortCode
28. setTotalCostOfItem
2. BankDetails

1. BankDetails

17. FI

18. FI

Subsystem 3

Function Names

14. getAccountNumber
11. getAccountType
10. getCreditLimit
35. getCustID
16. getCustID
22. getDate
12. getFIName
32. getLoanAmount
13. getOpeningDate
23. getPassword
34. getPurpose
31. getRepaymentPeriod
15. getSortCode
33. getTotalCostOfItem

Subsystem 4

Functions Names

76. invokeWebservice

Subsystem 5

Function Name

69. XMLHelper

70. getInstance

71. verifyXML

72. generateCustID

73. parseXML

74. riteXMLPreferencesFile

75. getQuery

Subsystem 1

Function Names

38. Page_Load
39. btnLogin_Click
40. Page_Load
41. fillGrid
42. btnSubmit_Click
43. Page_Load
44. populateColorList
45. populateLayoutList
46. Page_Load
47. lnkLogout_Click
48. lnkUpload_Click
49. lnkScore_Click
50. lnkCustomize_Click
51. Linkbutton1_Click
52. Page_Load
53. Page_Load
54. checkAddedParams
55. setMethodList
56. uploadData
57. verifyXML
58. btnReset_Click
59. btnUpload_Click
60. Page_Load
61. populateList
62. lstID_SelectedIndexChanged
63. btnSubmit_Click
64. Page_Load
65. populateTable
66. populateDataGrid
67. Page_Load
68. Page_Load

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

98

Subsystem 1: interface (user defined and generated both)

Subsystem 1 contains user-interface related functions. These functions include both

user-defined functions as well as functions generated by the interface. The basic

purpose of these functions is to change/ modify interface.

Subsystem 2: (constructor and set)

Every table in database have a corresponding class in implementation with the same

parameters as found in the corresponding database table. Subsystem 2 contains the

functions that set the value of these parameters to the argument provided in the

function. These functions are of type setXX() as well as constructors of each class (as

constructor also initializes the value of each parameter).

Subsystem 3: (get)

This group contains functions of type getXX(). These functions are used to retrieve

the value of database entity.

Subsystem 4: (invoke web service)

This group contains only one function and its functionality is different from all other

functions of the system because it invokes the web service which will apply credit

scoring algorithm.

Subsystem 5: (business methods)

This group contains the functions which implement business logic of the system.

These functions form the core functionality of the system and are different from rest

of the functions of system.

 Figure 6.3a Case Study II: Expected results (Function Clustering)

 [Credit scoring e-service]

 Explanation of the Clusters suggested by the expert

The above diagram can be shown in a simpler format by representing the functions in

terms of their Ids. The representation then becomes.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

99

1{38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64

,65,66,67,68}

2{25,24,37,36,5,8,9,26,3,21,7,19,29,6,20,27,30,4,28,2,1,17,18}

3{14,11,10,35,16,22,12,32,13,23,34,31,15,33} 4{76} 5{69,70,71,72,73,74,75}

 Case study II: expected results

 [Credit scoring e-service]

The clustering results obtained by the software tool are as follows

Results I

These results were calculated by only selecting the function properties. Both, single-

link and complete-link clustering algorithms were used. The results obtained are

shown below.

Single-link Clustering

This method produced encouraging results. From the beginning, each step was

continuously improving upon the results of the previous step. The greatest similarity

between any two pair of clusters was 1. This similarity was between constructors of

the same class. The best results were produced after 70 steps, and the similarity

(between clusters) at that point was reduced to 0.5714286. Six clusters were left at

that stage. After that similarity between clusters was significantly reduced because of

forced clustering.

The best results produced are shown below

1{38,39,40,42,43,46,52,53,60,64,67,68,47,48,49,50,51,58,59,62,63,41,44,45,54,55,56

,57,61,65,66}

2{1,2,3,4,5,6,7,8,9,19,20,21,26,27,28,29,30,17,18,36,37,24,25}.

3{10,11,12,13,14,15,16,22,23,31,32,33,34,35}

4{69} 5{ 70,72,71,73,75,74} 6{76}

 Case Study II: Results Produced (Single-Link Clustering) [Results I]

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

100

The values of precision and recall for the subsystems are

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 50% Recall = 100%

Subsystem 5

Precision = 100%

Recall = 85%

 Table 6.13 Precision and Recall

The only function that was out of its cluster was the function No.69 (that is,

XMLHelper), which was a constructor of the XMLHelper class. After examining the

function, it was discovered that almost none of the properties (which were used for

clustering) of this function resembled any other function in the same cluster.

Complete-link clustering

The results produced by complete-link clustering were almost identical to the single-

link clustering. Although the sequence in which the functions were added to the

clusters was a little different (because of the difference in the concept the two

techniques follow, see section 2.5.3), the eventual best results were exactly the same

to that of single-link clustering. The similarity value at which the best results were

achieved was less then that of single-link clustering. The best results were achieved at

sim=0.4285714.

The best results produced are

1{38,39,40,42,43,46,52,53,60,64,67,68,47,48,49,50,51,58,59,62,63,41,44,45,54,55,56

,57,61,65,66}

2{1,2,3,4,5,6,7,8,9,19,20,21,26,27,28,29,30,17,18,36,37,24,25}.

3{10,11,12,13,14,15,16,22,23,31,32,33,34,35}

4{69} 5{ 70,72,71,73,75,74} 6{76}

 Case Study II: Results Produced (Complete-Link Clustering) [Results I]

The values of precision and recall for the subsystems are

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

101

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 50% Recall = 100%

Subsystem 5

Precision = 100%

Recall = 85%

 Table 6.14 Precision and Recall

Results II

These results were generated by using function properties along with their return

types.

Single-Link Clustering

As expected the results produced by selecting these options were identical to the ones

produced above. The only difference was that the similarities between the functions

in the same cluster were greater at each step then the similarity between them in the

Result 1. The reason behind these observations was that most of the functions that

belong to the same group (as mentioned by the expert) have similar return types.

Therefore the similarity between them increased as the return types were included for

evaluating the similarity between the functions. Similarly the difference between two

different clusters also increased because the return types of the functions belonging to

different clusters were different. So over all results obtained were stronger then the

previous results.

The best results produced are

1{38,39,40,42,43,46,52,53,60,64,67,68,47,48,49,50,51,58,59,62,63,41,44,45,54,55,56

,57,61,65,66}

2{1,2,3,4,5,6,7,8,9,19,20,21,26,27,28,29,30,17,18,36,37,24,25}.

3{10,11,12,13,14,15,16,22,23,31,32,33,34,35}

4{69} 5{ 70,72,71,73,75,74} 6{76}

 Case Study II: Results Produced (Single-Link Clustering) [Results II]

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

102

The values of precision and recall for the subsystems are given below

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 50% Recall = 100%

Subsystem 5

Precision = 100%

Recall = 85%

 Table 6.15 Precision and Recall

Complete-Link Clustering

The results produced by complete-link clustering were identical to the single-link

clustering. The sequence in which the functions were added to the clusters was a little

different because of the difference in the concept the two techniques follow (section

2.5.3). The eventual best results were exactly the same to that of single-link

clustering.

The best results produced are

1{38,39,40,42,43,46,52,53,60,64,67,68,47,48,49,50,51,58,59,62,63,41,44,45,54,55,56

,57,61,65,66}

2{1,2,3,4,5,6,7,8,9,19,20,21,26,27,28,29,30,17,18,36,37,24,25}.

3{10,11,12,13,14,15,16,22,23,31,32,33,34,35}

4{69} 5{ 70,72,71,73,75,74} 6{76}

 Case Study II: Results Produced (Complete-Link Clustering) [Results II]

The values of precision and recall for the subsystems are

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 50% Recall = 100%

Subsystem 5

Precision = 100%

Recall = 85%

 Table 6.16 Precision and Recall

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

103

6.2.2 Class Clustering

According to the expert mental model, classes were divided onto five clusters.

The division of the classes in five groups is shown in Figure 6.4.

The numbering given to each of the class follows the same concept as previously

explained.

The only information that the author has about the classes in this code is their

properties, therefore only the class properties were used in calculating the similarities

between classes.

 Figure 6.4 Case Study II: Expected results (Class Clustering)

 [Credit scoring e-service]

 Explanation of the Clusters suggested by the expert

Subsystem 2

Functions Names

12. XMLHelper

Subsystem 1

Function Names

11. DatabaseManager

Subsystem 3

Function Name

25. systemIntegrationManage

Subsystem 4

Function Names

1. BankDetails
2. CreditScore
3. FI
4. LoanDetails
5. PersonalDetails
6. ResidentialDetails
7. IncomeDetails
8. ExpenditurePerMonthDetails
9. EmploymentDetails
10.Customer

Subsystem 5

Function Names

13. creditscoringhome

14. FIHome
15. uploadData2
16. uploadDataProcess

17. dataSubmitted
18. viewScore
19. viewScoreResult

20. AddParameters
21. customization
22. sendEnquiries

23. plugAlgorithm
24. systemSetting

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

104

Subsystem 1: This subsystem contains only one class. And it is responsible for all the

actions performed on the database of the system.

Subsystem 2: This group contains the classes which implement business logic of the

system. These classes form the core module of the system and are different from rest

of the classes of the system.

Subsystem 3: This subsystem contains only one class and its purpose is different

from all other classes of the system because it invokes the web service which will

apply credit scoring algorithm.

Subsystem 4: Every table in database have a corresponding class in implementation

with the same parameters as found in the corresponding database table. Subsystem 4

contains the classes that deal with setting and getting the value of these parameters.

Subsystem 5: Subsystem 5 contains user-interface related classes. The

basic purpose of these classes is to change/ modify interface

 Figure 6.4a Case Study II: Expected results (Class Clustering)

 [Credit scoring e-service]

 Explanation of the Clusters suggested by the expert

The above diagram can be shown in a simpler format by representing the classes in

terms of their class Ids. The representation then becomes.

1{11} 2{12} 3{25} 4{1,2,3,4,5,6,7,8,9,10}

5{13,14,15,16,17,18,19,20,21,22,23,24}

 Case study II: Expected results

 [Credit scoring e-service]

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

105

The clustering results obtained by the software tool are as follows

Results I

These results were calculated by selecting the class properties only. Both, single-link

and complete-link clustering algorithms were used. The results are shown below.

Single-link Clustering

This method resulted in a perfect match. The best results produced by single-link

clustering were exactly the same as that produced by the expert. The similarity value

at which the best results were achieved was sim=0.7272727.

The results are shown below

1{11} 2{12} 3{25} 4{1,2,3,4,5,6,7,8,9,10}

5{13,14,15,16,17,18,19,20,21,22,23,24}

 Case Study II: Results Produced (Single-Link Clustering) [Results I]

The values of precision and recall for the subsystems are given as

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 100% Recall = 100%

Subsystem 5

Precision = 100%

Recall = 10%

 Table 6.17 Precision and Recall

Complete-link clustering

The results produced by complete-link clustering were identical to the single-link

clustering. The similarity value at which the best results were achieved was

sim=0.7272727.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

106

The best results produced are

1{11} 2{12} 3{25} 4{1,2,3,4,5,6,7,8,9,10}

5{13,14,15,16,17,18,19,20,21,22,23,24}

 Case Study II: Results Produced (Complete-Link Clustering) [Results I]

The values of precision and recall for the subsystems are given as

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Precision = 100% Precision = 100% Precision = 100% Precision = 100%

Recall = 100% Recall = 100% Recall = 100% Recall = 100%

Subsystem 5

Precision = 100%

Recall = 100%

 Table 6.18 Precision and Recall

6.3 Case Study III (Administration of Books Publishing)

This case study is carried out solely to test the scalability of the software tool. The

software that was tested contains large number of functions and classes. There are

5976 functions and 1242 classes. Expert mental model for this software was not

available, for this reason there is no way to check the results produced by the tool.

This cases study is only to measure the suitability of the tool for large software

systems.

6.3.1 Class Clustering

Results I

The first test was made by clustering classes only on the basis of their properties.

The results were obtained within a couple of minutes (1 to 1.5 minuets, depending on

the specification of the computer with which the tests were carried out). These results

were quite encouraging as the tool was able to cluster large systems in very less time.

Results II

This test was made by clustering classes on the basis of class member types. The time

the software tool took (8 to 12 minutes depending on the specification of the

computer with which the tests were carried out) to cluster the classes based on their

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

107

member types was quite long as compared to that of class properties. The reason

behind this outcome is the design of the database that implemented the input model. It

can be seen in the database design (Figure 4.7) that there are two tables whose

combined information specifies which class has which type of member data. The two

tables are “ClassHasMembers” and “ClassMemberType”.

The “ClassHasMembers” table only has two fields ClassID and ClassMemberID.

This table only indicates the link between the classes and their member data types.

The “ClassMemberType” table contains all the information about the member data

types. This arrangement was made in order to avoid unnecessary repetition of data in

the tables and as a result the space requirement of the data base was significantly

reduced. The side affect of this arrangement was that the tool now had to access data

from two tables to get information about member types of any class (that is

“ClassHasMembers” table and “ClassMemberType” table). As a result the

complexity and the number of queries made to the database are greater for member

data types as compared to function properties (The function Id and its properties were

placed in the same table, because it was not causing any repetition of the entries in the

tables).

This is one major area where further work needs to be done in order to improve the

scalability of the software for other attributes, while keeping the space requirement of

the database to its minimum.

6.3.2 Function Clustering

The only information that is known about the functions (in this code) is their

properties, therefore the results were obtained only on the basis of function properties.

Results I

The test was made by clustering functions only on the basis of their properties.

The results were obtained within 15 to 20 minutes, depending on the specification of

the computer with which the tests were carried out.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

108

The number of functions is approximately five times that of classes but the time to

calculate function clusters was in some cases 15 times more then that of classes. This

observation can be explained by the equation 6.1.

No. Of Comparisons Required = (n(n-1) / 2) Equation 6.1

This equation indicates the number of comparisons required between n numbers of

entities, to calculate all the similarities before starting the clustering process. It is

evident from the equation that the number of comparisons required is directly

proportional to the square root of total number of entities. Therefore as the number of

entities grow the number of comparison between the entities increase at a much

higher rate, and as a result takes much more time then in cases where entities are

fewer.

6.4 Requirements Fulfilled

Numerous functional and non-functional requirements were specified in the

requirement analysis section of this report. This section discusses all the requirements

one by one with a little description of whether the requirement is completely fulfilled,

partially fulfilled or unfulfilled. The reasons for the non-fulfilment of requirements

are also provided.

6.4.1 Functional requirements

1. Specification of input model

Function and class input model are specified and implemented that cover all the

four requirements imposed on the input models.

Status: Fulfilled

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

109

2. Specification of the similarity metrics

Similarity matrices are specified (majority of them with the help of [14]), that

completely cover all the four requirements imposed on the similarity measures in

the requirement analysis section.

Status: Fulfilled

3. Specification of the clustering algorithm

Hierarchical (agglomerative) clustering algorithms are incorporated in the

clustering tool, and the reasons for this selection are given in sections 4.3. These

algorithms cover majority of the requirements imposed on the clustering

algorithms.

Status: Fulfilled

4. Actual representation of the system

The two case studies carried out in this chapter clearly indicate that the clustering

tool clustered the program entities according to the expert mental model with high

degree of accuracy. Although there are cases where the tool do not entirely

produce the correct results but still the results are quite encouraging and

satisfactory.

Status: Fulfilled.

5. Design

The tool specified a high-quality design, and extracted modules that implemented

a known concept.

Status: Fulfilled.

6. Ability to handle different types of attributes

As shown in the design in section 4.8 the attributes are defined by numerical,

binary, and categorical fields. And the application is able to handle all the three

types of data. Therefore this requirement was completely fulfilled.

Status: Fulfilled.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

110

7. Insensitivity to the order of input records

The clustering tool is not affected by the change in the order in which data is

provided to it.

Status: Fulfilled.

8. High dimensionality of the input data

Most of the tables have dimensionality greater then 5. The class and function

properties tables have even greater dimensionality (7 and 11 respectively). The

functionality of the software does not reduce notably with the increase in the

dimensionality of the input data.

Status: Fulfilled.

9. Prescribed Methodology

The results produced by the clustering tool are incremental and step-by-step. The

results clearly help in the user to detect (in case of a problem) where the solution

starts to deviate from the actual “expert decomposition”.

Status: Fulfilled.

10. Reporting

The results are produced in a textual format and the software is not developed to

produce a graphical representation of the results. Instead another tool is used to

produce the graphical output of the results obtained.

Status: Partially Fulfilled.

11. Model exporting

This tool produces a result in a text file that can be easily used by other programs

for ongoing use. In fact the results produced by the tool were used by software to

produce graphical outputs.

Status: Fulfilled.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

111

12. Model Validation

The process of validation and verification of the results is not automated. The

software for automatically evaluating the results was not developed due to lack of

time.

Status: Not Fulfilled.

13. Data Filtering

 The user can select a subset of data and not all the data to produce clustering.

Status: Fulfilled.

14. Error reporting

The software notifies the user if the user selects some incorrect options or

specifies some incorrect values during the clustering process. However in case of

the clustering results obtained, the software does not indicate where the results

actually start to deviate from the actual representation. Similarly the software does

not provide any feed back messages for the debugging process, this has to be done

manually by checking the results produced by the software.

Status: Partially Fulfilled.

15. Handling noise

The software has the functionality to cope up with the missing or null values. But

it is not able to detect or correct values entered incorrectly.

Status: Partially Fulfilled.

16. Data cleansing

The tool allows the user to modify spurious values in the data set, so that the data

that the tool work on is of high-quality

Status: Fulfilled.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

112

6.4.1 Non-Functional requirements

1. Robustness

The clustering tool developed runs consistently without crashing and does not

require any monitoring or intervention by the user.

Status: Fulfilled.

2. Cluster Size

The clustering algorithm clusters the program entities on the basis of their

similarities. In majority of the cases it does not form huge singleton clusters. How

ever the nature of the output depends on the selection of the attributes and the

information provided to the clustering tool. This requirement is too vague for the

tool to be assessed against it.

Status: Cannot be justified.

3. Automation

The clustering tool is completely automated and does not require any user

intervention. The options provided to the user are optional, if the user does not

wish to use these options, the tool selects them automatically.

Status: Fulfilled.

4. User Interface and learning curve

The user interface of the tool is very easy to understand and work with and the

user can easily adjust to its usage.

Status: Fulfilled.

5. Stability

This requirement is not tested and evaluated against the clustering tool because of

lack of time.

Status: Not Fulfilled.

6. Scalability

The third case study was carried out solely to check the clustering tool against

scalability. The results produced by the clustering tool are quite encouraging. The

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

113

clustering is done quite fast when working with only the function and class

properties.

In that situation, the tool clustered nearly 1300 classes and 6500 functions in just a

couple of minuets. The time requirement of the tool increases significantly when

other attributes are added for the clustering purposes (in the case of such large soft

wares), and it is this area that need further research.

Status: Partially Fulfilled.

7. Results Interpretability and usability

The results are produced in a form of a text file. Although these results are

satisfactory in case of small applications, but the understanding of the results get

quite difficult as the size if the software increases. Therefore the output was

produced in such a format that could be used by another software application to

produce its visual form that could be easily understood by the user.

Status: Partially Fulfilled.

8. Efficiency

As the third case study suggest, the efficiency of the tool is quite satisfactory,

though there is a great room for improvement and greater amount of testing is also

required. The results produced by the software are in text files which are of

normal size, considering the format of the output (that is, to save each and every

step of the clustering process).

Status: Partially Fulfilled.

9. Adaptability

The tool was used to cluster C++ and C# code. It can also be used easily with very

few or no changes to work with other languages. So the adaptability of the tool is

quite satisfactory.

Status: Fulfilled.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

114

 7

 Conclusion & Further Work

The report concludes, firstly, with a retrospective overview of the work that has been

undertaken. This is followed by some conclusions which have been made about the

project as a whole. After that a consideration is made of what further work should

stem from that performed here.

7.1 Review

Before any work could be commenced on formulating any kind of solution, a through

investigation of the domain needed to be performed. To appreciate the current

situation, background research was carried out in the field of data mining with special

emphasis on the clustering techniques and cluster analysis. All the aspects of the

clustering process and especially the use of clustering techniques for software

maintenance were thoroughly investigated.

To correctly capture the project requirements, an assessment of the needs of software

maintainers, what problems they currently faced and the use of the clustering tools to

help in the process of software maintenance was carried out. A list of 16 functional

and 9 on-functional requirements was defined. These requirements were then ranked

by importance, so that the focus of the solution design could be shifted towards the

core needs of the user and that the resulting implementation would be sure to at least

deliver the more important features, should time run short.

A design that would attempt to satisfy each and every requirement was then planned

and constructed. The design was expressed through a combination of formal and

informal techniques, including block diagram, use cases, class diagrams, sequence

diagrams and natural language, so as to consider the tool’s functionality, use and

internal operation.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

115

A visual C++ implementation for this design was then produced over an intensive 10

week period. Each aspect of the functionality was implemented in an order that reflect

the priority of the requirements that it fulfilled. The more complex, difficult or

interesting components of the source code were presented.

After doing some testing in order to ensure that the resulting software behaved as

desired, the tool had reached a finalised state. After that, an extensive evaluation of

the tool was made in order to ensure that it fulfilled most of the requirements that

were initially set in the requirements phase of the project.

7.2 Conclusions

This work addresses the issue of the feasibility of clustering functions and classes of

programs, depending on the types and use of number of parameters. It also

investigated the appropriateness of different clustering strategies. Finally it explored

the suitability of the approach for different types of programming languages and sizes

of programs. A software tool was developed for this reason.

The tool was used to obtain the subsystem abstraction of 3 programs. The accuracy

of the results was evaluated by comparing the sub-system abstractions with expert’s

mental models for two of the programs. The produced results were found to be

meaningful in most cases.

In addition to evaluating the accuracy of the results, the feasibility of this approach

was evaluated by assessing the complete process of obtaining a subsystem abstraction

of a program. Overall, the results of this initial investigation demonstrated the

potential of this approach for obtaining a subsystem abstraction of a program and for

identifying interrelations between classes and functions.

The tool realises the original design virtually in its entirety and effectively fulfils the

majority of its requirements, including the core requirements. The project is deemed

to have been successful, overall, but the tool cannot be considered to be truly

complete until some handful of issues with it has been removed. The process that this

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

116

project adhered to is considered to be satisfactory, but not without faults or room for

improvements.

The author has found this project to be an invaluable opportunity to consolidate and

expand upon his skill set, in all areas, and has acquired a confidence that will allow

his skills to be applied effectively to future projects.

7.3 Further Work

This section provides a number of possible enhancements to the approach and the tool

in particular, that should be performed in order to achieve a complete solution to the

problem of source code analysis.

➢ Automatic derivation of input model

The process of extracting the input model from program and performing the

relevant pre-processing on these data is time consuming as there is no

automated method for supporting it. Only a subset of the input data is acquired

using a parser, rest of the information has to be filled manually by using

different editors search facilities. The precise method needs to be further

specified and enriched to facilitate as much automation of the derivation of the

input model as possible.

➢ Further testing on larger programs

Evaluation was carried out for two small/medium size programs with few

thousand lines of code. Evaluation of the tool in the third case study for larger

software was carried out only to test the scalability of the software. The results

could not be validated as there was no mental model available for the

program. In order to achieve a better evaluation of the proposed results, more

tests should be performed on larger programs to asses how method scales to

deal with real industrial scale systems. However, in order to proceed to these

tests, the previous enhancement should be implemented first, so as to get the

input data from these programs automatically.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

117

➢ Use of incremental Clustering technique

The clustering technique used is not incremental. That is, the entire process

has to be conducted all over again on all entities, if there are changes made to

the software (which results in addition of new entities) being examined. It

would be desirable if this method could be incremental in a manner

accommodating changes in software (that is, the method could update clusters

only by processing newly added entities) as the assumption of static software

is unrealistic.

➢ Clustering based on dynamic dependencies

This work attempts to cluster large software systems based on static

dependencies between software artefacts. However, it would be highly

desirable to cluster software entities based on dynamic dependencies. For

example, taking into consideration the number of times a particular procedure

call or data reference took place during the runtime of the software. It is quite

likely that dynamic clustering will also provide interesting insight into a

system’s structure.

➢ Testing other clustering algorithms

Hierarchical agglomerative clustering is used with Single-link and complete-

link algorithms only. The effects of weighted-linkage rules and un-weighted

linkage rules would also be interesting to analyse. Additional data mining

techniques like classification, association rules could also be used for

experimentation purposes.

➢ Source code analysis at the statement level

The suggested approach concentrated on a model consisting of modules

(functions, classes and procedures) and the ultimate aim was to create

program decomposition in groups containing interrelated modules. On the

other hand, the tool can also be used in order to perform a source code

analysis at the statement level. To do so, the input data should consist of

records representing statements and the final results will produce groups of

related statements. This kind of analysis is useful, when local parts of program

need to be understood.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

118

➢ Using other evaluation techniques

In this work, only Precision and Recall are used as quantitative elements in

judging the correctness of the results of the tool (refer to section 2.6 for

explanation about precision and recall). There are other evaluation techniques

like MoJo distance [18] Edge similarity measurements [19] and many others

that need to be used in order to get better understanding of the results

produced by the software tool.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

119

References

1. Anquetil, N.; Lethbridge, T.C.; Experiments with clustering as a software

remodularization method. Reverse Engineering, 1999. Proceedings. Sixth

Working Conference on , 6-8 Oct. 1999 Pages:235 – 255.

2. Armstrong, A. T; Grubb, P. A; Software maintenance : concepts and practice.

2003. Singapore : World Scientific.

3. Kajko-Mattsson,M ; Preventive maintenance! Do we know what it is?

 Software Maintenance, 2000. Proceedings. International Conference on , 11-14

Oct. 2000 Pages:12 – 14.

4. Tjortjis, C.; 'Expert Maintainers' Strategies and Needs when Understanding

Software: A Qualitative Empirical Study. IEEE 8th Asia-Pacific Software

Engineering Conference, (APSEC 2001), Proc., Macao, China, 4-7 December

2001, pp281-287, 2001 ISSN/ISBN:0-7695-1408-1.

5. Dunham, M, M; Data Mining introduction and advanced topics. 2003. Prentice

Hall.

6. Fayyad, U; Piatetsky-shapiro, G.; Uthurusamy R; Advances in knowledge

discovery and data mining. 1996 London ; Menlo Park, Calif. : AAAI Press/MIT

Press.

7. C.M. De Oca and D.L Carver, “Identification of Data Cohesive Subsystems Using

Data Mining Techniques”, Proc, Int’l Conf. Software Maintenance (ICSM 98),

IEEE Comp. Soc. Press, 1998, pp.16-23.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

120

8. Mitra, S.; Pal, S.K.; Mitra, P; Data mining in soft computing framework: a

survey.Neural Networks, IEEE Transactions on Volume: 13 , Issue: 1 , Jan. 2002

Pages:3–14.

9. Han, J.; Kamber, M; Data Mining: Concepts and Techniques. 2001. London:

Academic Press.

10. Evveritt, B.S. (1980) cluster Analysis. (2nd ed.) London: Heinemann Educational

Books Ltd.

11. du Toit S.H.C., Steyn, A.G.W., Stumpf, R.H. (1986) Graphical Exploratory Data

Analysis. New York: Springer-Verlag New York Inc. Scanalytics, Inc. (n.d.),

Gene Profiler. “Dendrogram Analysis.” [online] Fairfax, Virginia. Available from:

http://www.scanalytics.com/products/genePro/apps.shtml.

12. Wiggerts, T.A; Using clustering algorithms in legacy systems remodularization.

Reverse Engineering, 1997. Proceedings of the Fourth Working Conference on 6-

8 Oct. 1997 Page(s):33 – 43.

13. Mitra, S; Acharya, T; Data mining : multimedia, soft computing, and

bioinformatics. 2003 New York ; Chichester : Wiley.

14. Tjortjis, C; Samee, U.; Keane, J.; Layzell, P; Clustering source code as a means to

program comprehension. School of Informatics, University of Manchester.

15. Jain, A. K.; Dubes, R.C; Algorithms for clustering data. 1998. Englewood Cliffs:

Prentice-Hall.

16. Jain, A. K.; Murty, M. N.; Flynn P. J; Data clustering: a review. September 1999.

ACM Computing Surveys (CSUR), Volume 31 Issue 3.

17. Tzerpos, V.; Holt, R.C; ACDC: an algorithm for comprehension-driven

clustering.Reverse Engineering, 2000. Proceedings. Seventh Working Conference

on 23-25 Nov. 2000 Page(s):258 – 267.

http://www.scanalytics.com/products/genePro/apps.shtml

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

121

18. Tzerpos, V.; Holt, R. C; Mojo: a distance metric for software clustering. Reverse

gineering, 1999. Proceedings. Sixth Working Conference on 6-8 Oct. 1999

age(s):187 – 193.

19. Mitchell, B.S.; Mancoridis, S; Comparing the decompositions produced by

software clustering algorithms using Similarity measurements. Software

Maintenance, 2001. Proceedings. IEEE International Conference on 7-9 Nov.

2001 Page(s):744 – 753.

20. Rousidis, R.; Tjortjis, C.; A java code analyzer for data mining. School of

Informatics, University of Manchester.

21. Kanellopoulos, Y; Tjortjis, C.; Data mining source code to facilitate program

comprehension: experiments on clustering data retrieved from c++ programs.

IEEE 12th International Workshop on Program Comprehension (IWPC 2004), pp

214-223, 2004, ISSN/ISBN: 0-7695-2149-5.

22. Mancoridis, S.; Mitchell, B.S.; Rorres, C.; Chen, Y.; Gansner, E.R; Using

automatic clustering to produce high-level system organizations of source code.

Program Comprehension, 1998. IWPC '98. Proceedings., 6th International

Workshop on 24-26 June 1998 Page(s):45 – 52.

23. Sartipi, K.; Kontogiannis, K.; Mavaddat, F; Architectural design recovery using

data mining techniques. Software Maintenance and Reengineering, 2000.

Proceedings of the Fourth European, 29 Feb.-3 March 2000 Pages:129 – 139.

24. Chenchen, X.; Tzerpos, Y; Software Clustering Based on Dynamic Dependencies.

Software Maintenance and Reengineering, 2005. CSMR 2005. Ninth European

Conference on 21-23 March 2005 Page(s):124 – 133.

25. Schwanke, R. W; An intelligent tool for re-engineering software modularity.

Software Engineering, 1991. Proceedings., 13th International Conference on

13-16 May 1991 Page(s):83 – 92.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

122

26. Malan, R; Bredemeyer, D; Functional Requirements and Use Cases. June 1999.

Resources For Software Architects. www.bredemeyer.com

27. Tzerpos, V.; Holt, R.C; On the stability of software clustering algorithms.

Program Comprehension, 2000. Proceedings. IWPC 2000. 8th International

Workshop on 10-11 June 2000 Page(s):211 – 218.

http://www.bredemeyer.com/

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

123

 Bibliography

1. Collier,K.; Carey,B.; Sautter,D.; Marjaniemi,C.; A methodology for evaluating

and selecting data mining software. System Sciences, 1999. HICSS-32.

Proceedings of the 32nd Annual Hawaii International Conference on, Volume:

Track6, 5-8 Jan. 1999 Pages: 11 pp.

2. Fayyad, U.; Shapiro, G, P.; Smyth, P; The KDD process for extracting useful

knowledge from volumes of data. November 1996. Communications of the

ACM, Volume 39 Issue 11.

3. Ganti, V.; Gehrke, J.; Ramakrishnan, R; CACTUS—clustering categorical data

using summaries. August 1999. Proceedings of the fifth ACM SIGKDD

international conference on Knowledge discovery and data mining.

4. Gibson, A.; Kleinberg, J.; Raghavan, P; Clustering categorical data: an approach

based on dynamical systems. February 2000. The VLDB Journal — The

International Journal on Very Large Data Bases, Volume 8 Issue 3-4.

5. Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for

categorical attributes. Information Systems 25 (2000) 345—366.

6. Agrawal, R.; Imieliński, T.; Swami, A; Mining association rules between sets of

items in large databases. June 1993 ACM SIGMOD Record , Proceedings of the

1993 ACM SIGMOD international conference on Management of data, Volume

22 Issue 2.

7. Tjortjis, C; Gold, N; Layzell, P; Bennett, K.; From system comprehensioni to

program comprehensioin. Proc. IEEE 26th Int. Computer Software Applications

Conf. COMPSAC 02), pp 427-432 ISSN/ISBN: ISBN 0-7695-1727-7.

http://portal.acm.org/citation.cfm?id=240464&coll=portal&dl=ACM&CFID=41340912&CFTOKEN=84671447
http://portal.acm.org/citation.cfm?id=240464&coll=portal&dl=ACM&CFID=41340912&CFTOKEN=84671447
http://portal.acm.org/citation.cfm?id=312201&coll=portal&dl=ACM&CFID=41340912&CFTOKEN=84671447
http://portal.acm.org/citation.cfm?id=312201&coll=portal&dl=ACM&CFID=41340912&CFTOKEN=84671447
http://portal.acm.org/citation.cfm?id=764217&coll=portal&dl=ACM&CFID=41340912&CFTOKEN=84671447
http://portal.acm.org/citation.cfm?id=764217&coll=portal&dl=ACM&CFID=41340912&CFTOKEN=84671447

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

124

8. Chen, K; Tjortjis,C; Layzell, P; A method for legacy systems maintenance by

mining data extracted from Source code. Case studies of IEEE 6th European

Conf. Software Maintenance and Reengineering, (CSMR 2002), pp 54-60.

9. Tjortjis,C; Sinos, L; Layzell, P; Facilitating program comprehension by mining

association rules from source Code. Proc. IEEE 11th Int. Workshop Program

Comprehension (IWPC 03), pp 125-132 ISSN/ISBN: ISBN 0-7695-1883-4.

10. Davey, J.; Burd, E; Clustering and concept analysis for software evolution.

September 2001. Proceedings of the 4th International Workshop on Principles of

Software Evolution.

11. King, M.A.; Elder, J.F., IV; Gomolka, B.; Schmidt, E.; Summers, M.; Toop, K.;

Evaluation of fourteen desktop data mining tools. Systems, Man, and Cybernetics,

1998 IEEE International Conference on, Volume: 3 , 11-14 Oct. 1998 Pages:2927

– 2932 vol.3.

12. Vehvilainen, R; What is preventive software maintenance? Software

Maintenance, 2000. Proceedings. International Conference on , 11- 14 Oct. 2000

Pages:18 – 19.

13. Tzerpos, V.; Holt, R.C; Software botryology. Automatic clustering of software

systems. Database and Expert Systems Applications, 1998. Proceedings. Ninth

International Workshop on 26-28 Aug. 1998 Page(s):811 – 818.

14. C.M. De Oca and D.L Carver, “Identification of Data Cohesive Subsystems Using

Data Mining Techniques”, Proc. Int’l Conf. Software Maintenance and

Reengineering (CSMR 2002), IEEE Comp. Soc. Press, 2002, pp. 54-60.

http://portal.acm.org/citation.cfm?id=602494&coll=portal&dl=ACM&CFID=42458836&CFTOKEN=95814681

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

125

 Appendix I

 The KDD Process

 Patterns

 Target data Transformed

 Preprocessed data

 data

 Figure AI: An overview of the steps comprising the KDD process.

 Data

Knowledge
Selection

Preprocessing

Transformation
Data Mining

Evaluation

-- -- -

-- -- -

-- -- -

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

126

 General Algorithm for Hierarchical Clustering

• Step 1. Compute the proximity matrix containing the distance between each

pair of patterns. Treat each pattern as a cluster.

• Step 2. Find the most similar pair of clusters using the proximity matrix.

Merge these two clusters into one cluster. Update the proximity matrix to

reflect these merge operations.

• Step 3. Stop the clustering process if all patterns are in one cluster or some

termination criteria is met. Otherwise, go to step 2.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

127

 Appendix II

This appendix shows all the equations used in this project for calculating similarities

between functions based on global variables, local variables, parameter types and

return types. All these equation are similar to [14] with few changes made to better

suite the equations for testing purposes.

Similarity Based on Global Variables (SGV):

The equation for finding the Similarity between two functions based on the use of

global variables is.

SGV = WUGV.SUGV + WPGV.SPGV / WUGV + WPGV

Where

WXXX stands for the weight factor that is applied to show the relevant importance of

the metrics specified by SXXX.

SUGV = Similarity based on user-defined global variables.

SPGV = Similarity based on pre-defined variables.

User Defined Global Variable (SUGV):

The similarity based on user-defined global variables can be calculated by the

following equation.

 SBasic + SComplexity + Susage

SUGV =

3

SBasic = augv / augv + bugv + cugv.

Where

augv = Number of (user-defined) global variables used by both the functions being

compared.

bugv , cugv = Number of uncommon (user-defined) global variables used by the two

functions.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

128

 
ugv

1

a

 No. of data itmes in a GV / max. No. of data items in any GV.

SComplxity =

augv

Thus a global variable will contribute more to this metric if it is based on more

specialized type, that is one with more data members, whereas an elementary global

variable will have a smaller contribution.

 
ugv

1

a

 2 / No. of functions using the global variable.

Susage =

 augv

Thus if a global variable is used predominantly by the two functions being compared,

then it will contribute more to the similarity metric as compared to the global variable

that is used by many functions.

Pre-Defined Global Variable (SPGV):

 SBasic + Susage + CComplexity

SPGV =

 3

SBasic = apgv / apgv + bpgv + cpgv.

Where

apgv = Number of (pre-defined) global variables common in the two functions.

bugv , cugv = Number of (pre-defined) global variables not common in the two

functions.

 
pgv

1

a

 2/No. of functions using the global variable.

Susage =

 apgv

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

129


pgv

1

a

 No. of data itmes in a GV / max. No. of data items in any GV.

SComplxity =

apgv

Similarity based on local variable types (SLV):

The equation for finding the Similarity between two functions based on the use of

local variables is.

SLV = WULV.SULV + WPLV.SPLV / WULV + WPLV.

Where:

WXXX stands for the weight factor that is applied to show the relevant importance of

the metrics specified by SXXX.

SULV = Similarity based on user defined local variable type.

SPLV = Similarity based on predefined local variable type.

User Defined local Variable types (SULV):

 SBasic + Scomplexity + Susage

SULV =

 3

Where:

SBasic = aulv / aulv + bulv + culv.


ulv

1

a
No. of dataitems in a LV / max. No. of dataitems in a LV.

SComplxity =

 aulv

 
ulv

1

a

2 / No. of functions using the local variable type.

Susage =

 aulv

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

130

Pre-Defined local Variable type (SPLV):

 SBasic + Susage + Scomplexity

SPLV =

 3

Similarity based on formal parameter type (SPU):

SPT = WUPT.SUPT + WPPT.SPPT / WUPT + WPPT.

SUPT = Similarity based on user-defined formal parameter types.

SPPT = Similarity based on pre-defined formal parameter types.

User Defined formal parameter type (SUPT):

 SBasic + Scomplexity + Susage

SUPT =

 3

SBasic = aupt / aupt + bupt + cupt.


upt

1

a

 No. of entities in a PT / max. No. of entities in a PT.

SComplxity =

 aupt

 
upt

1

a

 2 / No. of functions using the parameter type.

Susage =

 aupt

Pre-Defined Parameter type (SPPT):

 SBasic + Susage + Scomplexity

SPPT =

 3

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

131

Similarity based on return type (SRT):

 SBasic + Scomplexity + Susage

SRT =

 3

Where SBasic = 1 if the two parameters are same type otherwise its zero,

SComplxity = No. of data items in a RT

 Max. No. of data item in a return type

 2

Susage =

 No. of functions using the parameter types.

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

132

 Appendix III

The contents of this appendix are related to the User interface part of the project.

User interface Options for class clustering are:

 Figure AIII.1 Select class attributes to perform clustering

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

133

 Figure AIII.2 Specialized Options for class clustering

 Figure AIII.3 Class Clustering Options

Clustering Source Code To Facilitate Program Comprehension

Student: Behram Khan Page
Supervisor: Christos Tjortjis

134

 Figure AIII.4 Class Weight Options

