

Electricity usage recommender
system with limited input data

Yelyzaveta Al-Dara

Main academic Supervisor: Prof. Christos Tjortjis, International Hellenic University

(IHU).

Academic co-supervizor:

Partner supervisor:

Prof. Zacharie De Grève, University of Mons (UMONS).

Thibaut Piraux, WeSmart.

A Master Thesis submitted for the Erasmus Mundus Joint Master

Degree on Smart Cities and Communities (SMACCs)

June 2021

University of Mons, Heriot Watt University, International Hellenic University,

University of the Basque Country

-ii-

Abstract

Recommender Systems (RS) in the field of smart grids are gaining popularity. They help

the consumers to make corrections to their behavior in order to assist them with achieving

their goals and interests. However, the creation of a RS requires the availability of some

previously existing data that can describe the interests of the users. In real life problems

may arise when creating the RS due to the limited data available. In the literature these

problems are often referred to as “cold start” problems.

In this work, the problem of creating an electricity usage RS, when limited data are avail-

able to be used as an input, is addressed. The input data was limited to the values of the

whole-house aggregated electrical power consumption measured with a constant fre-

quency. Data that describes the general characteristics of the building was also utilized.

This is namely the type, location and the climate of the area where the building is situated.

The usage of a disaggregation algorithm was chosen as a first step included at the begin-

ning of the RS. The suggestion is to utilize one of the training-less disaggregation algo-

rithms based on the graph signal processing. Nevertheless, other training-less disaggre-

gation algorithms could also be embedded at this part of the RS.

The second part is the RS itself, which is based on the principle of Collaborative-Filtering

(CF) RS using the descriptive data to identify the neighboring buildings.

The results of the validation of the RS showed that it can generate recommendations with

high accuracy in most of the cases. However, the accuracy drops when each of the neigh-

boring buildings was identified based on the match of different descriptive features with

the target building. Thus, some suggestions to improve the accuracy are also introduced.

Keywords: Recommender System (RS), Collaborative-Filtering (CF), Appliance dis-

aggregation, Python.

Yelyzaveta Al-Dara

21/06/2021

 -iii-

Table of Contents

ABSTRACT .. II

TABLE OF CONTENTS .. III

1 INTRODUCTION .. 1

2 THEORETICAL BACKGROUND.. 5

2.1 DATA ANALYTICS .. 5

2.1.1 Data preprocessing ... 5

2.1.2 Data analysis ... 6

2.1.3 Data postprocessing ... 7

2.2 SMART GRIDS ... 7

2.3 DATA ANALYTICS IN SMART GRIDS ... 8

2.4 RECOMMENDER SYSTEMS (RS) .. 9

2.5 RECOMMENDER SYSTEMS FOR SMART GRIDS ... 10

3 RELATED WORK .. 13

3.1 RECOMMENDER SYSTEMS USING AGGREGATED DATA 13

3.2 RECOMMENDER SYSTEMS USING DISAGGREGATED DATA 14

3.3 COMPARATIVE SUMMARY OF RECOMMENDER SYSTEMS 16

3.4 INTRUSIVE DISAGGREGATION ... 17

3.5 NON-INTRUSIVE DISAGGREGATION .. 18

4 METHODOLOGY ... 19

4.1 COLD-START PROBLEM .. 19

4.2 FACTORS INFLUENCING RECOMMENDATION RATINGS 20

4.3 DESCRIPTION OF THE SYSTEM ... 21

4.4 NILM MODEL .. 22

4.4.1 Simplified explanation... 23

4.4.2 Detailed description .. 28

4.5 COLLABORATIVE-FILTERING MODEL .. 33

5 EXPERIMENTAL RESULTS ... 41

5.1 ELECTRICITY CONSUMPTION DATASET .. 41

-iv-

5.2 REDD DATA .. 42

5.3 RESULTS OF THE NILM MODEL ... 46

5.4 RESULTS OF THE RECOMMENDER SYSTEM ... 49

6 CONCLUSIONS AND FUTURE WORK ... 59

BIBLIOGRAPHY ... 62

APPENDIX 1 .. 69

APPENDIX 2 .. 71

APPENDIX 3 .. 81

APPENDIX 4 .. 83

APPENDIX 5 .. 87

APPENDIX 6 .. 89

 -1-

1 Introduction

Recommender Systems (RS) are gaining popularity as such systems are created for dif-

ferent purposes. With the development of society and with the tremendous increase in the

demand for products and the variety of available products on the market, the competition

among manufacturers increases. RS are being developed to help consumers choose prod-

ucts [1] that suit their preferences and needs, out of the many options available on the

market. This serves the interests of consumers by making it easier to find suitable prod-

ucts. RS also serve the interests of manufacturers by targeting consumers that are most

likely to be interested in the product, which increases the advertisement effectiveness.

The most popular types of RS are the ones with commercial purposes advertising products

like movies [2], cosmetics, food etc. However, RS can also be used for other purposes

which are not meant to sell products.

One of the fields where RS can be used for non-commercial purposes is the field of smart

grids. RS can suggest to the participants of a smart grid some actions that can improve

the efficiency of their performance as smart grid players or of the system as whole. The

RS can also play a vital role in assisting the users in reducing their energy bills and reduce

their power consumption. In these terms RS can be very effective and helpful.

When there are already some existing data that can be used to develop the RS such as

data about users, their preferences, ratings and feedbacks, data about the preferences of

the target user, their feedbacks and ratings, many widely used algorithms can be applied

to develop a RS. The challenge at this point arises when there is a need to create a RS for

the first time, when there are no previously recorded data that can be used to train the

recommender model.

This is the challenge that was faced by WeSmart in the attempt to develop a RS that would

benefit the customers. The aim of the company was to create a RS that would give the

customers useful recommendations on how to reduce their electricity consumption and

their bills. However, the available data was limited to the values of electricity consump-

tion of the building measured with constant frequency. There was no data about any rat-

ings from the customers of any previously given recommendations that could be relied

on when developing the RS.

-2-

Thus, this work was written in collaboration with WeSmart addressing this challenge that

was encountered by the company and is relevant to many other cases when a new RS with

limited input data is designed.

This situation is particularly relevant when developing a RS for less widely spread appli-

cations. In this case it can be challenging even to find some publicly available data to

train the model on. This highlights the importance of finding possible solutions to this

problem in order to develop the RS based on the limited amount of available data. The

possibility of recycling the output of the system by adding these to the system database

could also be an added feature to the system. This could make the system continuously

improving with increasing accuracy.

So, this work addresses the problem of developing a RS in these conditions when only a

limited amount of data is available. The application of the RS is in the field of smart grid

favoring the interests of consumers to reduce their electricity bills.

The aim of this work is to meet the challenges that arise when designing an electricity

usage RS suitable for limited input data.

Its main objectives are:

• To suggest a viable solution producing recommendations for electricity usage

with limited available data.

• To evaluate the accuracy of the suggested solution and propose ways to improve

the accuracy of the system in future.

In order to meet the objectives, an overview of the RS in general is provided in addition

to RS in the context of smart grids. Information on the basic principles of how RS work

and what are the necessary data for developing such system was researched. After that, a

research of the state-of-the-art in this field was conducted, along with research on other

issues pertinent to the creation of the system.

This thesis comprises the following chapters:

1) Theoretical background: consists of five sections in which the basic concepts used

in this work are explained, including data analytics, smart grids, RS and the areas

of intersection of these concepts.

2) Related work: gives an overview about existing RS related to electricity usage and

smart grids, with a comparative summary of published work.

 -3-

3) Methodology: details the proposed RS, explains each of its parts and provides

suitable schematic representations.

4) Experimental results: provides an overview of the available datasets for electricity

consumption. The data to be used for the evaluation of both the disaggregation

part and the Collaborative Filtering (CF) part of the proposed system are de-

scribed. The experimental results are presented along with their analysis, discus-

sion and evaluation.

5) Conclusion and future work: includes the final discussion of the system, its ad-

vantages and disadvantages, in addition to pointers for improvement of system

accuracy and quality in the future.

-4-

 -5-

2 Theoretical background

Since this work is dedicated to RS in the context of electric grids and smart grids in par-

ticular, a theoretical background, based on which further research is developed, is pro-

vided here.

2.1 Data analytics

Data analytics is a popular term nowadays. The main distinction between data mining and

data analytics is that the main purpose of data mining is to find some useful patterns in

data while data analytics is an interdisciplinary term including the use of computer sys-

tems for analyzing datasets to make some decisions [3]. In other words, data mining is

one of the key processes of data analysis [4]. Data analysis is conducted in almost every

field, such as technology, healthcare, mobility, urban planning, smart grids etc.

When applying data analysis, the process normally includes a number of steps [3]. The

first step is the assessment and selection of data, followed by cleaning and filtering. After

that, a visual interpretation of the data is presented and analyzed. After the results of the

analysis are ready, they should be adequately interpreted and evaluated. To summarize,

four main phases of a data analysis project can be distinguished as shown in Figure 1

[5]Error! Reference source not found..

Figure 1: Phases of data analysis projects [5]

2.1.1 Data preprocessing

According to [6] before data analysis is conducted, data should be collected, selected and

preprocessed. It is necessary to preprocess the data received from measurements con-

ducted in real life, because these data can contain errors and discrepancies, which result

in data being incomplete, inconsistent, noisy. Furthermore, in many cases the amount of

available data might be large and some of these data can be irrelevant for each task and

-6-

each specific result that is meant to be achieved analyzing these data. Thus, this step helps

to select out of the multitude of data available the most relevant.

Duplicated records and anomalies are eliminated. Preparation produces data of higher

quality by recovering the incomplete data, correcting errors and resolving any conflicts

that may be present. Apart from that, [7] suggests that data should be cleaned by filling

the missing values, smoothing out noisy data, correcting the inconsistencies of the data

and resolving the redundancies. After that, data could be combined from multiple sources,

if necessary, normalized and generalized. In case the amount of data seems to be large for

the purpose of the work, data reduction can be applied. Discretization could be also ap-

plied in some cases. From this it can be said that there are no standard steps that should

be applied to the dataset to be preprocessed. The literature suggests different steps to

preprocess data. However, it can be concluded that data preprocessing is an important

step of the data analysis process, which should not be skipped. Depending on the available

data, it can be verified which preprocessing methods are relevant for each case.

2.1.2 Data analysis

Data can be analyzed using different techniques. Depending on their content, data can be

quantitative or qualitative. Quantitative data represents measured quantities and normally

represented by numbers. For example, 35kWh, 10MW, 15 minutes etc. Qualitative data

gives more descriptive information that cannot be represented by numbers. For example,

location, season, the type of building etc. In this work the tasks will be performed mainly

by using the combination of available quantitative and qualitative data. The quantitative

data represents the amount of electricity consumed and measured every 15 minutes in

kWh. While the qualitative data represents the characteristics of the building such as the

type, location and climate.

There are several existing techniques for data analysis. One of the common techniques

for better understanding and analyzing quantitative data in particular, is visualization. It

can be performed using any visual tool that makes it easier for people to see the structure

of the data and understand the trends and patterns [8]. This technique has been used in

many scientific papers and publications in various fields. Data can be visualized using pie

charts [9], line graphs [10], bar charts [11] and other visual tools.

Correlation is a technique used to find the dependencies between features in data. It helps

to observe the relationship between features and find possible causes of some occurring

 -7-

effects. While regression focuses on estimating the function which defines the depend-

ency between variables.

The difference between classification [12] and clustering is that classification is super-

vised learning with predefined classes, while clustering is unsupervised learning with no

predefined classes.

So, in classification there are some previously labeled data that are fed into the model.

These data are used to train the model to be able to identify which object belongs to which

class. After the training stage is done, the model is run on testing dataset which is not

labeled. The task of the classification model is to assign each item of the testing dataset

to one of the classes that the model was trained on. While clustering does not have training

dataset. It uses unlabeled data as input. After that, it forms groups, which are referred to

as clusters. These clusters contain the items of the database that are similar to each other

based on some predefined similarity measures.

2.1.3 Data postprocessing

After data analysis is conducted and the results are obtained, the results are interpreted,

documented and evaluated. In other words, the results can be either directly in the system

or as a base for it. The results can be also visualized, summarized, transformed to a dif-

ferent format and tested [13]. This work will also use data analysis to extract information

from the data and support making decisions to provide electricity usage recommenda-

tions.

2.2 Smart grids

The definition of the term “smart grid” varies from one source to another. Smart grids

were defined by the European Union (E.U.) as electrical networks with intellectual inte-

gration of the interaction between the users in the network, which enables bi-directional

power flows. Smart grids must ensure security, cost-effectiveness and environmental sus-

tainability [14].

Another definition for a smart grid was given by Paul et al. [15], as a combination of

power generation and distribution system in one frame, which makes the system cleaner.

This definition in some way is different and focused more on the ecological aspect that

this term incorporates.

-8-

While conducting research on the improvement path of China’s smart grid security con-

trol Teng defined a smart grid as the power grid that integrates modern computer, infor-

mation, communication and advanced sensor technologies into its physical base [16]. The

structure of a typical smart grid and the bi-directional information flow in it was clearly

depicted in [17] as shown in Figure 2.

Generation Transmission Distribution Consumption

Information flow

Figure 2: Smart grid structure [17]

The participants of a smart grid can be divided into three categories:

• Network operators: transmission and distribution network operators.

• Users: consumers, generators and storage owners.

• Other participants: suppliers, aggregators, applications and service providers [18].

The interaction of these participants with each other over the grid, the information and

communication devices used, the information flow and the physical structure of the power

network itself, form a smart grid.

2.3 Data analytics in smart grids

Data analytics is a powerful tool that is nowadays frequently used in the field of smart

grids. There are a variety of applications of data analytics in smart grids. A brief summary

of the uses of data analytics techniques and their applications in smart grids is depicted

in Figure 3 [19].

 -9-

Figure 3: Taxonomy of smart meter data analytics [19]

Data analytics can favor energy market players on different levels. For consumers, indi-

vidual load forecasting is performed in order to increase the efficiency of energy con-

sumption [20]. However, most of the works in data analytics from the consumer side is

focused mainly on achieving load forecasting to adjust the amount of generated energy.

It can be noted that data analytics can also be used as a tool to increase the efficiency of

electrical energy usage from the consumer side by providing the users with recommen-

dations contributing to reducing the electricity bills costs [21].

2.4 Recommender Systems (RS)

With the rapid development of technologies and the available products on the market, the

popularity of RS is growing tremendously. A RS was defined [22] as a technique or a tool

that provides the user with suggestions of items. It was mentioned by Massa in [23] that

the RS is “a technique that is able to cope with Information Overload problem”. RS are

indeed effective tools to tackle the challenges caused by the huge amount of information

available. They automate the process of selecting relevant items for users and make it

easier for the users to choose items that are right for them out of many similar items

available.

In general, the items that RS suggest can be of any type such as movies, music, food,

magazines, furniture etc. RS can be also used to suggest products for users based on in-

formation about the products they have purchased previously. For example, Netflix RS

-10-

that recommends movies and series to the user based on the movies and shows that the

user has searched for or watched previously or based on the preferences set manually by

the user. In fact, Netflix has complex algorithms that define the logic of their RS. The

case of Netflix RS gained much interest among researchers that even some papers and

theses have been dedicated to it [24], [25].

Another type of items that can be suggested by RS could be actions. RS can advise users

to do some actions depending on some other actions that the user has done previously or

depending on some other factors, such as user characteristics, categories etc. For example,

it could be a system that recommends to a consumer in a smart grid to install solar panels

based on their electricity consumption profile that shows high consumption of electricity

from the grid during the day.

RS were classified into three categories [26]:

Collaborative filtering (CF)-based RS:

• User-to-user RS: This type of system is based on recommending to the user items

that other users with similar characteristics have chosen or have been given a high

rate previously.

• Item-to-item systems: The main idea behind these systems is that an item is con-

sidered to be in one category if it has the same users’ like or dislike.

Content based RS: The logic of this type of system is based on recommending items that

have some similarities to the items that the user has already purchased or were highly

rated in the past [22]. In other words, these systems do not depend on the information

provided by other users.

Hybrid RS: This type of RS combines several types of RS. The motivation for that is to

eliminate the drawbacks that some types of systems may have.

2.5 Recommender systems for smart grids

Clustering is suggested as a tool for peaks shaving [27]. This technique can be used for

identifying patterns in energy consumption, which could also be applied for energy mod-

els predictions. At the same time, by the means of clustering RS can be developed [28].

It has been denoted that in a large number of literature clustering is used for developing

RS in the context of smart grids.

 -11-

As a tool to improve the quality of RS including the context of smart grids in particular,

past responses to recommendations [29] can be utilized for generating more effective rec-

ommendations for the consumer in future. Another point that can improve the quality of

provided recommendations is providing incentives that are appropriate to the consumer

[29]. In this regard the socio-economic state, specific aspects of the building, location,

type of the facility etc. should be taken into account.

Overall, the usage of the RS in the field of smart grids is gaining popularity with new

systems continuously being developed. These RS can target different goals and give dif-

ferent recommendations in the context of smart grids. Some of the systems can recom-

mend to purchase new products that can improve the performance of the participant of

the smart grid or the system in general. Other RS can suggest certain actions that the

players of the smart grid can take to achieve some goals.

Chapter 3 provides more detailed analysis of the existing RS to be used in the context of

smart grids.

-12-

 -13-

3 Related work

Many papers have been published focusing on developing RS for smart grid users. Dif-

ferent types of RS were proposed. Each type provides a certain category of recommenda-

tions and targets certain participants of the smart grid. Some papers used the aggregated

consumption data, others used a variety of methods in order to obtain the consumption

data of each individual appliance of the dwelling.

The review starts by introducing some of the most popular RS for smart grids, followed

by analyzing works that used aggregated data directly. After that, works that utilized dis-

aggregated data for their RS will be discussed.

A summary of the most popular RS for smart grids was provided in [30]. According to it,

some of the most widely spread smart grid RS are the following types:

• Energy Saving Electrical Appliance RS

• Electricity Retail Plan RS

• Household Demand Response Schedule RS

• Other RS, such as systems that recommend electrical appliances or products to

utilities etc.

3.1 Recommender systems using aggregated data

An example of this type of RS is a system recommending electricity retail plans to the

consumers that was developed without installing additional smart devices in the facility

[31]. In this case the system recommends electricity retail plans depending on the overall

household energy consumption data. The system was based on clustering the households

by similarity of the electricity consumption curves, then recommending same retail plans

for consumers of the same cluster. The system also has some space for improvement. In

case of a new plan introduced, the system will not be able to recommend it to the users.

Another note is that the individual characteristics such as socio-economic state, geo-

graphic location, type of the consumer (residential, industrial etc.) of each user that affect

the ability of choosing a certain plan are not considered in this system. Another system

recommending tariff plans for users was developed in [32] with the use of aggregated

consumption data.

-14-

3.2 Recommender systems using disaggregated
data

Electricity retail plans RS with enhanced accuracy was developed based on disaggregated

data in [33]. For the development of this recommender system data from the Smart Grid

Smart City (SGSC) project. These data include the overall consumption of electrical

power of the dwelling and the power consumption of at least four appliances present in

the dwelling. Although this RS was tested and proven by the authors to be effective and

accurate, the computational speed remains to be an important area that requires for im-

provements to be done in.

Another prototype of a RS for saving electrical energy was proposed in [30]. The sche-

matic representation of the system is provided in Figure 4 [30].

Figure 4: Energy Saving Electrical Appliance RS scheme [30]

This recommender system takes the overall energy consumption of the dwelling as an

input. Then, it applies Non-Intrusive Load Monitoring (NILM) technique in order to dis-

aggregate the electricity consumption of the dwelling into electricity consumption pro-

files of each individual appliance. From these profiles, the system extracts some appliance

utilization features and feeds them to the user knowledge database. In addition, some

other data can be added to the user knowledge database, such as the location, the type of

the building etc. Also, user interest data are stored in the user knowledge database. These

 -15-

data can be extracted based on some previous history of the user or by direct questioning

about the interests of the user. After that, the data in the user knowledge database are used

to develop a model which includes all the inputs and outputs the recommended energy

saving appliance list and suggests it to the user.

Another example of a RS that uses disaggregated electricity consumption data is the

multi-agent RS proposed in [21]. The RS consists of three modules. Each of the modules

has agents. Each of the agents is entitled to do a certain task in the RS. There is also a

Control agent which monitors and coordinates the operation of the agents.

The first module is Device module where Device agents operate. Their task is to read the

measurements from the smart devices inside the building. The communication between

the Device agents and the smart devices is performed via specific communication proto-

cols. The Device agents obtain data about the electricity consumption from the smart de-

vice with a constant frequency. Each Device agent communicates only with one smart

device. Thus, the number of Device agents is defined by the number of smart devices in

the building.

The second module is Crawler module. This module has the Crawler agent, the main task

of which is to extract information about the prices of electricity from the web page. The

agent extracts and records this information every twenty-four hours.

The third module is the Recommendation module. The operation of this module is per-

formed by three agents: Filtering agent, Behavior agent and Recommendation agent.

The main task of the Filtering agent is to filter the data that was obtained by the Device

agent and the Crawler agent. The Behavioral agent uses the data provided by the Filtering

agent to extract the behavioral patter of how each device is being used by the user. The

last agent in this system is the Recommendation agent. This agent receives the data pro-

vided by the Behavioral agent and generates and provides the recommendations for the

user.

All the modules and agents can communicate with each other forming by that a complete

RS that can make short- or long-term recommendation for the user to reduce their elec-

tricity consumption. Although this system well-designed and provides a variety of useful

recommendations to the user, it has some drawbacks. These drawbacks are pointed out

and discussed in more details in section 3.4.

-16-

3.3 Comparative summary of recommender sys-
tems

As a summary and an explanation of why disaggregating the electricity consumption data

plays such a vital role in providing recommendations to the users and why this work fo-

cuses on this field in particular, Table 1 was designed to depict the existing works on

electricity usage recommendations.

Table 1: Comparison of published works on electricity usage RS

Recommender

system
Paper

Type of data

used

Type of

recom-

menda-

tions

AgentSwitch

“Recommending Energy Tariffs

and Load Shifting

Based on Smart Household Us-

age Profiling” [32]

Both aggre-

gated and dis-

aggregated

data

Personal-

ized rec-

ommenda-

tions of

energy tar-

iffs & load

shifting

recom-

menda-

tions

Multiagent rec-

ommendation

system

“Multi-Agent Recommendation

System for Electrical

Energy Optimization and Cost

Saving in

Smart Homes” [21]

Disaggregated

data

New hours

in which

to use the

appliances

Residential En-

ergy Usage Rec-

ommendation

System

(REURS)

“Personalized Residential En-

ergy Usage Recommendation

System Based on Load Monitor-

ing and Collaborative Filtering”

[34]

Disaggregated

data

Energy-ef-

ficient ap-

pliance us-

age plans

Social Infor-

mation Filtering-

Based RS

“Social Information Filtering-

Based Electricity

Retail Plan RS

for Smart Grid End Users” [31]

Aggregated

data

Retail

plans

Electricity plan

recommender

system (EPRS)

“Collaborative Filtering-Based

Electricity Plan

RS” [33]

Both aggre-

gated and dis-

aggregated

data types

Electricity

retail plans

PRS with Elec-

trical Intrusive-

based Recovery

(EPRS-EI)

“Electricity plan RS with electri-

cal instruction-based recovery”

[35]

Both aggre-

gated and dis-

aggregated

data

Personal

electricity

plans

 -17-

Hybrid collabo-

rative filtering-

based electricity

plan recom-

mender system

(HCF-EPRS)

“Big Data-driven Electricity

Plan RS” [36]

Both aggre-

gated and dis-

aggregated

data

Instruc-

tions in re-

tailer and

plan selec-

tion

Home Area Net-

work (HAN)

“Design and Evaluation of a

Constraint-Based Energy Saving

and Scheduling RS” [37]

Disaggregated

data from

smart plugs

High-level

energy

consump-

tion plans,

electricity

usage

schedules

Based Table 1 a conclusion can be made about the vital role of obtaining the disaggre-

gated electricity consumption data in order to build an electricity usage RS. Among all

the analyzed published work only one RS was based solely on the usage of aggregated

electricity consumption data. In all other cases either disaggregated data were used or

both disaggregated and aggregated data. Thus, in order to develop a reliable RS, disaggre-

gation of the aggregated electricity consumption data is necessary. Below, a discussion

of two way of disaggregation: intrusive and non-intrusive is provided.

3.4 Intrusive disaggregation

A RS that utilizes additional devices measuring the electrical power consumption data of

each device was proposed in [21]. Smart plugs were used as a cost effective and easily

implemented solutions to provide electricity consumption data of each appliance. Possi-

ble recommendations were given three labels: “no recommendation” if it is impossible to

implement it, “short-term recommendation” for devices that can demonstrate a limited

flexibility in their usage and “long-term recommendation” for devices that can be very

flexible in terms of their usage timeframes.

Although the RS developed in [21] was validated by testing, installing an individual smart

plug for each device may be a burden for implementing the system. The decision regard-

ing the number of plugs and the devices to be controlled is to be taken solely by the

consumer. This may cause installing devices that are eventually not used or installing

them in a way that will not contribute significantly to the reduction of electricity con-

sumption. Apart from that, additional installations and interventions into the dwellings

are necessary in order to set up the system.

-18-

3.5 Non-intrusive disaggregation

For the purpose of retrieving the consumption curves of each individual appliance from

the aggregate consumption curve various non-intrusive algorithms can be used. Many

non-intrusive algorithms were proposed and published [38]–[46].

The available data provided by smart meters usually come in form of aggregated data that

represent the electricity consumption of the building or house, without any visible deple-

tion of these data into the consumption of each individual device. In this case disaggre-

gation of the data are necessary to obtain the electricity consumption curve of each par-

ticular device.

Non-Intrusive Load Monitoring (NILM) has supervised and unsupervised methods with

published algorithms. One of the drawbacks of the supervised methods is that in order to

use them some amount of already disaggregated data should be available as a training set.

This might be expensive and difficult to obtain. On the other hand, the unsupervised

methods are easier to implement although they are considered to be less accurate [46].

NILM can be event-based and state-based. Event-based NILM approaches are based on

identifying the event windows, which are the events of switching on or off of an appli-

ance. Each window is characterized by a power raise at the beginning and a power drop

at the end of the window [47]. The state-based NILM approaches are based on represent-

ing the operation of each appliance using a state machine. These approaches normally use

the Hidden Markov Model (HMM) [48].

Some other works were also published proposing NILM algorithms such as [49], where

an unsupervised approach based on the nonparametric factorial hidden Markov model

was proposed. Another unsupervised NILM algorithm was suggested in [50], which is an

unsupervised algorithm based on graph signal processing. This algorithm will be used in

this work to demonstrate how the NILM model can be embedded in the RS and provide

the output for it.

 -19-

4 Methodology

This chapter describes the working principle of the proposed RS. Based on the analysis

of published works, the proposed RS contains a part to disaggregate the whole-house

electricity consumption data, using the output to provide recommendations regarding the

electrical appliances’ usage.

4.1 Cold-start problem

The suggested system is based on the CF principle. In order to implement a CF algorithm,

the similarity between the target user and other users should be measured. Normally, this

can be done using the ratings that the target user has given to the recommendations before

and the ratings that other users have given to these recommendations. After that, users

whose ratings were similar to the ratings of the target user for the same recommendations,

are considered to be the neighbors for the target user. The recommendations, which were

highly rated by neighbors but were not introduced to the target user before, are then sug-

gested to the target user.

However, in the case where there are no data about previous ratings of the target user,

other data can be used to determine the similarity between users. This situation is typically

classified as a the “cold-start problem” in the RS.

The proposed RS tackles the cold start problem. Taking into account that the provided

data include only the aggregated electricity consumption reading from the smart meter

installed in the building and that there is no additional data that can be used to develop

the RS, the cold start problem in this case forms a major issue that should be tackled.

Below a more detailed explanation of the cold start problems encountered when develop-

ing RS are presented.

According to the literature [51] cold start problems can be classified into three categories,

namely:

• New community: This problem is often faced when a new RS is being created.

New community problem incorporates in itself both new item problem and new

user problem at the same time. The reason of this problem is the lack of previously

obtained information or data that could be relied on for making recommendations.

-20-

• New item: This problem occurs when a new item is presented to the RS. In this

case the item does not have any votes yet, which causes that the system cannot

recommend it to anyone. Although in the case that the item has a few votes and

the system is already able to recommend this item, the quality of these recommen-

dations will be doubtful [52].

• New user: This problem occurs when a new user decides to use the system. When

the user has not yet provided any votes, it is difficult to provide personalized rec-

ommendations to the user. Even after the user has provided a few votes, the RS

cannot provide very reliable personalized recommendations until the number of

votes provided by the new user will be enough to do that.

From the above classification, the new user problem is tackled in the suggested system.

To do so, the neighbors of the users are determined not by previously given ratings, but

based on some basic information about the buildings. This information is selected as the

factors that have an influence on the ratings of the recommendations by each user.

4.2 Factors influencing recommendation ratings

Many external factors have a major influence on the electricity consumption behavior in

buildings. These factors also have a major contribution to the answers of many questions

such as “How applicable a certain recommendation is for this particular building?”, “How

effective the application of a certain recommendation is for this particular building?” etc.

Which affects the ratings that each user attributes to each recommendation. Which in turn

influences the predicted rating of the target user for each recommendation. Thus, includ-

ing these factors in the RS and using them as parameters determining the target user’s

neighborhood as an approach to address the new user cold start problem in CF is a rea-

sonable solution.

There are many factors influencing the ratings of the electricity consumption recommen-

dations. Such as climate, building related characteristics (age, size, envelop fabrics etc.),

occupancy rate, socio-economic characteristics (education, culture, income etc.) [53] and

many more. For developing the RS, the factors that are the easiest to obtain were used,

but other factors can be added as well. The factors used to determine user neighborhoods

can be distinguished as follows:

• Location (country): Different countries may have different electricity pricing pol-

icies. Also, the habits, mentality and even the predominating religion in the

 -21-

country can affect how people consume electricity and what electricity consump-

tion recommendations they would prefer the most. For example, the working

hours vary from country to country, which affect the electricity consumption

curve in the offices.

• Climate [53]: The climate or climatic location in which the dwelling is located

influences the needs of the dwelling in cooling and heating. In case of the usage

of electrical appliances for these purposes, this factor affects user ratings of the

suggested electricity consumption recommendations.

• Type: Type of dwelling refers to the type of activities that are mainly practiced

there. For example, this can be a library, restaurant, canteen, residential house etc.

4.3 Description of the system

The system focuses on providing recommendations targeting to reduce the level of elec-

tricity consumption and to reduce the cost of the energy bills paid by the customer. The

schematic representation of the RS is depicted on Figure 5.

No

NILM

Model

Appliance

Utilization Data

Basic Information
(type of building,

location, climate etc.)

Smart Meter

User

Database

Feedback with the rating of

each recommendation

Provide recommendations that

were provided to the similar users

with the average rating of

recommendations

Compare data about the target

user with the database

Find similar users

User-to-user

collaborative filtering

1

2

Ratings

Aggregated

electricity

consumption data

Provide all recommendations

regarding the appliances in

the building
Yes

No

Figure 5: Schematic representation of the proposed RS

-22-

The proposed RS is based on the principle of CF type of RS. First, two types of data are

collected from the user:

• Aggregated electricity consumption data, extracted from the smart meter installed

in the building.

• Basic information about the user, such as the location of the building (country,

city etc.), its type (residential house, school, office etc.), the climate where the

building is situated and other features that can affect electric energy consumption

patterns.

After the aggregated electricity consumption data are collected, they are used as an input

for the NILM model that disaggregates the data and provides information about what

appliances are used inside the building forming the appliance utilization data.

After that, the appliance utilization data together with the basic information data are fed

into the user database.

After the user database is formed, the CF principle of the RS is applied. The system

searches for users that have the highest similarity to the target user, based on their basic

information. After the closest neighboring users are found, the system takes the recom-

mendations that were given to these users and filters them to exclude recommendations

regarding appliances that are not present in the target user building. Then, for each rec-

ommendation, the average value of the given ratings is computed. Finally, the recommen-

dations are given to the target user sorted in descending order of rating values.

The last step of the system is getting feedback from the target user with their rating of the

provided recommendations. These rating are added to the user building profile and this

profile, including the basic information about the user and the feedback, are added to the

database, which improves the accuracy of recommendations in the future.

4.4 NILM model

From the schematic representation of the system (Figure 5) it can be noticed that in order

to disaggregate the whole-house electrical consumption values and find out what electri-

cal appliances are being used, a NILM model is being implemented. Below a detailed

explanation of the NILM model algorithm is provided. The used algorithm was developed

and proposed in [50].

This NILM algorithm was selected due to a number of reasons:

 -23-

• It does not require the presence of a training dataset. Typically, NILM algorithms

require a training dataset to be trained on before running the algorithm with the

test dataset. This training dataset is formed using the disaggregated data from the

buildings that are similar to the target building. However, the useful feature of this

algorithm is that it can be run without the need to be previously trained on similar

data. This feature is useful when addressing the condition of limited input data.

• The algorithm is not specific to a certain type of buildings i.e., it can be used for

residential buildings as well as for schools, offices and other common types of

buildings. This is due to the fact the algorithm labels the discovered appliances on

the very last stage of the disaggregation. Thus, most of the common appliances

can be labeled with the aid of a proper signature database.

Following a detailed description of the algorithm is provided [50]. In order to simplify

the understanding of the working principle of the algorithm it is explained on a simple

example first. Afterwards, a more detailed description is provided.

4.4.1 Simplified explanation

This is a demonstration of the algorithm on a simple example that was done in order to

summarize and clarify the working principle of the algorithm.

The algorithm takes as an input two data files: aggregated electrical power consumption

and signature database.

The aggregated electrical power consumption curve is depicted in Figure 6.

Figure 6: Aggregated electricity consumption curve for the explanatory example

0

20

40

60

80

100

120

140

W
at

ts

Aggregated electrical power consumption

-24-

The second file is the file containing signatures of electrical appliances. These appliances

may or may not be present in the building. In this example the signature database consists

of signatures of three appliances labelled as refrigerator, electrical heater and microwave.

The signatures of each of the appliances are depicted on Figure 7, Figure 8 and Figure 9

respectively.

Figure 7: Signature of “Refrigerator” for the explanatory example

Figure 8: Signature of “Electric heater” for the explanatory example

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

W
at

ts

Refrigerator

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

W
at

ts

Electric heater

 -25-

Figure 9: Signature of “Microwave” for the explanatory example

First, the algorithm identifies the increasing and decreasing power edges. This is repre-

sented on Figure 10.

0

20

40

60

80

100

120

140

W
at

ts

Aggregated electrical power consumption
Increasing edge

Decreasing edge

Figure 10: Increasing and decreasing power edges for the explanatory example

After that, the algorithm forms two clusters: one with increasing edges called positive

cluster and one with decreasing edges called negative cluster (Figure 11).

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

W
at

ts

Microwave

-26-

Positive cluster Negative cluster

Figure 11: Positive and negative clusters for the explanatory example

After that, depending on the magnitude and the time between these edges the algorithm

finds the best match for each edge from the positive cluster with an edge from the negative

cluster as depicted on Figure 12.

2 h 30 min

Figure 12: Edge pairs for the explanatory example

The final step is label matching. At this step the algorithm matches the pairs that were

found with appliance signatures from the signature database. The pair matching the elec-

tric heater and refrigerator are represented on Figure 13 and Figure 14.

 -27-

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

W
at

ts

Electric heater

2 h 2 h

Figure 13: Label matching for electric heater for the explanatory example

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526

W
at

ts

Refrigerator

30 min

Figure 14: Label matching for refrigerator for the explanatory example

It can be noted that in this example there were no match for the edges with the signature

of the microwave. Thus, it is defined that there is no microwave in this building. By re-

peating the label matching for each of the discovered edge pairs the disaggregated elec-

trical power consumption curves can be outputted (represented on Figure 15).

-28-

Figure 15: Disaggregation result for the explanatory example

4.4.2 Detailed description

First of all, the task that has to be solved by the algorithm is represented by [50] (1).

 𝑃𝑡𝑖
= ∑ 𝑃𝑚𝑡𝑖

+ 𝑛𝑡𝑖

𝑚∈Μ

 [50] (1)

where:

𝑃𝑡𝑖
 – total measured active power of at each time instance 𝑡𝑖, where i = 1, …, n;

𝑃𝑚𝑡𝑖
 – contribution of power of each appliance m into the total measured power;

Μ – set of the known appliances in the building;

𝑛𝑡𝑖
 – noise including the unknown appliances and the base load.

So, the task of the algorithm can be simplified to finding 𝑃𝑚𝑡𝑖
 according to [50] (2).

 min
𝑃𝑚𝑡𝑖

|𝑃𝑡𝑖
− ∑ 𝑃𝑚𝑡𝑖

𝑚∈Μ

| [50] (2)

It is an event-based algorithm. The principle of this algorithm is first finding the window

of events. This means that it finds the periods of time when each appliance changes its

state from on to off and vice versa. After that, using a database that includes signatures

of appliances that were formed by other people in the past or by any other means, it

matches each device with its signature that is available in the database. In order to find

the event windows, this approach uses Graph Signal Processing (GSP), that is obtaining

graph signals from indexing a dataset by nodes of a graph. In this work the NILM

0

20

40

60

80

100

120

W
at

ts
Disaggregation result

Refrigerator

Electric heater

 -29-

approach used is based on GSP. In other words, the data are represented in the form of a

graph and its adjacency matrix.

A graph G = {V, A} is built using a set of measurements x, where each node 𝑣𝑖 ∈ 𝑉

represents one active power measurement, while 𝐴 is the adjacency matrix that represents

the edges of the graph. After that, the set of nodes 𝑉 is mapped to a set of complex num-

bers, which represent the graph signal 𝑠. Each of the elements 𝑠𝑖 is indexed by one node

𝑣𝑖 ∈ 𝑉.

The flowchart of the algorithm of the NILM model used is represented in Figure 16 [50].

Figure 16: Flowchart of the NILM model [50]

The algorithm consists of three main steps: edge detection, clustering and feature match-

ing. Clustering step is performed twice. First, the input data are fed to the algorithm. It is

the aggregated power consumption 𝑃𝑡𝑖
, initial threshold 𝑇0, ρ is the scaling factor and 𝐾.

-30-

After that, comes the edge detection step, where using the threshold 𝑇0 and applying the

condition Δ𝑃𝑖 ∈ (−∞, −𝑇0) ∪ (𝑇0, ∞) the set of values Π is generated. Π represents all

possible events that happened in the dataset. An event is defined as switching on/off an

appliance or changing the mode of operation.

The first clustering step is initial clustering where the graph is built. In order to make the

graph, the values from previously generated are used. Each value is a node 𝑣𝑖 of the graph.

At the beginning the value of 𝑠1 is set depending on the value of Δ𝑃1. If Δ𝑃𝑖 > 𝑇0, then

𝑠1 = 1. If Δ𝑃𝑖 < 𝑇0, then 𝑠1 = −1. All the remaining 𝑠𝑗for 𝑗 > 1 are set to 0.

All samples that are statistically similar to 𝑠1 are clustered. To perform the clustering 𝑠∗ is

calculated using [50] (3):

 𝑠∗ = 𝐿2:𝑁,2:𝑁
(−𝑠1)𝐿1,2:𝑁

𝑇 [50] (3)

where:

𝑠∗ – the smoothness optimization solution (minimizes the total graph variation);

(.)# – the pseudo-inverse matrix;

𝑁 – length of the discrete signal 𝑠;

𝐿 – the graph Laplacian operator (𝐿 = 𝐷 − 𝐴), where 𝐷 – diagonal matrix with nonzero

entries 𝐷𝑖,𝑖 = ∑ 𝐴𝑖𝑗𝑗 .

A constant value of 𝑞 is defined and fixed. If 𝑠𝑗
∗ > 𝑞s, then Δ𝑃𝑗 with 𝑠1 is added to the

first cluster of events and removed from Π. That is how the cluster 𝐶1 is formed. After

that this procedure is repeated with the remaining elements of Π forming clusters 𝐶𝑖 until

the set Π is empty. Each cluster 𝐶𝑖 will have either only positive or only negative edges.

After that, the quality of clusters 𝐶𝑖 is evaluated by calculating [50] (4):

 𝑅𝑖 = |
𝜎𝑖

𝜇𝑖
| [50] (4)

where:

𝑅𝑖 – relative standard deviation (RSD);

𝜎𝑖 – standard deviation of cluster 𝐶𝑖;

𝜇𝑖 – mean value of cluster 𝐶𝑖.

The lower the value of 𝑅𝑖, the better the quality of the cluster 𝐶𝑖.

 -31-

The final process of the initial clustering step is defining new thresholds. Two clusters

with the highest RSD are selected. The mean values of these two clusters define the new

thresholds 𝑇𝑃 and 𝑇𝑁 that are used for positive and negative edges respectively.

The second clustering step is refined clustering. In this step all clusters that have 𝑅𝑆𝐷 >

𝐾 (𝐾 is heuristically obtained constant which represents the acceptable precision level of

a cluster) are re-clustered by dividing 𝜌 into 2 in [50] (5).

 𝐴𝑖,𝑗 = 𝑒𝑥𝑝 {−
|𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗)|

2

𝜌2
} [50] (5)

where:

𝜌 – scaling factor;

𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗) – can be Euclidean distance.

After every iteration all clusters which have 𝑅𝑆𝐷 ≤ 𝐾 are removed from the set Π and

saved as final clusters. Clustering process runs until the set Π has no more elements to

cluster.

After that, small clusters can be merged into bigger clusters to ensure that the number of

clusters with increasing power edges equals the number of clusters with decreasing power

edges.

The next step of the algorithm starts after all clusters are formed and Π becomes empty.

This step is called Feature Matching. In this step each “positive” cluster is paired with a

“negative” cluster. The pairs are formed by matching clusters with closest absolute mean

values.

After that, each cluster pair is processed separately. Each element from the “positive”

cluster is matched with an element from the “negative” cluster. To do that the time inter-

vals between the edges are used in addition to the magnitude difference.

First of all, the cluster with the largest mean is taken. If 𝐶𝑃 and 𝐶𝑁 are two paired “posi-

tive” and “negative” clusters respectively, then for each 𝐶𝑃𝑖
∈ 𝐶𝑃 a match 𝐶𝑁𝑖

∈ 𝐶𝑁

should be found. Since the decreasing edge comes after the increasing edge when looking

for a pair for 𝐶𝑃𝑖
 a graph containing only 𝐶𝑁 that come after 𝐶𝑃𝑖

 and before 𝐶𝑃𝑖+1
 is

formed. This set of 𝐶𝑁 is denoted as Φ . The set Φ𝑀 will be a set of magnitude differences

between 𝐶𝑃𝑖
 and each 𝑖. The set Φ𝑇 will be a set of time intervals between 𝐶𝑃𝑖

 and each

𝑖.

-32-

After that GSP is applied to form two graphs:

• 𝐺𝑀 = {𝑉𝑀, 𝐴𝑀}, where Φ𝑀 is used to form the nodes and 𝐴𝑀𝑖,𝑗
=

𝑒𝑥𝑝 {−
|𝑑𝑖𝑠𝑡(Φ𝑀𝑖

,Φ𝑀𝑗
)|

2

𝜌2 } and the graph signal 𝑠𝑀 is formed that 𝑠𝑀1
 is the average

value of the elements in Φ𝑀 and 𝑠𝑀𝑗
= 0 for 𝑗 > 1.

• 𝐺𝑇 = {𝑉𝑇 , 𝐴𝑇}, where Φ𝑇 is used to form the nodes and 𝐴𝑇𝑖,𝑗
=

𝑒𝑥𝑝 {−
|𝑑𝑖𝑠𝑡(Φ𝑇𝑖

,Φ𝑇𝑗
)|

2

𝜌2 } and the graph signal 𝑠𝑇 is formed that 𝑠𝑇1
 is the median

value of the elements in Φ𝑇 and 𝑠𝑇𝑗
= 0 for 𝑗 > 1.

Then [50] (3) is calculated for each of the two graphs resulting in 𝑠𝑀
∗ and 𝑠𝑇

∗ . The de-

creasing edge that would be the best match for the increasing edge 𝐶𝑃𝑖
 is calculated using

[50] (6).

 arg max
𝑖

{𝛼𝑠𝑀𝑖

∗ + 𝛽𝑠𝑇𝑖

∗ } [50] (6)

where:

𝑖 = 1, … , 𝑛;

𝑛 – length of 𝑠𝑀
∗ and 𝑠𝑇

∗ (number of candidates);

𝛼 and 𝛽 – chosen heuristically;

𝛼 – weight given to magnitude;

𝛽 – weight given to time.

The result of this calculation gives the best matching edge.

After all edges in the cluster pair are matched, if there are still some edges that were not

paired from this cluster pair, these edges are included in the next cluster. This process is

carried on until all clusters are paired.

The last stage of the algorithm is generating the output. Each matched pair of clusters

from the previous procedure defines one potential appliance state. Each matched sample

represents the appliance running event. Each event is compared with the signature data-

base. This is how the appliance is labeled. If there is no match with the signature database,

it can be added to the database. The customer can also add labels to the database.

The main advantage of the algorithm is that it does not require training data and it can

also be performed without any information about what appliances are present inside the

 -33-

building. It just matches the output with the signature database which can contain any

devices and if for some devices no match could be found, the user can suggest his own

labels too.

At this point the information about what appliances are present in the building is obtained.

After that, this information is used as an input to the CF model that comes next.

4.5 Collaborative-filtering model

After the information about the appliances in the building is obtained, these data are fed

to the CF model to obtain the suitable recommendations for the user. The schematic rep-

resentation of the model of the RS is depicted in Figure 17.

-34-

NILM
Model

Eliminate the
recommendations for
appliances which are

not present in the target
building

If best match
take the average
rating for each

recommendation

Compare with the database

Find best match

Figure 17: Schematic representation of the CF model

After the disaggregation is done, NILM model outputs the list of appliances that are pre-

sent in the building. This serves as an input to the CF model. Apart from that, the basic

information about the building including its location, type and climate is also an input to

the model as shown in Figure 17.

After that, the data are compared with the database of the buildings to find the closest

match for the target building. The matches are determined based on the basic information

provided about the buildings. So, the algorithm first tries to find buildings that match the

 -35-

target building in all of the three parameters i.e., they have the same location, type and

climate. If the algorithm finds such buildings, then these are considered the best match

for the target building. Otherwise, the algorithm tries to find buildings with two matching

features i.e., having the same location and type, but different climate or the same location

and climate, but different type or the same type and climate but different location. If such

buildings are found, the algorithm considers these buildings to be the closest match.

In case if no such buildings are found, the algorithm tries to find buildings with one

matching feature. It can be either the same location, type or climate. Then, it considers

these buildings to be the best match. In case no building is found with even one matching

feature, the recommendations are filtered by eliminating the recommendations for appli-

ances that are not present in the building. After that, all recommendations concerning the

appliances in the building are given directly to the user.

This algorithm of finding the best matching buildings can be mathematically expressed

by calculating the cosine similarity between the target building and each of the buildings

in the database. The cosine similarity is calculated using the formula (7).

 𝑠𝑖𝑚(𝑥, 𝑦) =
𝑥 ∙ 𝑦

‖𝑥‖‖𝑦‖
 [54] (7)

 where:

𝑥 and 𝑦 – two vectors (𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛));

‖𝑥‖ and ‖𝑦‖ – Euclidean norm (√𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2 and √𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛

2) of the

vectors 𝑥 and 𝑦 respectively;

In order to clarify the application on the buildings database more a simple example is

given. Let’s assume Table 2 represents the database of the buildings in the RS. The data-

base consists of 6 buildings. The building which is named “target” represents the target

building for which the recommendations are being generated.

Table 2: Buildings database for the explanatory example of the RS

Build-
ing

num-
ber

UK Spain Ukraine Warm Cold Hotel
Resi-

dential
Office

Similarity
with target

building

1 1 1 1 1

2 1 1 1 0. 3̅

3 1 1 1 0. 6̅

4 1 1 1 0. 6̅

5 1 1 1 0

-36-

6 1 1 1 0

target 1 1 1 n/a

The cosine similarity is measured between the target building and each of the buildings

from the database. The calculations for each of the buildings are done as follows:

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 1) =
1 ∙ 1 + 1 ∙ 1 + 1 ∙ 1

√12 + 12 + 12 ∙ √12 + 12 + 12
= 1

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 2) =
1 ∙ 1

√12 + 12 + 12 ∙ √12 + 12 + 12
= 0. 3̅

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 3) =
1 ∙ 1 + 1 ∙ 1

√12 + 12 + 12 ∙ √12 + 12 + 12
= 0. 6̅

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 4) =
1 ∙ 1 + 1 ∙ 1

√12 + 12 + 12 ∙ √12 + 12 + 12
= 0. 6̅

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 5) =
0

√12 + 12 + 12 ∙ √12 + 12 + 12
= 0

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 6) =
0

√12 + 12 + 12 ∙ √12 + 12 + 12
= 0

From the results a conclusion can be made that the buildings with the highest values of

similarity to the target building are the neighbouring buildings. In this example the best

matching building for the target building is building number 1 because its similarity with

the target equals 1. In the case if building 1 was not in the database, the neighbouring

buildings would be number 3 and 4 since they have the second biggest value of similarity

with the target building.

In case matching buildings are found, the recommendations given to these buildings are

filtered too, by eliminating the recommendations given for appliances that are not present

in the target building.

After that, if the number of matching buildings is more than one, then for each recom-

mendation an average rating is calculated. The average rating is the sum of the ratings

given to a particular recommendation by the matching buildings divided by the number

of the matching buildings.

Then, the resulting recommendations are sorted in descending order based on their rat-

ings, and displayed. For now, the system shows all the resulting recommendations in de-

scending order. However, it is possible to impose a threshold that will filter the

 -37-

recommendations with rating below the threshold and display only the recommendations

with higher average rating.

It should be noted that in this algorithm in order to measure the distance between the

buildings and to find the neighboring buildings only the parameters in the basic infor-

mation were used. At this point the output of the NILM algorithm containing the data

about the appliances that are present in the building is only used to filter the recommen-

dations and eliminate the irrelevant once for this particular building. The NILM output is

not used to find the neighboring buildings. This is due to the fact that the weight that each

matching appliance would contribute to the similarity distance between two buildings

would be considerably less than the weight of the contribution of each of the basic infor-

mation parameters. So, for example, there is more probability that two residential build-

ings will have similar preferences regarding the recommendations than that two buildings

with microwaves but different building types will have similar recommendation prefer-

ences. Thus, for the NILM output to be considered in defining the neighboring buildings

a weighting scale should be introduced that will reduce the weight of the matching of

each of the appliances. For now, the NILM output was only used to filter out the irrelevant

recommendations. However, taking into account the NILM output when defining the

neighboring buildings is something that should be definitely taken into account for the

future improvement of the system.

The whole RS including the NILM model was written in Python 2.7 in PyCharm IDE.

The NILM model code consists of “gsp_disaggregator.py” and “gsp_support.py” files.

The recommender part itself consists of “Recommender.py” and “Database_forming.py”

files. The screenshots from the PyCharm IDE with the NILM model code and the recom-

mendation part code are represented in Figure 18, Figure 19, Figure 20 and Figure 21.

-38-

Figure 18: Screenshot of the PyCharm IDE containing the code of the “gsp_disaggregator.py”

file

Figure 19: Screenshot of the PyCharm IDE containing the code of the “gsp_support.py” file

 -39-

Figure 20: Screenshot of the PyCharm IDE containing the code of the “Recommender.py” file

Figure 21: Screenshot of the PyCharm IDE containing the code of the “Database_forming.py”

file

-40-

 -41-

5 Experimental results

A dataset from the publicly available electricity consumption dataset was chosen to run

the RS algorithm. An overview on the publicly available electricity consumption datasets

is provided here in addition to the results obtained.

5.1 Electricity consumption dataset

Currently there are many electricity consumption datasets that are publicly available and

can be obtained in most cases for free for research purposes. These datasets have different

sources with different buildings locations as well as various number of buildings. Another

important parameter is the sampling frequency. This parameter defines the frequency with

which the readings were obtained. Table 3 [55]–[57] provides a comparison summary of

publicly available electricity consumption datasets.

Table 3: Comparison of publicly available electricity consumption datasets [55]–[57]

Dataset
Institu-

tion/Source
Location

Number of
buildings

Appliance
sample fre-

quency

Aggre-
gate

sample
fre-

quency

PLAID
Crowdsourc-

ing

Pittsburgh,
Pennsylvania,

USA
65 30 kHz 30 kHz

Dataport
Pecan

Street Inc.
Texas, USA 722 1 min 1 min

REDD

Massachu-
setts Insti-

tute of Tech-
nology (MIT)

Massachu-
setts, USA

6 3 sec
1 sec &
15 kHz

BLUED

Carnegie
Mellon Uni-

versity
(CMU)

Pennsylvania,
USA

1 N/A 12 kHz

Smart UMass
Massachu-
setts, USA

3 1 sec 1 sec

Household
Electricity Use
Study (HES)

DECC, DE-
FRA, EST

UK 251 2 or 10 min
2 or 10

min

UK-DALE
Imperial Col-

lege
London, UK 5 6 sec

1-6 sec &
16 kHz

ECO ETH Zurich Switzerland 6 1 sec 1 sec

SustData
University of

Madeira
Madeira, Por-

tugal
50 N/A 50 Hz

DRED TU Delft Netherlands 1 1 sec 1 sec

-42-

iAWE IIIT Delhi Delhi, India 1 1 or 6 sec 1 sec

AMPds 2
Simon Fra-
ser Univer-

sity
BC, Canada 1 1 min 1 min

GREEND
Alpen-Adria-
U. Klagen-

furt
Italy & Austria 9 1 sec N/A

UMass Smart
Data from 3

houses
UK 3 1 sec 1 sec

Pecan Street
Sample

Pecan
Street Inc.

IND 10 1 min 1 min

COMBED

(Commercial
Building En-
ergy Dataset)

IIITD aca-
demic build-

ing
NL 8 30 sec 30 sec

BERDS

(Berkeley En-
ergy Disaggre-

gation Data
Set)

Cory Hall on
the UC

Berkeley
campus

USA 1 20 sec 20 sec

From the above-mentioned datasets the REDD dataset was chosen for applying the rec-

ommender algorithm in this work. This is due to the fact that this dataset is one of the

easiest to obtain and interpret, in addition to the availability of both aggregated and dis-

aggregated electricity consumption data, and the comparatively low sample frequency

rate. These are all parameters that are expected to help building a good disaggregation

model for the RS algorithm.

5.2 REDD data

The REDD dataset consists of electricity consumption readings from 6 buildings. Each

file consists of a timestamp and the corresponding reading of electricity consumption in

watts. Each file corresponds to an appliance in the building and another file contains the

labels referring to the content of each file.

In this work the disaggregation results using the training-less NILM model were repro-

duced.

For the purpose of running the algorithm data from house 2 of the REDD dataset was

selected as an example. This house has the least number of appliances and the least num-

ber of repetitive devices. Thus, it is reasonable to use this dataset for the demonstrative

purposes because of the clarity of the results. Thus, the results of the NILM algorithm

were reproduced in this work and then utilized for running the RS algorithm.

 -43-

For the purpose of simplification and in order to reduce the time needed for processing

and running the algorithms, the algorithms were run on data for the period from

23.04.2011 to 26.04.2011 of the dataset. In addition, the data were down sampled to the

frequency of 1 minute between measurements. As an input, three files of “.csv” format

were used. The first file contains the aggregated electricity consumption data of house 2

down sampled to the frequency of one minute, depicted in Figure 22.

Figure 22: Down sampled electricity consumption data of house 2 from the REDD dataset

The second file contains the power consumption of appliances in house 2 and also down

sampled to the frequency of one minute. The consumption data of five appliances were

used, namely: refrigerator, kitchen_outlet1, kitchen_outlet2, microwave and lighting.

This file was not used as an input for the disaggregation algorithm. However, it was only

plotted as ground truth data in order to compare the output of the algorithm with the

ground truth. So that it will simplify the validation of the algorithm output. The data are

represented in Figure 23, Figure 24, Figure 25, Figure 26 and Figure 27.

0

500

1000

1500

2000

2500

3000

3500

W
at

ts

Aggregated electrical power consumption

-44-

Figure 23: Down sampled electricity consumption data for the refrigerator

Figure 24: Down sampled electricity consumption data for the kitchen_outlets1

0

100

200

300

400

500

600

700

W
at

ts
Refrigerator

0
2
4
6
8

10
12
14
16
18
20

W
at

ts

Kitchen_outlets1

 -45-

Figure 25: Down sampled electricity consumption data for the kitchen_outlets2

Figure 26: Down sampled electricity consumption data for the microwave

0

200

400

600

800

1000

1200
W

at
ts

Kitchen_outlets2

0

500

1000

1500

2000

2500

W
at

ts

Microwave

-46-

Figure 27: Down sampled electricity consumption data for the lighting

The third file is the signature database. It contains signatures of the electrical appliances.

This database was formed by extracting from the ground truth values random sequences

of readings when the device is turned on. For each device only one sequence is extracted.

This is done mainly to see the behavior of the device during the time when it is turned on.

Since the aim of the signature is only to indicate the behavior of each device, no

timestamp is assigned in the signature database.

5.3 Results of the NILM model

The data described were fed into the disaggregation algorithm using Python code. The

code [50] of the disaggregation part consists of two files “gsp_disaggregator.py” which

is the main file and “gsp_support.py” which contains the supporting functions. The code

from each file is provided in Appendix 1 [50] and Appendix 2 [50] respectively.

After running the NILM algorithm on the dataset, the following results, depicted in Figure

28, were obtained.

0

20

40

60

80

100

120

140

160

180

200

W
at

ts
Lighting

 -47-

Figure 28: Output of the NILM model

From the obtained results, it can be noticed that out of 5 appliances that were present in

the building, the algorithm recognized 4, namely: refrigerator, kitchen_outlets2, micro-

wave and lighting.

By comparing the results outputted by the algorithm with the ground truth, it can be no-

ticed that the algorithm was able to accurately identify the behavior of the fridge as well

as the behavior of the microwave and the kitchen_outlets2 appliances. While for the

lighting, the predictions were almost negligible.

In order to compare the total energy consumption of each appliance in the result with

the ground truth pie charts depicted in Figure 29 were generated.

-48-

Figure 29: Comparison of the total energy consumption of the disaggregated output with the

ground truth

The used NILM algorithm has proven its accuracy in identifying the appliances that are

present inside the building. Nevertheless, it also has its drawbacks and space for improve-

ment.

For example, this algorithm would perform with less accuracy when there is a similarity

between the signatures of multiple appliances. In this case, the algorithm may falsely

attribute the wrong label to the appliance.

The performance accuracy of this NILM model would also drop if a certain appliance in

the building is of a certain manufacturer but the same type of the appliance in the signature

database belongs to a different manufacturer, and the working power and model are dif-

ferent for these two appliances. In this case the algorithm may not recognize the appli-

ance.

Another point is that this algorithm does not take into account the noise that could be

present in the data. This might also affect the accuracy of the performance of the algo-

rithm.

 -49-

In order to improve the algorithm few suggestions could be made. It is suggested to add

a filter that would eliminate the noise in the data. Also, creating a universal signature

database for each type of buildings containing the signatures of typical appliances present

in the building would be helpful to improve the performance of the algorithm.

5.4 Results of the recommender system

The accuracy of designed CF RS model increases with the increasing number of the build-

ings in the database. Thus, when running the algorithm on the very-first user, the output

will be not personalized. It will contain all the recommendations regarding the appliances

present in the building. It is assumed that when using this algorithm for real life cases, at

the beginning non-personalized recommendations will be given and every time after the

feedback is received, the user is added to the database. This way, the database will be

formed out of the real users and their real feedbacks.

Thus, in order to verify the accuracy of the model, a synthetic database was formed. The

database consists of 20 buildings. These are existing buildings the data about which were

obtained from [58]. The data about the climate of the area where each building is located

were collected from the Temperature Regime map in [59]. The buildings that were used

to form the database are represented in Table 4. A snapshot of the database is provided in

Appendix 3.

Table 4: Buildings database for the RS algorithm

Building Type Location Climate

Hotel Me (Madrid) hotel Spain warm temperature dry

Plaza De Las Cortes 3 (Ma-
drid)

residential Spain warm temperature dry

Centro Civico Aldabe (Vito-
ria-Gasteiz)

office Spain cool temperature

W Hotel City Center (Chi-
cago)

hotel USA cool temperature

150 Powell Street residential USA warm temperature dry

Travis Tower (Houston) office USA sub tropical

Domaine Du Mandravasaro-
tra (Belobaka)

hotel Madagascar tropical

Kk Home Tomasina (Toama-
sina)

residential Madagascar sub tropical

NSI Office (Antananarivo) office Madagascar warm temperature dry

Embassy Suites Hotel Hou-
ston/Downtown (Houston)

hotel USA sub tropical

Hotel Dnipro (Kyiv) hotel Ukraine cool temperature

Admiralty Arch (London) office UK warm temperature dry

-50-

The Palace Hotel (San Fran-
cisco)

hotel USA warm temperature dry

Objet Deco (Mahajanga) residential Madagascar tropical

Horizon Office Tower (Kyiv) office Ukraine cool temperature

Sofitel Madrid Plaza De Es-
pana (Madrid)

hotel Spain warm temperature dry

One Thousand Powell Apart-
ments (San Francisco)

residential USA warm temperature dry

Adlington House (Liverpool) residential UK cool temperature

Vulytsia Vorovskogo 11
(Kyiv)

residential Ukraine cool temperature

Gulliver (Kyiv) office Ukraine cool temperature

For each of the buildings from the table above, certain recommendations were given to

reduce the energy consumption. These recommendations are summarized according to

the appliance in concern in Table 5.

Table 5: Recommendations for the RS algorithm

Appliance Recommendations

Refrigerator “Place the refrigerator away from heat sources”

 “Avoid putting hot food directly in the refrigerator”

 “Try to keep the refrigerator filled in to save energy”

Microwave
“Cover the dishes before putting them in the microwave to cut down

the cooking time”

 “Cut the food into small pieces to reduce the cooking time”

Lighting
“Place movement detectors to turn off the lights when the room is

empty”

“Install task lightings in places like on the study desk etc. to reduce

the electricity consumption from using the general lighting”

 “Consider using light colored paint”

Stove “Shift the usage of electrical stove to the late hours”

“Take into account the heating area of your stove to choose pans

with proper diameters”

Air Conditioner
“Keep the curtains and blinds closed to reduce the space from heat-

ing up”

“Use a programmable thermostat that turns off the AC when the

space is empty”

Washing Ma-
chine

“Use the washing machine of the right size since the bigger the ma-
chine is, the more power it consumes”

“Use front load washing machines which consume less electricity

than the top load”

 “Do not leave the machine in standby mode”

Water Heater “Insulate the pipes connected to the heater”

 “Prefer taking a short shower instead of a bath”

 “Consider installing heat traps on the water heater”

After that, to assign each recommendation a rating that was given by each of the buildings

from the formed dataset, several assumptions were made regarding each of the appliances.

 -51-

These assumptions were made because different factors of each building have an influ-

ence on the final rating that will be given to each recommendation, as was already de-

scribed in section 4.2. In real life the factors may differ from the assumptions that were

made in this work. However, the main goal of making such assumptions is to systematize

the ratings in the database, make them consistent, and to be able to validate the model by

comparing the outputted ratings with the ratings that should be assigned following the

assumptions made.

Some general assumptions were made in addition to assumptions regarding each of the

appliances and each recommendation in particular. These assumptions are summarized in

Table 6.

Table 6: Assumptions for validating the RS

Appli-
ance

Recommen-
dations

Assumption

Refrig-
erator

“Place the re-
frigerator

away from
heat

sources”

This recommendation is not applicable for the buildings in hot cli-
mate zones (warm temperature dry, sub-tropical and tropical) due
to the overall hot temperature which makes it difficult to follow the

recommendation.

“Avoid put-
ting hot food
directly in the
refrigerator”

This recommendation is not applicable for hotels and offices be-
cause due to the amount of food being prepared and stored in the
hotel it is difficult to keep storing it outside of the fridge while it is
cooling down. In offices there is a very low possibility that office

workers will follow the recommendation because of the lack of re-
sponsibility in paying the bill and priorities shifted more towards

productive work rather than reducing energy bill for the employer.

“Try to keep
the refrigera-
tor filled in to
save energy”

This recommendation is not applicable for the residential and of-
fice buildings. Because it is difficult to maintain having a big

amount of food all the time in these types of buildings. This rec-
ommendation is not applicable for countries with GDP lower than
20000$ per capita because of the difficulty to maintain having a

big amount of food due to the low level of economy.

Micro-
wave

“Cover the
dishes before
putting them
in the micro-
wave to cut
down the

cooking time”

This recommendation is not applicable for the offices due to the
lack of equipment and different priorities of the employees.

“Cut the food
into small

pieces to re-
duce the

cooking time”

This recommendation is not applicable for offices and hotels be-
cause it requires time and ruins the visual presentation of the dish

which is not acceptable in these types of buildings.

Light-
ing

“Place move-
ment detec-
tors to turn

off the lights
when the

This recommendation is not applicable because countries with
GDP lower than 20000$ per capita will not apply recommenda-

tions that need additional investments.

-52-

room is
empty”

“Install task
lightings in
places like

on the study
desk etc. to
reduce the
electricity

consumption
from using
the general

lighting”

This recommendation is not applicable for hotels and offices be-
cause in these types of buildings it is difficult to control the behav-
ior of the people inside. It is also not applicable because countries
with GDP lower than 20000$ per capita will not apply recommen-

dations that need additional investments.

“Consider us-
ing light col-
ored paint”

This recommendation is not applicable for hotels because it is im-
portant to maintain the unique interior design of the hotel which

may not accept having some light colors. It is also not applicable
for countries with GDP lower than 20000$ per capita because it

needs additional investments. It is also not applicable for buildings
with warm climate types since the effect of the light paint is negli-

gible due to the big amount of sunlight received.

Stove

“Shift the us-
age of elec-

trical stove to
the late
hours”

This recommendation is not applicable to residential buildings and
offices because of the difficulty of shifting the operation hours in

these types of buildings.

“Take into
account the
heating area
of your stove

to choose
pans with

proper diam-
eters”

This recommendation is not applicable in offices because of the
difficulty of purchasing new pans by the employees. It is also not
applicable for countries with GDP lower than 20000$ per capita

because of the additional investments needed.

Air
Condi-
tioner

“Keep the
curtains and
blinds closed
to reduce the
space from
heating up”

This recommendation is not applicable for hotels and offices be-
cause of the difficulty of controlling the behavior of people inside
these buildings. It is also not applicable for buildings located in

cold climates (polar, boreal and cool temperature) because of the
negligible amount of sun that heats up the space through the win-

dows in these climates.

“Use a pro-
grammable
thermostat

that turns off
the AC when
the space is

empty”

This recommendation is not applicable for countries with GDP
lower than 20000$ per capita because it requires additional in-

vestments.

Wash-
ing Ma-
chine

“Use the
washing ma-
chine of the

right size
since the big-
ger the ma-
chine is, the
more power
it consumes”

This recommendation is not applicable for residential buildings
and offices because the amount of clothes to be washed will vary
each time. It is also not applicable for countries with GDP lower

than 20000$ per capita because it requires additional investments
for purchasing a new washing machine.

“Use front
load washing

machines
which

This recommendation is not applicable for countries with GDP
lower than 20000$ per capita because it requires additional in-

vestments for purchasing a new washing machine.

 -53-

consume
less electric-
ity than the
top load”

“Do not leave
the machine
in standby

mode”

This recommendation is not applicable for hotels because of the
difficulty of turning off the machine after each wash due to the

high frequency of usage.

Water
Heater

“Insulate the
pipes con-

nected to the
heater”

This recommendation is not applicable for buildings in hot climate
zones due to the low impact of insulation because of generally

high temperatures in these climates.

“Prefer taking
a short

shower in-
stead of a

bath”

This recommendation is not applicable for offices because typi-
cally it is rare to have showers in office buildings and almost unre-
alistic to have bathtubs. So, this recommendation simply does not

change the behavior of the people inside the building.

“Consider in-
stalling heat
traps on the

water heater”

This recommendation is not applicable for countries with GDP
less than 20000$ per capita because it requires additional invest-
ments. It is also not applicable for hot climate zones because of

the overall hot temperatures in these climates.

GDP data are based on [60].

Based on this information another assumption was made, that each category of the basic

information (type, location and climate) contributes by one point to the resulting rating

of each recommendation. If the recommendation is not applicable for a certain type of

basic information (for example, not applicable for hotels), a contribution of zero will be

made from that category towards the resulting rating of the recommendation. With this

being said, if, for example there is a building with the basic information (type: hotel,

location: UK, climate: polar) and the recommendation is applicable for hotels as well as

for the UK and for cold climates, then the rating for this recommendation will be 3. If

another recommendation is considered for this building, which is applicable for hotels as

well as for the UK but it is not applicable for cold climates, then this recommendation

will gain the rating of 2 and so on.

Based on this, ratings were assigned to each recommendation for each of the buildings

from the database. The ratings assigned by each building for each recommendation are

depicted in the snapshots in Appendix 4.

After that, the output resulting from the NILM model was fed into the CF model and the

recommendations for this building were given. The CF model was implemented in Python

in PyCharm and connected to the NILM python code to form one connected system. The

code that was written for the CF part of the model consists of two files “Database_form-

ing.py” and “Recommender.py”. The first file reads the data from the .csv file containing

-54-

the database of the buildings and forms an internal dataset. The second file takes the out-

put of the NILM model and gives the recommendations for the considered building. The

codes from the files “Database_forming.py” and “Recommender.py” can be found in Ap-

pendix 5 and Appendix 6 respectively.

As an input for the model the following basic information was used: location: ‘USA’,

type: ‘residential’, and climate: ‘warm temperature dry’. From the output of the NILM

model it was identified that the following appliances are present in the building: refriger-

ator, kitchen_outlets2, microwave and lighting. As a resulting output the following rec-

ommendations were given with the predicted ratings:

• 'Cut the food into small pieces to reduce the cooking time', 3

• 'Avoid putting hot food directly in the refrigerator', 3

• 'Install task lightings in places like on the study desk etc. to reduce the electricity

consumption from using the general lighting', 3

• 'Cover the dishes before putting them in the microwave to cut down the cooking

time', 3

• 'Place movement detectors to turn off the lights when the room is empty', 3

• 'Place the refrigerator away from heat sources', 2

• 'Try to keep the refrigerator filled in to save energy', 2

• 'Consider using light colored paint', 2

From the obtained results it can be seen that all the suggested recommendations concern

only the appliances that were identified by the NILM algorithm. Which means that the

filtering of the recommendations was done correctly. In order to measure the accuracy of

the predicted ratings, the ratings for the considered building were also calculated based

on the assumptions that were made previously in Table 6. After that, the accuracy was

measured by considering the calculated ratings based on the assumptions to be ground

truth. The closer the ratings predicted by the model to the ground truth, the higher the

accuracy.

The “ground truth” ratings were calculated as following:

• 'Cut the food into small pieces to reduce the cooking time', 3

• 'Avoid putting hot food directly in the refrigerator', 3

• 'Install task lightings in places like on the study desk etc. to reduce the electricity

consumption from using the general lighting', 3

 -55-

• 'Cover the dishes before putting them in the microwave to cut down the cooking

time', 3

• 'Place movement detectors to turn off the lights when the room is empty', 3

• 'Place the refrigerator away from heat sources', 2

• 'Try to keep the refrigerator filled in to save energy', 2

• 'Consider using light colored paint', 2

In this case it can be seen that the predicted ratings fully match the ground truth ratings.

Thus, the accuracy can be calculated using (8).

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (8)

Where:

TP – true positive (the predicted rating is positive and the ground truth is positive),

TN – true negative (the predicted rating is negative and the ground truth is negative),

FP – false positive (the predicted rating is positive but the ground truth is negative),

FN – false negative (the predicted rating is negative but the ground truth is positive).

In order to apply (7) it was assumed that the maximum possible rating, which is 3 in our

case is the positive rating and everything below that value (2, 1 and 0) are negative ratings.

This way the accuracy of the predicted values for this case was calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(5+3)

(5+3+0+0)
= 1.

This means that in this case the model managed to predict the ratings with 100% accuracy.

In order to further validate the model recommendations were generated to six more build-

ings with different basic information. After that, the accuracy of the predicted ratings was

measured.

A summary of the buildings used for validation and the calculated accuracy of the ratings

predictions for each building is summarized in Table 7.

-56-

Table 7: Validation summary of the RS

Loca-

tion (L)
Type (T)

Climate
(C)

Appliances

Match-
ing

build-
ings

Matching
features

Ac-
cu-
racy

Fea-
tures

Num-
ber

1 USA
residen-

tial

Warm tem-
perature

dry

Refrigerator,
microwave,

lighting,
kitchen_out-

lets2

15 All

3 1

17 All

2 Ukraine Office
Cool tem-
perature

Refrigerator,
lighting, micro-
wave, air con-

ditioner

15 All

3 1

20 All

3 USA Hotel
Warm tem-

perature
dry

Refrigerator,
lighting, micro-
wave, washing

machine

13 All 3 1

4 UK Office
Cool tem-
perature

Microwave,
lighting, air
conditioner,
water heater

3 T, C

2 0.5

12 T, L

15 T, C

18 L, C

20 T, C

5 Ukraine
residen-

tial
Cool tem-
perature

Microwave,
lighting, stove,
washing ma-
chine, water

heater

19 All 3 1

6
Ka-

zakh-
stan

residen-
tial

Cool tem-
perature

Microwave,
lighting, stove,
washing ma-
chine, water

heater

18 T, C

2 1

19 T, C

7
Ka-

zakh-
stan

hotel
Cool tem-
perature

Microwave, air
conditioner,
water heater

4 T, C
2 1

11 T, C

From Table 7 it can be seen that the accuracy of the predicted ratings is 1 when the algo-

rithm can find one or more building in the database that have all the features matching

the features of the building in concern. The prediction accuracy is also 1 when the algo-

rithm finds buildings in the database with a smaller number of matching features, but the

features that match are the same in each of the matching buildings. For example, in case

6 in the table there are two matching buildings that have the same type and climate of the

target building.

 -57-

However, in the case when the algorithm finds more than one matching building and each

of the buildings have different matching features with the target building, the prediction

accuracy is comparatively low. For example, like in the case 4 in the table above. The

algorithm found 5 matching buildings. Three of them have same type and climate as the

target building. One of them has the same type and location as the target building, and

another one has the same location and climate as the target building. In this case the ac-

curacy of the predictions was 0.5, which is considerably lower than the prediction accu-

racy in the other cases.

With this being said, a conclusion can be made on how to improve the overall accuracy

of the system. This is explained in more details in the next chapter.

-58-

 -59-

6 Conclusions and future work

Many RS have been proposed for a variety of fields, yet their application for improving

electricity usage has not been widely explored. Thus, in order to implement an electricity

usage RS in real life may necessitate implementing such a system from scratch.

Due to this fact, the available data can be very limited, because no previously given rec-

ommendations are available. Also, there is limited availability of data that accurately de-

scribe target user preferences.

In order to tackle this issue and find a way to develop an electricity usage RS without the

availability of extensive data, the system described in this work was proposed. This RS

can be used in order to provide customers with personalized electricity usage recommen-

dations. Each time the system is used to provide recommendations for a new building,

this building is added to the system’s database. Feedback from customers along with their

ratings are also added to the database. This way, with more data, recommendations be-

come more accurate.

The electricity usage RS proposed in this work can be used for cases when there are lim-

ited input data. The algorithm of the system was implemented in Python. The RS consists

of two parts: the NILM model and the recommender model. Depending on the available

input data, any NILM model can be embedded in the system. In case of very limited input

data like in this work, using a training-less NILM model is a reasonable solution. Any of

the NILM models (introduced in section 3.5) can fit the system as long as it outputs the

names of the appliances present in the building. For this work the NILM algorithm sug-

gested in [50] was used as the first part of the system.

The second part is the recommender model itself. The algorithm for this model was de-

signed to make the most out of the limited available data. The algorithm is based on the

principle of user-to-user CF RS. In order to find the neighboring users, some general

information about the user was utilized, referred to as “basic information”. After identi-

fying the neighboring users, the algorithm filters the recommendations that were given to

these users to eliminate the recommendations for appliances that are not present in the

target building. Then, the resulting recommendations are given to the user in descending

order, based on the average rating given by the neighboring users for each recommenda-

tion.

-60-

Based on the validation of the RS algorithm a conclusion on the accuracy of the system

can be drawn. It was discovered that the system demonstrates 100% accuracy when the

neighboring users match the target user according to all the general parameters. It also

demonstrates the same level of accuracy when all the matching buildings have the same

parameters that match the target building. However, when the matching features are dif-

ferent in each neighboring building, the accuracy of the algorithm may decrease down to

50%.

Thus, some suggestions can be made as future work, in order to enhance accuracy of the

system:

• A weighting scale can be introduced to improve the measurement of the distance

from the target user to the neighboring users. For example, the level of importance

of each of the parameters can be defined and after that, in the case when matching

buildings have different matching parameters, this weight can be included in cal-

culating the rating of each of the recommendations. In this way the accuracy of

the model can be improved.

• Other parameters can be added to these identifying neighboring users. For exam-

ple, the output of the NILM algorithm which identifies what appliances are pre-

sent in the building can also be used to assess the similarity between the buildings.

In this way, the similarity of appliances that are present in two or more buildings

will increase the level of similarity between these buildings and vice versa.

RS in general are gaining more popularity in all sectors due to the rapid development of

technologies. Thus, the necessity for developing and implementing effective tools that

can provide the users with recommendations to improve their performance and reduce the

bills is an important task that can tremendously help both the consumers and the service

providers.

In real life the available data may be limited. The limitation may be as a consequence of

a variety of factors for example, the privacy policy can limit the amount of data available

or simply the difficulty of obtaining the data can be an issue as well. Thus, when designing

a recommender system these factors should also be taken into account. Moreover, when

designing a RS, it is necessary to have some previously existing data in the system. This

data helps the RS to identify what are the interests of the target user, what are the interests

of the other users that are present in the database, and to measure the level of similarity

between the target user and the other users in the database.

 -61-

The unavailability of these data creates a challenge when developing a new RS. One of

the ways to tackle this challenge is to search for some publicly available datasets to form

the database that the RS can rely on.

However, there could be no relevant data found that can be used for this purpose. In this

case, a reasonable solution could be to accumulate the data about the users every time the

RS is used to generate recommendations. This is the principle that was used in the pro-

posed RS.

By proposing an electricity usage RS with limited input data, a solution was suggested

for such cases when there is no enough data that allows to directly implement a RS algo-

rithm. The algorithm was proposed for generating recommendations for the usage of elec-

trical appliances. However, the described challenge may arise when developing a RS in

any other field, especially the ones on which only few researches were done. In this case

another algorithm should be developed in order to design the RS with limited input data

for this particular purpose.

Thus, further research and work in the field of designing RS with limited input data con-

ditions in different fields is a topic with undoubtful importance and many open questions

that need to be answered.

-62-

Bibliography

[1] Ι. Schoinas and C. Tjortjis, ‘MuSIF: A Product Recommendation System Based on

Multi-source Implicit Feedback’, in Artificial Intelligence Applications and Innovations,

Cham, 2019, pp. 660–672. doi: 10.1007/978-3-030-19823-7_55.

[2] O. Nalmpantis and C. Tjortjis, ‘The 50/50 Recommender: A Method Incorporating

Personality into Movie Recommender Systems’, in Engineering Applications of Neural

Networks, Cham, 2017, pp. 498–507. doi: 10.1007/978-3-319-65172-9_42.

[3] T. A. Runkler, Data Analytics: Models and Algorithms for Intelligent Data Analysis.

Wiesbaden: Springer Gablerin Springer Fachmedien Wiesbaden GmbH, Springer Fach-

medien Wiesbaden GmbH, Springer, 2016.

[4] ‘Data Mining vs Data Analysis | Know Top 7 Amazing Comparisons’, EDUCBA,

Apr. 01, 2018. https://www.educba.com/data-mining-vs-data-analysis/ (accessed Mar.

22, 2021).

[5] R. Kubaizi, S. Alotaibi, B. Washigry, E. Suhaim, J. Sughayer, and R. Jumaiah, ‘Min-

ing Expertise Using Social Media Analytics’, Apr. 2018, pp. 1–5. doi:

10.1109/CAIS.2018.8442014.

[6] S. Zhang, C. Zhang, and Q. Yang, ‘Data preparation for data mining’, Applied Artifi-

cial Intelligence, vol. 17, no. 5–6, pp. 375–381, May 2003, doi: 10.1080/713827180.

[7] H. Yang, K. Process, and S. K. Steps, Data Cleaning Data Integration Databases

Data Warehouse Task-relevant Data Selection Data Mining Pattern Evaluation.

[8] C. Chen, W. K. Härdle, and A. Unwin, Handbook of Data Visualization. Springer

Science & Business Media, 2007.

[9] F. Shu, W. Quan, B. Chen, J. Qiu, C. R. Sugimoto, and V. Larivière, ‘The role of Web

of Science publications in China’s tenure system’, Scientometrics, vol. 122, no. 3, pp.

1683–1695, Mar. 2020, doi: 10.1007/s11192-019-03339-x.

[10] P. Farrell et al., ‘COVID-19 and Pacific food system resilience: opportunities to

build a robust response’, Food Sec., vol. 12, no. 4, pp. 783–791, Aug. 2020, doi:

10.1007/s12571-020-01087-y.

 -63-

[11] National Genomics Data Center Members and Partners, ‘Database Resources of

the National Genomics Data Center in 2020’, Nucleic Acids Research, vol. 48, no. D1,

pp. D24–D33, Jan. 2020, doi: 10.1093/nar/gkz913.

[12] K. Christantonis and C. Tjortjis, ‘Data Mining for Smart Cities: Predicting Elec-

tricity Consumption by Classification’, Jul. 2019, pp. 1–7. doi:

10.1109/IISA.2019.8900731.

[13] I. Bruha and A. Famili, ‘Postprocessing in machine learning and data mining’,

SIGKDD Explor. Newsl., vol. 2, no. 2, pp. 110–114, Dec. 2000, doi:

10.1145/380995.381059.

[14] European Commission, Ed., European SmartGrids Technology Platform. Vision

and Strategy for Europe’s Electricity Networks of the Future. Brussels, Belgium: Office

for Official Publications of the European Communities, 2006.

[15] S. Paul, M. S. Rabbani, R. K. Kundu, and S. M. R. Zaman, ‘A review of smart

technology (Smart Grid) and its features’, in 2014 1st International Conference on Non

Conventional Energy (ICONCE 2014), Jan. 2014, pp. 200–203. doi:

10.1109/ICONCE.2014.6808719.

[16] C. Teng, ‘Research on Improvement Path of China’s Smart Grid Security Con-

trol’, IOP Conf. Ser.: Earth Environ. Sci., vol. 440, p. 032089, Mar. 2020, doi:

10.1088/1755-1315/440/3/032089.

[17] A. Almalaq and J. J. Zhang, ‘Deep Learning Application: Load Forecasting in Big

Data of Smart Grids’, in Deep Learning: Algorithms and Applications, W. Pedrycz and

S.-M. Chen, Eds. Cham: Springer International Publishing, 2020, pp. 103–128. doi:

10.1007/978-3-030-31760-7_4.

[18] ‘Study and comparison of demand response aggregation in Europe and USA’.

https://www.politesi.polimi.it/handle/10589/154587 (accessed Mar. 25, 2021).

[19] Y. Wang, Q. Chen, and C. Kang, Smart Meter Data Analytics: Electricity Con-

sumer Behavior Modeling, Aggregation, and Forecasting. Singapore: Springer Singa-

pore, 2020. doi: 10.1007/978-981-15-2624-4.

[20] Y. Wang, Q. Chen, T. Hong, and C. Kang, ‘Review of Smart Meter Data Analyt-

ics: Applications, Methodologies, and Challenges’, IEEE Trans. Smart Grid, vol. 10, no.

3, pp. 3125–3148, May 2019, doi: 10.1109/TSG.2018.2818167.

-64-

[21] D. M. Jiménez-Bravo, J. Pérez-Marcos, D. H. De la Iglesia, G. Villarrubia Gon-

zález, and J. F. De Paz, ‘Multi-Agent Recommendation System for Electrical Energy Op-

timization and Cost Saving in Smart Homes’, Energies, vol. 12, no. 7, Art. no. 7, Jan.

2019, doi: 10.3390/en12071317.

[22] F. Ricci, L. Rokach, and B. Shapira, ‘Introduction to Recommender Systems

Handbook’, in Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P.

B. Kantor, Eds. Boston, MA: Springer US, 2011, pp. 1–35. doi: 10.1007/978-0-387-

85820-3_1.

[23] ‘Trust-aware recommender systems’.

https://dl.acm.org/doi/10.1145/1297231.1297235 (accessed Mar. 26, 2021).

[24] C. A. Gomez-Uribe and N. Hunt, ‘The Netflix Recommender System: Algo-

rithms, Business Value, and Innovation’, ACM Trans. Manage. Inf. Syst., vol. 6, no. 4, p.

13:1-13:19, Dec. 2016, doi: 10.1145/2843948.

[25] M. F. Gaw, ‘Algorithmic logics of taste: Cultural taste and the Netflix recom-

mender system’, Thesis, Faculty of Arts and Social Sciences, 2019. Accessed: Mar. 26,

2021. [Online]. Available: https://ses.library.usyd.edu.au/handle/2123/21530

[26] A. Kumar, ‘A survey on popular recommender systems’, vol. 6, p. 5, Jun. 2019.

[27] Z. Ma et al., ‘The Role of Data Analysis in the Development of Intelligent Energy

Networks’, IEEE Network, vol. 31, no. 5, pp. 88–95, 2017, doi:

10.1109/MNET.2017.1600319.

[28] J. Das, P. Mukherjee, S. Majumder, and P. Gupta, ‘Clustering-Based Recom-

mender System Using Principles of Voting Theory’, presented at the Proceedings of 2014

International Conference on Contemporary Computing and Informatics, IC3I 2014, Nov.

2014. doi: 10.1109/IC3I.2014.7019655.

[29] S. Chadoulos, I. Koutsopoulos, and G. C. Polyzos, ‘Mobile Apps Meet the Smart

Energy Grid: A Survey on Consumer Engagement and Machine Learning Applications’,

IEEE Access, vol. 8, pp. 219632–219655, 2020, doi: 10.1109/ACCESS.2020.3042758.

[30] F. Luo, G. Ranzi, X. Wang, and Z. Y. Dong, ‘Service Recommendation in Smart

Grid: Vision, Technologies, and Applications’, in 2016 9th International Conference on

Service Science (ICSS), Oct. 2016, pp. 31–38. doi: 10.1109/ICSS.2016.12.

[31] F. Luo, G. Ranzi, X. Wang, and Z. Y. Dong, ‘Social Information Filtering-Based

Electricity Retail Plan Recommender System for Smart Grid End Users’, IEEE

 -65-

Transactions on Smart Grid, vol. 10, no. 1, pp. 95–104, Jan. 2019, doi:

10.1109/TSG.2017.2732346.

[32] J. E. Fischer et al., Recommending Energy Tariffs and Load Shifting Based on

Smart Household Usage Profiling.

[33] Y. Zhang, K. Meng, W. Kong, and Z. Y. Dong, ‘Collaborative Filtering-Based

Electricity Plan Recommender System’, IEEE Transactions on Industrial Informatics,

vol. 15, no. 3, pp. 1393–1404, Mar. 2019, doi: 10.1109/TII.2018.2856842.

[34] F. Luo, G. Ranzi, W. Kong, G. Liang, and Z. Y. Dong, ‘Personalized Residential

Energy Usage Recommendation System Based on Load Monitoring and Collaborative

Filtering’, IEEE Transactions on Industrial Informatics, vol. 17, no. 2, pp. 1253–1262,

Feb. 2021, doi: 10.1109/TII.2020.2983212.

[35] ‘Electricity plan recommender system with electrical instruction-based recovery |

Elsevier Enhanced Reader’. https://reader.else-

vier.com/reader/sd/pii/S0360544220308823?to-

ken=2025A4D4FF6390E38192C3AD2F7B56DB32D4D52BCCDB0AA2750091E5B9

618B1B574287F2F3BC66F8276AC26FF32D1752&originRegion=eu-west-1&orig-

inCreation=20210401183410 (accessed Apr. 01, 2021).

[36] Y. Zhang, W. Kong, Z. Y. Dong, K. Meng, and J. Qiu, ‘Big Data-driven Electric-

ity Plan Recommender System’, in 2018 IEEE Power Energy Society General Meeting

(PESGM), Aug. 2018, pp. 1–5. doi: 10.1109/PESGM.2018.8585885.

[37] S. Murphy, Ó. Manzano, and K. Brown, ‘Design and Evaluation of a Constraint-

Based Energy Saving and Scheduling Recommender System’, Aug. 2015, vol. 9255, pp.

687–703. doi: 10.1007/978-3-319-23219-5_47.

[38] H. Akbari, ‘Validation of an algorithm to disaggregate whole-building hourly

electrical load into end uses’, Energy, vol. 20, no. 12, pp. 1291–1301, Dec. 1995, doi:

10.1016/0360-5442(95)00033-D.

[39] A. Zoha, A. Gluhak, M. A. Imran, and S. Rajasegarar, ‘Non-intrusive load moni-

toring approaches for disaggregated energy sensing: a survey.’, Sensors (Basel, Switzer-

land), vol. 12, no. 12, pp. 16838–16866, 2012, doi:

http://dx.doi.org.ezproxy1.hw.ac.uk/10.3390/s121216838.

[40] H. Akbari, J. Eto, S. Konopacki, A. Afzal, K. Heinemeier, and L. Rainer, ‘A new

approach to estimate commercial sector end-use load shapes and energy use intensities’,

-66-

American Council for Energy-Efficient Economy (ACEEE) summer conference, Asi-

lomar, CA (United States), 28 Aug - 3 Sep 1994, Aug. 01, 1994. https://digital.li-

brary.unt.edu/ark:/67531/metadc792383/m1/1/ (accessed Apr. 03, 2021).

[41] J. H. Eto, H. Akbari, R. G. Pratt, and S. D. Brathwait, ‘End-Use Load Shape Data

Application, Estimation, and Collection: A State-of-the-Art Review’, Jun. 1990, Ac-

cessed: Apr. 03, 2021. [Online]. Available: https://escholarship.org/uc/item/1f52b37h

[42] H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han, ‘Unsupervised Disaggrega-

tion of Low Frequency Power Measurements’, in Proceedings of the 2011 SIAM Interna-

tional Conference on Data Mining, 0 vols, Society for Industrial and Applied Mathemat-

ics, 2011, pp. 747–758. doi: 10.1137/1.9781611972818.64.

[43] H. Shao, M. Marwah, and N. Ramakrishnan, ‘A Temporal Motif Mining Ap-

proach to Unsupervised Energy Disaggregation: Applications to Residential and Com-

mercial Buildings’, AAAI, vol. 27, no. 1, Art. no. 1, Jun. 2013, Accessed: Apr. 03, 2021.

[Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/8485

[44] Hashem Akbari, Kristin E. Heinemeier, Patrick LeConiac, and Denise L. Flora,

‘An Algorithm to Disaggregate Commercial Whole-Building Hourly Electrical Load Into

End Uses’, 1988. Accessed: Apr. 03, 2021. [Online]. Available:

https://www.aceee.org/files/proceedings/1988/data/papers/1988_V10_002.pdf

[45] H. Akbari and S. J. Konopacki, ‘Application of an End-Use Disaggregation Al-

gorithm for Obtaining Building Energy-Use Data’, Journal of Solar Energy Engineering,

vol. 120, no. 3, pp. 205–210, Aug. 1998, doi: 10.1115/1.2888070.

[46] ‘Non-Intrusive Load Monitoring for Smart Grids.pdf’. Accessed: Mar. 30, 2021.

[Online]. Available: https://education.emc.com/content/dam/dell-emc/documents/en-

us/2018KS_Schneider-Non-Intrusive_Load_Monitoring_for_Smart_Grid_Deci-

sion_Support.pdf

[47] B. Zhao, K. He, L. Stankovic, and V. Stankovic, ‘Improving Event-Based Non-

Intrusive Load Monitoring Using Graph Signal Processing’, IEEE Access, vol. 6, pp.

53944–53959, 2018, doi: 10.1109/ACCESS.2018.2871343.

[48] A. Faustine, N. H. Mvungi, S. Kaijage, and K. Michael, ‘A Survey on Non-Intru-

sive Load Monitoring Methodies and Techniques for Energy Disaggregation Problem’,

arXiv:1703.00785 [cs], Mar. 2017, Accessed: Mar. 31, 2021. [Online]. Available:

http://arxiv.org/abs/1703.00785

 -67-

[49] R. Jia, Y. Gao, and C. J. Spanos, ‘A fully unsupervised non-intrusive load moni-

toring framework’, in 2015 IEEE International Conference on Smart Grid Communica-

tions (SmartGridComm), Miami, FL, USA, Nov. 2015, pp. 872–878. doi: 10.1109/Smart-

GridComm.2015.7436411.

[50] B. Zhao, L. Stankovic, and V. Stankovic, ‘On a Training-Less Solution for Non-

Intrusive Appliance Load Monitoring Using Graph Signal Processing’, IEEE Access, vol.

4, pp. 1784–1799, 2016, doi: 10.1109/ACCESS.2016.2557460.

[51] J. Bobadilla Sancho, F. Ortega Requena, A. Hernando Esteban, and J. Bernal

Bermúdez, ‘A collaborative filtering approach to mitigate the new user cold start prob-

lem.’, Knowledge-Based Systems, vol. 26, pp. 225–238, Feb. 2012.

[52] ‘Facing the cold start problem in recommender systems | Elsevier Enhanced

Reader’. https://reader.elsevier.com/reader/sd/pii/S0957417413007240?to-

ken=4258E162A09B3C5C02DCC57C7992E597D3BD5E766CBF9ED56CFF8D3BEC

28372692824CCBBD7D9E54B888186F117FA209&originRegion=eu-west-1&orig-

inCreation=20210505123733 (accessed May 05, 2021).

[53] ‘Building energy consumption factors : a literature review and future research

agenda’. http://dl.lib.uom.lk/handle/123/12050 (accessed May 14, 2021).

[54] J. Han, M. Kamber, and J. Pei, ‘2 - Getting to Know Your Data’, in Data Mining

(Third Edition), J. Han, M. Kamber, and J. Pei, Eds. Boston: Morgan Kaufmann, 2012,

pp. 39–82. doi: 10.1016/B978-0-12-381479-1.00002-2.

[55] O. Parson et al., ‘Dataport and NILMTK: a building data set designed for non-

intrusive load monitoring’, presented at the 1st International Symposium on Signal Pro-

cessing Applications in Smart Buildings at 3rd IEEE Global Conference on Signal &

Information Processing (14/12/15 - 16/12/15), Sep. 2015. Accessed: Apr. 07, 2021.

[Online]. Available: https://eprints.soton.ac.uk/381304/

[56] ‘Table 1 An overview of PLAID and similar datasets in terms of submetered data

sampled at a frequency <1 Hz or ≥1 Hz, aggregated data sampled at a frequency <1 Hz

or ≥1 Hz, different appliance operating modes and the number of different buildings.’,

Accessed: Apr. 07, 2021. [Online]. Available: https://www.nature.com/articles/s41597-

020-0389-7/tables/2

-68-

[57] O. Alrawi, I. S. Bayram, S. G. Al-Ghamdi, and M. Koç, ‘High-Resolution House-

hold Load Profiling and Evaluation of Rooftop PV Systems in Selected Houses in Qatar’,

Energies, vol. 12, Oct. 2019, doi: 10.3390/en12203876.

[58] ‘World | Buildings | EMPORIS’. https://www.emporis.com/buildings (accessed

May 14, 2021).

[59] ‘World Climate Regions’, ArcGIS StoryMaps, Jul. 03, 2020. https://story-

maps.arcgis.com/stories/61a5d4e9494f46c2b520a984b2398f3b (accessed Jun. 12, 2021).

[60] ‘List of countries by GDP (nominal) per capita’, Wikipedia. Jun. 13, 2021. Ac-

cessed: Jun. 13, 2021. [Online]. Available: https://en.wikipedia.org/w/index.php?ti-

tle=List_of_countries_by_GDP_(nominal)_per_capita&oldid=1028390752

 -69-

Appendix 1

Python code for the NILM model (file “gsp_disaggregator.py”)

This appendix provides the Python code that was used for the application of the NILM

model. It contains the code from the file “gsp_disaggregator.py”. This code was obtained

from the GitHub repository, where according to the provided description, it was devel-

oped based on the MATLAB code that was provided by the authors of [50]. In this work

this publicly available code was used. It was adopted to read the files that were formed

during the work and a part of the code that connects it to the RS was added.

from __future__ import division

import warnings

warnings.filterwarnings("ignore")

import pandas as pd

import gsp_support as gsp

import matplotlib.pyplot as plt

print("1 of 6> reading data")

csvfileaggr = "./aggr.csv"

csvfiledisaggr = "./disaggr.csv"

df = pd.read_csv(csvfileaggr, index_col = "Time")

df.index = pd.to_datetime(df.index)

dfd = pd.read_csv(csvfiledisaggr, index_col = "Time")

dfd.index = pd.to_datetime(dfd.index)

start_date = '2011-04-23'

end_date = '2011-04-26'

mask = (df.index > start_date) & (df.index < end_date)

df = df.loc[mask]

mask = (dfd.index > start_date) & (dfd.index < end_date)

dfd = dfd.loc[mask]

fig, axs = plt.subplots(3, 1, sharex=True)

axs[0].plot(df)

axs[0].set_title("Aggregated power of house 2 from April 23th to 26th

2011, downsampled to 1 minute", size=8)

axs[1].stackplot(dfd.index, dfd.values.T, labels = list(dfd.col-

umns.values))

axs[1].set_title("Disaggregated appliance power [Ground Truth]",

size=8)

axs[1].legend(loc='upper left', fontsize=6)

sigma = 20;

ri = 0.15

T_Positive = 20;

T_Negative = -20;

alpha = 0.5

beta = 0.5

instancelimit = 3

main_val = df.values

main_ind = df.index

-70-

data_vec = main_val

signature_database = "./signature_database_labelled.csv"

threshold = 2000

delta_p = [round(data_vec[i+1] - data_vec[i], 2) for i in range(0,

len(data_vec) - 1)]

event = [i for i in range(0, len(delta_p)) if (delta_p[i] > T_Posi-

tive or delta_p[i] < T_Negative)]

clusters = gsp.refined_clustering_block(event, delta_p, sigma, ri)

finalclusters, pairs = gsp.pair_clusters_appliance_wise(clusters,

data_vec, delta_p, instancelimit)

appliance_pairs = gsp.feature_matching_module(pairs, delta_p, fi-

nalclusters, alpha, beta)

power_series, appliance_signatures = gsp.generate_appliance_pow-

erseries(appliance_pairs, delta_p)

labeled_appliances = gsp.label_appliances(appliance_signatures, signa-

ture_database, threshold)

power_timeseries = gsp.create_appliance_timeseries(power_series,

main_ind)

gsp_result = pd.concat(power_timeseries, axis = 1)

labels= [i[1] for i in list(labeled_appliances.items())]

gsp_result.columns = labels

axs[2].stackplot(gsp_result.index, gsp_result.values.T, labels=labels)

axs[2].set_title("Disaggregated appliance [Results]", size=8)

axs[2].legend(loc='upper left', fontsize=6)

print("6 of 6> plotting the input and results :)")

disaggregated_building = {'location': 'USA',

 'type': 'residential',

 'climate': 'warm temperature dry'}

for i in range(1, len(gsp.disaggregated_appliances)):

 for key, value in gsp.disaggregated_appliances.items():

 disaggregated_building[key] = value

print (disaggregated_building)

plt.show()

gsp.calculate_energy_pct(dfd, gsp_result)

import Recommender as recommender

recommender.recommend(disaggregated_building)

 -71-

Appendix 2

Python code for the NILM model (file “gsp_support.py”)

This appendix provides the Python code that was used for the application of the NILM

model. It contains the code from the file “gsp_support.py”. This code was obtained from

the GitHub repository, and according to the provided description, it was developed based

on the MATLAB code that was provided by the authors of [50]. The code is publicly

available and in this work it was reused.

from __future__ import division

import numpy as np

import pandas as pd

from collections import OrderedDict

from copy import deepcopy

from collections import defaultdict

from scipy.stats import norm

import math

import matplotlib.pyplot as plt

import csv

from IPython.display import display

from math import sqrt

import os

disaggregated_appliances = {}

def gspclustering_event2(event,delta_p,sigma):

 winL = 1000

 Smstar = np.zeros((len(event),1))

 for k in range(0,int(np.floor(len(event)/winL))):

 r = []

 event_1 = event[k*winL:((k+1)*winL)]

 r.append(delta_p[event[0]])

 [r.append(delta_p[event_1[i]]) for i in range(0,len(event_1))]

 templen = winL + 1

 Sm = np.zeros((templen,1))

 Sm[0] = 1;

 Am = np.zeros((templen,templen))

 for i in range(0,templen):

 for j in range(0,templen):

 Am[i,j] = math.exp(-((r[i]-r[j])/sigma)**2);

 Dm = np.zeros((templen,templen));

 for i in range(templen):

 Dm[i,i] = np.sum(Am[:,i]);

 Lm = Dm - Am;

 Smstar[k*winL:(k+1)*winL] = np.matmul(np.linalg.pinv(Lm[1:tem-

plen,1:templen]), ((-Sm[0].T) * Lm[0,1:templen]).reshape(-1,1));

 if (len(event)%winL > 0):

 r = []

 event_1 = event[int(np.floor(len(event)/winL))*winL:]

 newlen = len(event_1) + 1

 r.append(delta_p[event[0]])

-72-

 [r.append(delta_p[event_1[i]]) for i in range(0,len(event_1))]

 Sm = np.zeros((newlen,1))

 Sm[0] = 1;

 Am = np.zeros((newlen,newlen))

 for i in range(newlen):

 for j in range(newlen):

 Am[i,j] = math.exp(-((r[i]-r[j])/sigma)**2);

 Dm = np.zeros((newlen,newlen));

 for i in range(newlen):

 Dm[i,i] = np.sum(Am[:,i]);

 Lm = Dm - Am;

 Smstar_temp = np.matmul(np.linalg.pinv(Lm[1:newlen,1:newlen]), ((-

Sm[0].T) * Lm[0,1:newlen]).reshape(-1,1));

 Smstar[(int(np.floor(len(event)/winL))*winL):len(event)] =

Smstar_temp

 cluster = [event[i] for i in range(len(Smstar)) if (Smstar[i] >

0.98)]

 return cluster

def johntable(clusters,precluster,delta_p,ri):

 import math

 for h in range(0,len(clusters)):

 stds = np.std([delta_p[i] for i in clusters[h]],ddof=1)

 if(math.isnan(stds)):

 stds = 0

 means = np.mean([delta_p[i] for i in clusters[h]])

 if abs(stds/means) <= ri :

 precluster.append([i for i in clusters[h]])

 return precluster

def find_new_events(clusters,delta_p,ri):

 import math

 newevents = []

 for h in range(0,len(clusters)):

 stds = np.std([delta_p[i] for i in clusters[h]],ddof=1)

 if(math.isnan(stds)):

 stds = 0

 means = np.mean([delta_p[i] for i in clusters[h]])

 if abs(stds/means) > ri :

 newevents.append([i for i in clusters[h]])

 newevents = [subitem for item in newevents for subitem in item]

 return newevents

def feature_matching_module(pairs,DelP,Newcluster,alpha,beta):

 appliance_pairs = OrderedDict()

 for i in range(len(pairs)):

 pos_cluster = sorted(Newcluster[pairs[i][0]])

 neg_cluster = sorted(Newcluster[pairs[i][1]])

 flag = 0

 state_pairs = []

 for j in range(len(pos_cluster)):

 if j==len(pos_cluster)-1:

 flag = 1

 start_pos = pos_cluster[j]

 if flag:

 neg_set = [h for h in neg_cluster if (h > start_pos)]

 else:

 start_pos = pos_cluster[j]

 next_pos = pos_cluster[j+1]

 if (next_pos - start_pos) == 1:

 continue

 -73-

 neg_set = [h for h in neg_cluster if (h > start_pos and

h< next_pos)]

 if len(neg_set)==1:

 pair= (start_pos,neg_set[0])

 state_pairs.append(pair)

 elif len(neg_set)==0:

 continue

 else:

 phi_m = [DelP[h]+DelP[start_pos] for h in neg_set]

 phi_t = [(h-start_pos) for h in neg_set]

 newlen= len(neg_set)

 Am = np.zeros((newlen,newlen))

 At = np.zeros((newlen,newlen))

 sigma = 1

 for k in range(newlen):

 for p in range(newlen):

 Am[k,p] = np.exp(-((phi_m[k]-

phi_m[p])/sigma)**2);

 for k in range(newlen):

 for p in range(newlen):

 At[k,p] = np.exp(-((phi_t[k]-

phi_t[p])/sigma)**2);

 Dm = np.zeros((newlen,newlen));

 for z in range(newlen):

 Dm[z,z] = np.sum(Am[:,z]);

 Lm = Dm - Am;

 Sm = np.zeros((newlen,1))

 Sm[0] = np.average(phi_m)

 Smstar = np.matmul(np.linalg.pinv(Lm[0:newlen,0:newlen]),

((-Sm[0].T) * Lm[0,0:newlen]).reshape(-1,1))

 Dt = np.zeros((newlen,newlen));

 for z in range(newlen):

 Dt[z,z] = np.sum(At[:,z]);

 Lt = Dt - At;

 St = np.zeros((newlen,1))

 St[0] = np.median(phi_t)

 Ststar = np.matmul(np.linalg.pinv(Lt[0:newlen,0:newlen]),

((-St[0].T) * Lt[0,0:newlen]).reshape(-1,1))

 result_vec = []

 for f in range(Smstar.shape[0]):

 temp = np.nansum([alpha * Smstar[f][0] , beta *

Ststar[f][0]])

 result_vec.append(temp)

 best_pos = [a for a in range(len(result_vec)) if (re-

sult_vec[a] == min(result_vec))][0]

 pair = (start_pos,neg_set[best_pos])

 state_pairs.append(pair)

 appliance_pairs[i] = state_pairs

 return appliance_pairs

def generate_appliance_powerseries(appliance_pairs,DelP):

 print ("3 of 6> generates full power series of appliances")

 appliance_signatures = OrderedDict()

 power_series = OrderedDict()

 ctlf = OrderedDict()

 for i in range(len(appliance_pairs)):

 events = appliance_pairs[i]

 timeseq= []

 powerseq = []

 for event in events:

 start= event[0]

-74-

 end = event[1]

 duration = end - start

 instance = []

 instance.append([DelP[start]])

 temp= np.repeat(np.nan,duration-1).tolist()

 instance.append(temp)

 instance.append([abs(DelP[end])])

 final = [j for sub in instance for j in sub]

 timeval = range(start,end+1,1)

 powerval = interpolate_values(final) if sum(np.isnan(fi-

nal)) else final

 timeseq.append(timeval)

 powerseq.append(powerval)

 powerseq = [j for sub in powerseq for j in sub]

 timeseq = [j for sub in timeseq for j in sub]

 power_series[i] = pd.Data-

Frame({'timestamp':timeseq,'power':powerseq})

 appliance_signatures[i] = pd.DataFrame(powerseq)

 return power_series, appliance_signatures

def label_appliances(appliance_signatures, signature_database, thresh-

old):

 print ("4 of 6> checking appliance power signatures matches")

 labeled_appliances = OrderedDict()

 dfw = pd.concat(appliance_signatures, axis = 1, ignore_index=True)

 dfw.drop(dfw.index[1], axis=1)

 dfr = pd.read_csv(signature_database, index_col=0)

 rowr, columnsr = dfr.shape

 roww, columnsw = dfw.shape

 print(" > found "+ str(columnsw) + " appliances. Verifying

signature matching")

 for i in range(columnsw):

 for j in range(columnsr):

 last_idxr = dfr.iloc[:,j].last_valid_index()

 last_idxw = dfw.iloc[:,i].last_valid_index()

 D = FastDTW(dfw.iloc[:last_idxw,i].values,

dfr.iloc[:last_idxr,j].values, 10)

 if D < threshold:

 print(" > found match " + str(i+1) + " with "

+ dfr.iloc[:0,j].name)

 M = 'appliance' + str(i+1)

 disaggregated_appliances[M] = str(dfr.iloc[:0,j].name)

 labeled_appliances[i] = dfr.iloc[:0,j].name

 print (disaggregated_appliances)

 return labeled_appliances

def DTW(s1, s2):

 DTW={}

 for i in range(len(s1)):

 DTW[(i, -1)] = float('inf')

 for i in range(len(s2)):

 DTW[(-1, i)] = float('inf')

 DTW[(-1, -1)] = 0

 for i in range(len(s1)):

 for j in range(len(s2)):

 dist= (s1[i]-s2[j])**2

 -75-

 DTW[(i, j)] = dist + min(DTW[(i-1, j)],DTW[(i, j-1)],

DTW[(i-1, j-1)])

 return sqrt(DTW[len(s1)-1, len(s2)-1])

def FastDTW(s1, s2, w):

 DTW={}

 w = max(w, abs(len(s1)-len(s2)))

 for i in range(-1,len(s1)):

 for j in range(-1,len(s2)):

 DTW[(i, j)] = float('inf')

 DTW[(-1, -1)] = 0

 for i in range(len(s1)):

 for j in range(max(0, i-w), min(len(s2), i+w)):

 dist= (s1[i]-s2[j])**2

 DTW[(i, j)] = dist + min(DTW[(i-1, j)],DTW[(i, j-1)],

DTW[(i-1, j-1)])

 return sqrt(DTW[len(s1)-1, len(s2)-1])

def write_csv_df(path, filename, df):

 pathfile = os.path.normpath(os.path.join(path,filename))

 files_present = os.path.isfile(pathfile)

 if not files_present:

 df.to_csv(pathfile)

 else:

 overwrite = raw_input("WARNING: " + pathfile + " already ex-

ists! Overwrite <y/n>? \n ")

 if overwrite == 'y':

 df.to_csv(pathfile)

 elif overwrite == 'n':

 return

 else:

 print "Not a valid input. Data is NOT saved!\n"

 return

def calculate_energy_pct(dfd, dfc):

 fig = plt.figure()

 ax1 = fig.add_axes([0, .3, .5, .5], aspect=1)

 ax2 = fig.add_axes([.5, .3, .5, .5], aspect=1)

 fig.suptitle('Total energy consumption', fontsize = 14)

 cons1 = dfd[dfd.columns.values].sum().sort_values(ascending=False)

 cons2 = dfc[dfc.columns.values].sum().sort_values(ascending=False)

 ax1.pie(cons1.values, autopct='%1.1f%%', startangle=90)

 ax2.pie(cons2.values, autopct='%1.1f%%', startangle=90)

 first_legend = ax1.legend(dfd.columns, loc = 'lower center',

bbox_to_anchor=(.5, -.4), fontsize = 8)

 second_legend = ax2.legend(dfc.columns, loc = 'lower center',

bbox_to_anchor=(.5, -.4), fontsize = 8)

 ax1.set_title('Ground truth')

 ax2.set_title('Disaggregated')

 ax1.axis('equal')

 ax2.axis('equal')

 plt.tight_layout()

 plt.show()

-76-

def interpolate_values(A):

 if type(A) ==list :

 A= np.array(A)

 ok = ~np.isnan(A)

 xp = ok.nonzero()[0]

 fp = A[~np.isnan(A)]

 x = np.isnan(A).nonzero()[0]

 A[np.isnan(A)] = np.interp(x, xp, fp)

 A = [round(i) for i in A]

 return A

def create_appliance_timeseries(power_series,main_ind):

 print ("5 of 6> creating appliance power timeseries")

 result = OrderedDict()

 for i in range(len(power_series)):

 temp = power_series[i]

 if len(temp) < 1:

 continue

 temp.index = temp.timestamp

 dummy = pd.Series(0,main_ind)

 dummy = dummy.loc[~dummy.index.duplicated(keep='first')]

 dummy[main_ind[temp.index.values]] = temp.power.values

 result[i] = dummy

 return(result)

def refined_clustering_block(event,delta_p,sigma,ri):

 sigmas =

[sigma,sigma/2,sigma/4,sigma/8,sigma/14,sigma/32,sigma/64]

 Finalcluster = []

 for k in range(0,len(sigmas)):

 clusters = []

 event = sorted(list(set(event)-set(clusters)))

 while len(event):

 clus = gspclustering_event2(event,delta_p,sigmas[k]);

 clusters.append(clus)

 event = sorted(list(set(event)-set(clus)))

 if k == len(sigmas)-1:

 Finalcluster = Finalcluster + clusters

 else:

 jt = johntable(clusters,Finalcluster,delta_p,ri)

 Finalcluster = jt

 events_updated = find_new_events(clusters,delta_p,ri)

 events_updated = sorted(events_updated)

 event = events_updated

 if len(event) > 0:

 Finalcluster.append(event)

 return Finalcluster

def find_closest_pair(cluster_means,cluster_group):

 distances = []

 for i in range(len(cluster_means)-1):

 for j in range((i+1),len(cluster_means)):

 distance = abs(cluster_means[i] - cluster_means[j])

 distances.append((i,j,distance))

 merge_pair = min(distances, key = lambda h:h[2])

 cluster_dict = {}

 for i in range(len(cluster_group)):

 cluster_dict[i] = cluster_group[i]

 tempcluster = []

 tempcluster.append(cluster_dict[merge_pair[0]] + clus-

ter_dict[merge_pair[1]])

 -77-

 del cluster_dict[merge_pair[0]]

 del cluster_dict[merge_pair[1]]

 for k,v in cluster_dict.items():

 tempcluster.append(v)

 return tempcluster

def pair_clusters_appliance_wise(Finalcluster, data_vec, delta_p, in-

stancelimit):

 print ("2 of 6> pair clusters appliance wise")

 Table_1 = np.zeros((len(Finalcluster),4))

 for i in range(len(Finalcluster)):

 Table_1[i,0] = len(Finalcluster[i])

 Table_1[i,1] = np.mean([delta_p[j] for j in Finalcluster[i]])

 Table_1[i,2] = np.std([delta_p[j] for j in Finalclus-

ter[i]],ddof=1)

 Table_1[i,3] = abs(Table_1[i,2]/ Table_1[i,1])

 sort_means = np.argsort(Table_1[:,1]).tolist()

 sort_means.reverse()

 sorted_cluster =[]

 FinalTable = []

 for i in range(len(sort_means)):

 sorted_cluster.append(Finalcluster[sort_means[i]])

 FinalTable.append(Table_1[sort_means[i]].tolist())

 DelP = [round(data_vec[i+1]-data_vec[i],2) for i in

range(0,len(data_vec)-1)]

 Newcluster_1 = []

 Newtable = []

 for i in range(0,len(FinalTable)):

 if (FinalTable[i][0] >= instancelimit):

 Newcluster_1.append(sorted_cluster[i])

 Newtable.append(FinalTable[i])

 Newcluster = Newcluster_1

 for i in range(0,len(FinalTable)):

 if(FinalTable[i][0] < instancelimit):

 for j in range(len(sorted_cluster[i])):

 count = []

 for k in range(len(Newcluster)):

 count.append(norm.pdf(DelP[sorted_cluster[i][j]],New-

table[k][1],Newtable[k][2]))

 asv = [h == max(count) for h in count]

 if sum(asv) == 1:

 johnIndex = count.index(max(count))

 elif DelP[sorted_cluster[i][j]] > 0:

 tablemeans = [r[1] for r in Newtable]

 tempelem = [r for r in tablemeans if r < DelP[sorted_clus-

ter[i][j]]][0]

 johnIndex = tablemeans.index(tempelem)

 else:

 tablemeans = [r[1] for r in Newtable]

 tempelem = [r for r in tablemeans if r > DelP[sorted_clus-

ter[i][j]]].pop()

 johnIndex = tablemeans.index(tempelem)

 Newcluster[johnIndex].append(sorted_cluster[i][j])

 Table_2 = np.zeros((len(Newcluster),4))

 for i in range(len(Newcluster)):

 Table_2[i,0] = len(Newcluster[i])

 Table_2[i,1] = np.mean([delta_p[j] for j in Newcluster[i]])

 Table_2[i,2] = np.std([delta_p[j] for j in Newclus-

ter[i]],ddof=1)

 Table_2[i,3] = abs(Table_2[i,2]/ Table_2[i,1])

-78-

 Newtable = Table_2

 pos_clusters = neg_clusters = 0

 for i in range(Newtable.shape[0]):

 if Newtable[i][1] > 0:

 pos_clusters += 1

 else:

 neg_clusters += 1

 Newcluster_cp = deepcopy(Newcluster)

 while pos_clusters != neg_clusters:

 index_cluster = Newcluster_cp

 power_cluster = []

 for i in index_cluster:

 list_member = []

 for j in i:

 list_member.append(delta_p[j])

 power_cluster.append(list_member)

 clustermeans = [np.mean(i) for i in power_cluster]

 positive_cluster_chunk= []

 negative_cluster_chunk = []

 positive_cluster_means= []

 negative_cluster_means = []

 pos_clusters = neg_clusters = 0

 for j in range(len(clustermeans)):

 if clustermeans[j] > 0:

 pos_clusters += 1

 positive_cluster_chunk.append(index_cluster[j])

 positive_cluster_means.append(clustermeans[j])

 else:

 neg_clusters += 1

 negative_cluster_chunk.append(index_cluster[j])

 negative_cluster_means.append(clustermeans[j])

 if pos_clusters > neg_clusters:

 positive_cluster_chunk = find_closest_pair(positive_clus-

ter_means, positive_cluster_chunk)

 elif neg_clusters > pos_clusters:

 negative_cluster_chunk = find_closest_pair(negative_clus-

ter_means, negative_cluster_chunk)

 else:

 pass

 Newcluster_cp = positive_cluster_chunk + negative_clus-

ter_chunk

 clus_means = []

 for i in Newcluster_cp:

 list_member = []

 for j in i:

 list_member.append(delta_p[j])

 clus_means.append(np.mean(list_member))

 pairs = []

 for i in range(len(clus_means)):

 if clus_means[i] > 0:

 neg_edges = [(abs(clus_means[i] + clus_means[j]),j) for j in

range(i+1,len(clus_means)) if clus_means[j] < 0]

 edge_mag = [j[0] for j in neg_edges]

 match_loc = neg_edges[edge_mag.index(min(edge_mag))][1]

 pairs.append((i,match_loc))

 dic_def = defaultdict(list)

 for value,key in pairs:

 -79-

 dic_def[key].append(value)

 updated_pairs= []

 for neg_edge in dic_def.keys():

 pos_edges = dic_def[neg_edge]

 if len(pos_edges) >1:

 candidates = [abs(clus_means[edge]+ clus_means[neg_edge])

for edge in pos_edges]

 good_pos_edge = [el_pos for el_pos in range(len(candi-

dates)) if candidates[el_pos] == min(candidates)][0]

 good_pair = (pos_edges[good_pos_edge],neg_edge)

 else:

 good_pair = (pos_edges[0],neg_edge)

 updated_pairs.append(good_pair)

 return Newcluster_cp,updated_pairs

def find_closest_pairs(start_cluster,end_cluster,cluster_means,re-

quired_reduction):

 distances = []

 for i in range(start_cluster, end_cluster):

 for j in range((i+1),end_cluster+1):

 distance = abs(cluster_means[i] - cluster_means[j])

 distances.append((i,j,distance))

 distances = pd.DataFrame.from_records(distances)

 distances.columns = ['cluster_1','cluster_2','difference']

 distances.sort_values('difference',axis=0,inplace=True)

 return distances.head(required_reduction)

-80-

 -81-

Appendix 3

Buildings database

This appendix provides a screenshot of the database that was formed for the validation of

the RS algorithm.

-82-

 -83-

Appendix 4

Ratings of the recommendations

This appendix provides a screenshot of the ratings that were provided by each of the

buildings in the database for each recommendation.

-84-

 -85-

-86-

 -87-

Appendix 5

Python code for the RS (file “Recommender.py”)

This appendix provides the Python code that was used for the application of the collabo-

rative-filtering part of the RS algorithm. It contains the code from the file “Recom-

mender.py”. This code was written specifically for the purpose of this work.

import pandas as pd

import glob

import openpyxl

import math

data = './My_buildings_database.csv'

db = pd.read_csv(data)

my_database = {}

for i in range(0, len(db)):

 my_database[db.iloc[i]['building number']] = {}

 my_database[db.iloc[i]['building number']]['type'] =

db.iloc[i]['type']

 my_database[db.iloc[i]['building number']]['location'] =

db.iloc[i]['location']

 my_database[db.iloc[i]['building number']]['climate'] =

db.iloc[i]['climate']

 my_database[db.iloc[i]['building number']]['name'] =

db.iloc[i]['name']

path = './Ratings_database.xlsx'

files = glob.glob(path)

for file in files:

 wb = openpyxl.load_workbook(file)

sheets = wb.sheetnames

for i in range(0, len(db)):

 my_database[db.iloc[i]['building number']]['recommendations'] = {}

for i in range(0, len(sheets)): #for each ex-

cel sheet, do the following

 appl = pd.read_excel(path, sheets[i])

 for k in range(0, len(appl)): #for each

building, do the following

 my_database[appl.iloc[k][0]]['recommenda-

tions'][str(sheets[i])] = {}

 for n in range(1, len(appl.columns)): #for each rec-

ommendation, do the following

 if math.isnan(appl.iloc[k][n]) == False: #if the rank-

ing value is not empty, do the following

 my_database[appl.iloc[k][0]]['recommenda-

tions'][str(sheets[i])][appl.keys()[n]] = appl.iloc[k][n]

 if my_database[appl.iloc[k][0]]['recommenda-

tions'][str(sheets[i])] == {}:

 del my_database[appl.iloc[k][0]]['recommenda-

tions'][str(sheets[i])]

print (my_database)

-88-

 -89-

Appendix 6

Python code for the RS (file “Database_formming.py”)

This appendix provides the Python code that was used for the application of the collabo-

rative-filtering part of the RS algorithm. It contains the code from the file “Data-

base_forming.py”. This code was written specifically for the purpose of this work.

import operator

from Database_forming import my_database

def recommend(considered_building):

 print ("HERE RECOMMENDER STARTS")

 print (considered_building)

 # save the characteristics of the considered building into varia-

bles

 my_location = considered_building.get('location')

 print ("MY_LOCATION")

 print (my_location)

 my_type = considered_building.get('type')

 my_climate = considered_building.get('climate')

 # char_num - number of characteristics of the considered building

 char_num = len(considered_building.items())

 my_appliances = []

 for char, info in considered_building.items():

 for i in range(0, char_num):

 appliance_num = 'appliance' + str(i)

 if appliance_num in char:

 my_appliances.append(info)

 print (my_appliances)

 matching_buildings = []

 # buildings_number = len(buildings)

 buildings_number = len(my_database)

 # loop over all buildings verifying if the characteristics of each

building match the caracteristics variables of the considered building

 for i in range(1, buildings_number + 1):

 b = 'building_' + str(i)

 loc_b = my_database[b]['location']

 type_b = my_database[b]['type']

 climate_b = my_database[b]['climate']

 if loc_b == my_location:

 matching_buildings.append(b)

 if type_b == my_type:

 matching_buildings.append(b)

 if climate_b == my_climate:

 matching_buildings.append(b)

 print ('MATCHING BUILDINGS')

 print (matching_buildings)

 # 'matching_buildings' - all the builings that have at least one

-90-

characteristic in common with the considered building

 if not matching_buildings:

 print ('NO MATCHING BUILDINGS')

 else:

 # save the buildings with the highest number of characteris-

tics that match the considered building into 'best_buildings'

 dic = {}

 for num in matching_buildings:

 if num in dic:

 dic[num] += 1

 else:

 dic[num] = 1

 vals = max(dic.values())

 best_buildings = [k for k, v in dic.items() if v == vals]

 print ("BEST BUILDINGS")

 print (best_buildings)

 print (len(best_buildings))

 best_buildings_number = len(best_buildings)

 all_recommendations = {}

 # put all the recommendations of the similar buildings into

one dictionary

 for i in range(0, best_buildings_number):

 recommendations = my_database[best_buildings[i]]['recom-

mendations']

 # mutual_appliances = set(considered_building.val-

ues()).intersection(recommendations)

 for dk, dc in recommendations.items():

 if dk not in all_recommendations:

 all_recommendations[dk] = {k: [v] for k, v in

dc.items()}

 else:

 for k, v in dc.items():

 if k in all_recommendations[dk]:

 all_recommendations[dk][k].append(v)

 else:

 all_recommendations[dk][k] = [v]

 # 'all_recommendations' - all recommendations from the most

similar buildings merged into one dictionary

 # loop over all the recommendations from the most similar

buildings and put the recommendations for the appliances in the con-

sidered building into 'matching_appliances'

 matching_recommendations = {}

 for k, v in all_recommendations.items():

 for i in my_appliances:

 if i == k:

 matching_recommendations[k] = v

 # remove the appliance labeling from the mathing recommenda-

tions

 pure_recc = []

 for appl, rec in matching_recommendations.items():

 pure_recc.append(rec.items())

 values = rec.values()

 # recalculate the ratings by finding the average values and

form the recommendations with new ratings in 'new_recc' dictionary

 new_recc = {}

 for list in pure_recc:

 for statement in list:

 ratings = statement[1]

 -91-

 pure_statement = statement[0]

 new_ratings = sum(ratings) / len(ratings)

 print (pure_statement)

 print (new_ratings)

 new_recc[pure_statement] = new_ratings

 print (new_recc)

 new_rec_sorted = sorted(new_recc.items(), key=opera-

tor.itemgetter(1), reverse=True)

 print (new_rec_sorted)

 final_recommendations = []

 for key, value in new_rec_sorted:

 final_recommendations.append(key)

 print (final_recommendations)

