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Abstract 

Recommender Systems (RS) in the field of smart grids are gaining popularity. They help 

the consumers to make corrections to their behavior in order to assist them with achieving 

their goals and interests. However, the creation of a RS requires the availability of some 

previously existing data that can describe the interests of the users. In real life problems 

may arise when creating the RS due to the limited data available. In the literature these 

problems are often referred to as “cold start” problems.   

In this work, the problem of creating an electricity usage RS, when limited data are avail-

able to be used as an input, is addressed. The input data was limited to the values of the 

whole-house aggregated electrical power consumption measured with a constant fre-

quency. Data that describes the general characteristics of the building was also utilized. 

This is namely the type, location and the climate of the area where the building is situated. 

The usage of a disaggregation algorithm was chosen as a first step included at the begin-

ning of the RS. The suggestion is to utilize one of the training-less disaggregation algo-

rithms based on the graph signal processing. Nevertheless, other training-less disaggre-

gation algorithms could also be embedded at this part of the RS.  

The second part is the RS itself, which is based on the principle of Collaborative-Filtering 

(CF) RS using the descriptive data to identify the neighboring buildings. 

The results of the validation of the RS showed that it can generate recommendations with 

high accuracy in most of the cases. However, the accuracy drops when each of the neigh-

boring buildings was identified based on the match of different descriptive features with 

the target building. Thus, some suggestions to improve the accuracy are also introduced.             

Keywords: Recommender System (RS), Collaborative-Filtering (CF), Appliance dis-

aggregation, Python. 

Yelyzaveta Al-Dara 

21/06/2021 
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1 Introduction 

Recommender Systems (RS) are gaining popularity as such systems are created for dif-

ferent purposes. With the development of society and with the tremendous increase in the 

demand for products and the variety of available products on the market, the competition 

among manufacturers increases. RS are being developed to help consumers choose prod-

ucts [1] that suit their preferences and needs, out of the many options available on the 

market. This serves the interests of consumers by making it easier to find suitable prod-

ucts. RS also serve the interests of manufacturers by targeting consumers that are most 

likely to be interested in the product, which increases the advertisement effectiveness.  

The most popular types of RS are the ones with commercial purposes advertising products 

like movies [2], cosmetics, food etc. However, RS can also be used for other purposes 

which are not meant to sell products. 

One of the fields where RS can be used for non-commercial purposes is the field of smart 

grids. RS can suggest to the participants of a smart grid some actions that can improve 

the efficiency of their performance as smart grid players or of the system as whole. The 

RS can also play a vital role in assisting the users in reducing their energy bills and reduce 

their power consumption. In these terms RS can be very effective and helpful.  

When there are already some existing data that can be used to develop the RS such as 

data about users, their preferences, ratings and feedbacks, data about the preferences of 

the target user, their feedbacks and ratings, many widely used algorithms can be applied 

to develop a RS. The challenge at this point arises when there is a need to create a RS for 

the first time, when there are no previously recorded data that can be used to train the 

recommender model. 

This is the challenge that was faced by WeSmart in the attempt to develop a RS that would 

benefit the customers. The aim of the company was to create a RS that would give the 

customers useful recommendations on how to reduce their electricity consumption and 

their bills. However, the available data was limited to the values of electricity consump-

tion of the building measured with constant frequency. There was no data about any rat-

ings from the customers of any previously given recommendations that could be relied 

on when developing the RS. 
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Thus, this work was written in collaboration with WeSmart addressing this challenge that 

was encountered by the company and is relevant to many other cases when a new RS with 

limited input data is designed.       

This situation is particularly relevant when developing a RS for less widely spread appli-

cations. In this case it can be challenging even to find some publicly available data to 

train the model on. This highlights the importance of finding possible solutions to this 

problem in order to develop the RS based on the limited amount of available data. The 

possibility of recycling the output of the system by adding these to the system database 

could also be an added feature to the system. This could make the system continuously 

improving with increasing accuracy.  

So, this work addresses the problem of developing a RS in these conditions when only a 

limited amount of data is available. The application of the RS is in the field of smart grid 

favoring the interests of consumers to reduce their electricity bills. 

The aim of this work is to meet the challenges that arise when designing an electricity 

usage RS suitable for limited input data.  

Its main objectives are:  

• To suggest a viable solution producing recommendations for electricity usage 

with limited available data.  

• To evaluate the accuracy of the suggested solution and propose ways to improve 

the accuracy of the system in future.     

In order to meet the objectives, an overview of the RS in general is provided in addition 

to RS in the context of smart grids. Information on the basic principles of how RS work 

and what are the necessary data for developing such system was researched. After that, a 

research of the state-of-the-art in this field was conducted, along with research on other 

issues pertinent to the creation of the system.    

This thesis comprises the following chapters: 

1) Theoretical background: consists of five sections in which the basic concepts used 

in this work are explained, including data analytics, smart grids, RS and the areas 

of intersection of these concepts.  

2) Related work: gives an overview about existing RS related to electricity usage and 

smart grids, with a comparative summary of published work.  
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3) Methodology: details the proposed RS, explains each of its parts and provides 

suitable schematic representations. 

4) Experimental results: provides an overview of the available datasets for electricity 

consumption. The data to be used for the evaluation of both the disaggregation 

part and the Collaborative Filtering (CF) part of the proposed system are de-

scribed. The experimental results are presented along with their analysis, discus-

sion and evaluation. 

5) Conclusion and future work: includes the final discussion of the system, its ad-

vantages and disadvantages, in addition to pointers for improvement of system 

accuracy and quality in the future.     
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2 Theoretical background 

Since this work is dedicated to RS in the context of electric grids and smart grids in par-

ticular, a theoretical background, based on which further research is developed, is pro-

vided here.  

2.1 Data analytics 

Data analytics is a popular term nowadays. The main distinction between data mining and 

data analytics is that the main purpose of data mining is to find some useful patterns in 

data while data analytics is an interdisciplinary term including the use of computer sys-

tems for analyzing datasets to make some decisions [3]. In other words, data mining is 

one of the key processes of data analysis [4]. Data analysis is conducted in almost every 

field, such as technology, healthcare, mobility, urban planning, smart grids etc.  

When applying data analysis, the process normally includes a number of steps [3]. The 

first step is the assessment and selection of data, followed by cleaning and filtering. After 

that, a visual interpretation of the data is presented and analyzed. After the results of the 

analysis are ready, they should be adequately interpreted and evaluated. To summarize, 

four main phases of a data analysis project can be distinguished as shown in Figure 1 

[5]Error! Reference source not found.. 

 

Figure 1: Phases of data analysis projects [5] 

2.1.1 Data preprocessing 

According to [6] before data analysis is conducted, data should be collected, selected and 

preprocessed. It is necessary to preprocess the data received from measurements con-

ducted in real life, because these data can contain errors and discrepancies, which result 

in data being incomplete, inconsistent, noisy. Furthermore, in many cases the amount of 

available data might be large and some of these data can be irrelevant for each task and 
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each specific result that is meant to be achieved analyzing these data. Thus, this step helps 

to select out of the multitude of data available the most relevant.  

Duplicated records and anomalies are eliminated. Preparation produces data of higher 

quality by recovering the incomplete data, correcting errors and resolving any conflicts 

that may be present. Apart from that, [7] suggests that data should be cleaned by filling 

the missing values, smoothing out noisy data, correcting the inconsistencies of the data 

and resolving the redundancies. After that, data could be combined from multiple sources, 

if necessary, normalized and generalized. In case the amount of data seems to be large for 

the purpose of the work, data reduction can be applied. Discretization could be also ap-

plied in some cases. From this it can be said that there are no standard steps that should 

be applied to the dataset to be preprocessed. The literature suggests different steps to 

preprocess data. However, it can be concluded that data preprocessing is an important 

step of the data analysis process, which should not be skipped. Depending on the available 

data, it can be verified which preprocessing methods are relevant for each case. 

2.1.2 Data analysis 

Data can be analyzed using different techniques. Depending on their content, data can be 

quantitative or qualitative. Quantitative data represents measured quantities and normally 

represented by numbers. For example, 35kWh, 10MW, 15 minutes etc. Qualitative data 

gives more descriptive information that cannot be represented by numbers. For example, 

location, season, the type of building etc. In this work the tasks will be performed mainly 

by using the combination of available quantitative and qualitative data. The quantitative 

data represents the amount of electricity consumed and measured every 15 minutes in 

kWh. While the qualitative data represents the characteristics of the building such as the 

type, location and climate.  

There are several existing techniques for data analysis. One of the common techniques 

for better understanding and analyzing quantitative data in particular, is visualization. It 

can be performed using any visual tool that makes it easier for people to see the structure 

of the data and understand the trends and patterns [8]. This technique has been used in 

many scientific papers and publications in various fields. Data can be visualized using pie 

charts [9], line graphs [10], bar charts [11] and other visual tools.  

Correlation is a technique used to find the dependencies between features in data. It helps 

to observe the relationship between features and find possible causes of some occurring 
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effects. While regression focuses on estimating the function which defines the depend-

ency between variables.  

The difference between classification [12] and clustering is that classification is super-

vised learning with predefined classes, while clustering is unsupervised learning with no 

predefined classes. 

So, in classification there are some previously labeled data that are fed into the model. 

These data are used to train the model to be able to identify which object belongs to which 

class. After the training stage is done, the model is run on testing dataset which is not 

labeled. The task of the classification model is to assign each item of the testing dataset 

to one of the classes that the model was trained on. While clustering does not have training 

dataset. It uses unlabeled data as input. After that, it forms groups, which are referred to 

as clusters. These clusters contain the items of the database that are similar to each other 

based on some predefined similarity measures. 

2.1.3 Data postprocessing 

After data analysis is conducted and the results are obtained, the results are interpreted, 

documented and evaluated. In other words, the results can be either directly in the system 

or as a base for it. The results can be also visualized, summarized, transformed to a dif-

ferent format and tested [13].    This work will also use data analysis to extract information 

from the data and support making decisions to provide electricity usage recommenda-

tions.   

2.2 Smart grids 

The definition of the term “smart grid” varies from one source to another. Smart grids 

were defined by the European Union (E.U.) as electrical networks with intellectual inte-

gration of the interaction between the users in the network, which enables bi-directional 

power flows. Smart grids must ensure security, cost-effectiveness and environmental sus-

tainability [14]. 

Another definition for a smart grid was given by Paul et al. [15], as a combination of 

power generation and distribution system in one frame, which makes the system cleaner. 

This definition in some way is different and focused more on the ecological aspect that 

this term incorporates. 
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While conducting research on the improvement path of China’s smart grid security con-

trol Teng defined a smart grid as the power grid that integrates modern computer, infor-

mation, communication and advanced sensor technologies into its physical base [16]. The 

structure of a typical smart grid and the bi-directional information flow in it was clearly 

depicted in [17] as shown in Figure 2.    

Generation Transmission Distribution Consumption

Information flow
 

Figure 2: Smart grid structure [17] 

The participants of a smart grid can be divided into three categories: 

• Network operators: transmission and distribution network operators.  

• Users: consumers, generators and storage owners. 

• Other participants: suppliers, aggregators, applications and service providers [18].  

The interaction of these participants with each other over the grid, the information and 

communication devices used, the information flow and the physical structure of the power 

network itself, form a smart grid. 

2.3 Data analytics in smart grids 

Data analytics is a powerful tool that is nowadays frequently used in the field of smart 

grids. There are a variety of applications of data analytics in smart grids. A brief summary 

of the uses of data analytics techniques and their applications in smart grids is depicted 

in Figure 3 [19]. 
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Figure 3: Taxonomy of smart meter data analytics [19] 

Data analytics can favor energy market players on different levels. For consumers, indi-

vidual load forecasting is performed in order to increase the efficiency of energy con-

sumption [20]. However, most of the works in data analytics from the consumer side is 

focused mainly on achieving load forecasting to adjust the amount of generated energy.  

It can be noted that data analytics can also be used as a tool to increase the efficiency of 

electrical energy usage from the consumer side by providing the users with recommen-

dations contributing to reducing the electricity bills costs [21]. 

2.4 Recommender Systems (RS) 

With the rapid development of technologies and the available products on the market, the 

popularity of RS is growing tremendously. A RS was defined [22] as a technique or a tool 

that provides the user with suggestions of items. It was mentioned by Massa in [23] that 

the RS is “a technique that is able to cope with Information Overload problem”. RS are 

indeed effective tools to tackle the challenges caused by the huge amount of information 

available. They automate the process of selecting relevant items for users and make it 

easier for the users to choose items that are right for them out of many similar items 

available. 

In general, the items that RS suggest can be of any type such as movies, music, food, 

magazines, furniture etc. RS can be also used to suggest products for users based on in-

formation about the products they have purchased previously. For example, Netflix RS 
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that recommends movies and series to the user based on the movies and shows that the 

user has searched for or watched previously or based on the preferences set manually by 

the user. In fact, Netflix has complex algorithms that define the logic of their RS. The 

case of Netflix RS gained much interest among researchers that even some papers and 

theses have been dedicated to it [24], [25].    

Another type of items that can be suggested by RS could be actions. RS can advise users 

to do some actions depending on some other actions that the user has done previously or 

depending on some other factors, such as user characteristics, categories etc. For example, 

it could be a system that recommends to a consumer in a smart grid to install solar panels 

based on their electricity consumption profile that shows high consumption of electricity 

from the grid during the day. 

RS were classified into three categories [26]: 

Collaborative filtering (CF)-based RS: 

• User-to-user RS: This type of system is based on recommending to the user items 

that other users with similar characteristics have chosen or have been given a high 

rate previously.   

• Item-to-item systems: The main idea behind these systems is that an item is con-

sidered to be in one category if it has the same users’ like or dislike. 

Content based RS: The logic of this type of system is based on recommending items that 

have some similarities to the items that the user has already purchased or were highly 

rated in the past [22]. In other words, these systems do not depend on the information 

provided by other users. 

Hybrid RS: This type of RS combines several types of RS. The motivation for that is to 

eliminate the drawbacks that some types of systems may have. 

2.5 Recommender systems for smart grids 

Clustering is suggested as a tool for peaks shaving [27]. This technique can be used for 

identifying patterns in energy consumption, which could also be applied for energy mod-

els predictions. At the same time, by the means of clustering RS can be developed [28]. 

It has been denoted that in a large number of literature clustering is used for developing 

RS in the context of smart grids.      
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As a tool to improve the quality of RS including the context of smart grids in particular, 

past responses to recommendations [29] can be utilized for generating more effective rec-

ommendations for the consumer in future. Another point that can improve the quality of 

provided recommendations is providing incentives that are appropriate to the consumer 

[29]. In this regard the socio-economic state, specific aspects of the building, location, 

type of the facility etc. should be taken into account. 

Overall, the usage of the RS in the field of smart grids is gaining popularity with new 

systems continuously being developed. These RS can target different goals and give dif-

ferent recommendations in the context of smart grids. Some of the systems can recom-

mend to purchase new products that can improve the performance of the participant of 

the smart grid or the system in general. Other RS can suggest certain actions that the 

players of the smart grid can take to achieve some goals.  

Chapter 3 provides more detailed analysis of the existing RS to be used in the context of 

smart grids.   
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3 Related work 

Many papers have been published focusing on developing RS for smart grid users. Dif-

ferent types of RS were proposed. Each type provides a certain category of recommenda-

tions and targets certain participants of the smart grid. Some papers used the aggregated 

consumption data, others used a variety of methods in order to obtain the consumption 

data of each individual appliance of the dwelling.  

The review starts by introducing some of the most popular RS for smart grids, followed 

by analyzing works that used aggregated data directly. After that, works that utilized dis-

aggregated data for their RS will be discussed. 

A summary of the most popular RS for smart grids was provided in [30]. According to it, 

some of the most widely spread smart grid RS are the following types: 

• Energy Saving Electrical Appliance RS 

• Electricity Retail Plan RS  

• Household Demand Response Schedule RS 

• Other RS, such as systems that recommend electrical appliances or products to 

utilities etc. 

3.1 Recommender systems using aggregated data 

An example of this type of RS is a system recommending electricity retail plans to the 

consumers that was developed without installing additional smart devices in the facility 

[31]. In this case the system recommends electricity retail plans depending on the overall 

household energy consumption data. The system was based on clustering the households 

by similarity of the electricity consumption curves, then recommending same retail plans 

for consumers of the same cluster. The system also has some space for improvement. In 

case of a new plan introduced, the system will not be able to recommend it to the users. 

Another note is that the individual characteristics such as socio-economic state, geo-

graphic location, type of the consumer (residential, industrial etc.) of each user that affect 

the ability of choosing a certain plan are not considered in this system. Another system 

recommending tariff plans for users was developed in [32] with the use of aggregated 

consumption data. 
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3.2 Recommender systems using disaggregated 
data 

Electricity retail plans RS with enhanced accuracy was developed based on disaggregated 

data in [33]. For the development of this recommender system data from the Smart Grid 

Smart City (SGSC) project. These data include the overall consumption of electrical 

power of the dwelling and the power consumption of at least four appliances present in 

the dwelling. Although this RS was tested and proven by the authors to be effective and 

accurate, the computational speed remains to be an important area that requires for im-

provements to be done in. 

Another prototype of a RS for saving electrical energy was proposed in [30]. The sche-

matic representation of the system is provided in Figure 4 [30]. 

 

Figure 4: Energy Saving Electrical Appliance RS scheme [30] 

This recommender system takes the overall energy consumption of the dwelling as an 

input. Then, it applies Non-Intrusive Load Monitoring (NILM) technique in order to dis-

aggregate the electricity consumption of the dwelling into electricity consumption pro-

files of each individual appliance. From these profiles, the system extracts some appliance 

utilization features and feeds them to the user knowledge database. In addition, some 

other data can be added to the user knowledge database, such as the location, the type of 

the building etc. Also, user interest data are stored in the user knowledge database. These 
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data can be extracted based on some previous history of the user or by direct questioning 

about the interests of the user. After that, the data in the user knowledge database are used 

to develop a model which includes all the inputs and outputs the recommended energy 

saving appliance list and suggests it to the user. 

Another example of a RS that uses disaggregated electricity consumption data is the 

multi-agent RS proposed in [21]. The RS consists of three modules. Each of the modules 

has agents. Each of the agents is entitled to do a certain task in the RS. There is also a 

Control agent which monitors and coordinates the operation of the agents.  

The first module is Device module where Device agents operate. Their task is to read the 

measurements from the smart devices inside the building. The communication between 

the Device agents and the smart devices is performed via specific communication proto-

cols. The Device agents obtain data about the electricity consumption from the smart de-

vice with a constant frequency. Each Device agent communicates only with one smart 

device. Thus, the number of Device agents is defined by the number of smart devices in 

the building.  

The second module is Crawler module. This module has the Crawler agent, the main task 

of which is to extract information about the prices of electricity from the web page. The 

agent extracts and records this information every twenty-four hours. 

The third module is the Recommendation module. The operation of this module is per-

formed by three agents: Filtering agent, Behavior agent and Recommendation agent.  

The main task of the Filtering agent is to filter the data that was obtained by the Device 

agent and the Crawler agent. The Behavioral agent uses the data provided by the Filtering 

agent to extract the behavioral patter of how each device is being used by the user. The 

last agent in this system is the Recommendation agent. This agent receives the data pro-

vided by the Behavioral agent and generates and provides the recommendations for the 

user.  

All the modules and agents can communicate with each other forming by that a complete 

RS that can make short- or long-term recommendation for the user to reduce their elec-

tricity consumption. Although this system well-designed and provides a variety of useful 

recommendations to the user, it has some drawbacks. These drawbacks are pointed out 

and discussed in more details in section 3.4.           
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3.3 Comparative summary of recommender sys-
tems 

As a summary and an explanation of why disaggregating the electricity consumption data 

plays such a vital role in providing recommendations to the users and why this work fo-

cuses on this field in particular, Table 1 was designed to depict the existing works on 

electricity usage recommendations. 

Table 1: Comparison of published works on electricity usage RS 

Recommender 

system 
Paper 

Type of data 

used 

Type of 

recom-

menda-

tions 

AgentSwitch 

“Recommending Energy Tariffs 

and Load Shifting 

Based on Smart Household Us-

age Profiling” [32] 

Both aggre-

gated and dis-

aggregated 

data 

Personal-

ized rec-

ommenda-

tions of 

energy tar-

iffs & load 

shifting 

recom-

menda-

tions 

Multiagent rec-

ommendation 

system 

“Multi-Agent Recommendation 

System for Electrical 

Energy Optimization and Cost 

Saving in 

Smart Homes” [21] 

Disaggregated 

data 

New hours 

in which 

to use the 

appliances 

Residential En-

ergy Usage Rec-

ommendation 

System 

(REURS) 

“Personalized Residential En-

ergy Usage Recommendation 

System Based on Load Monitor-

ing and Collaborative Filtering” 

[34] 

Disaggregated 

data 

Energy-ef-

ficient ap-

pliance us-

age plans 

Social Infor-

mation Filtering-

Based RS 

“Social Information Filtering-

Based Electricity 

Retail Plan RS 

for Smart Grid End Users” [31] 

Aggregated 

data 

Retail 

plans 

Electricity plan 

recommender 

system (EPRS) 

“Collaborative Filtering-Based 

Electricity Plan 

RS” [33] 

Both aggre-

gated and dis-

aggregated 

data types 

Electricity 

retail plans 

PRS with Elec-

trical Intrusive-

based Recovery 

(EPRS-EI) 

“Electricity plan RS with electri-

cal instruction-based recovery” 

[35] 

Both aggre-

gated and dis-

aggregated 

data 

Personal 

electricity 

plans 
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Hybrid collabo-

rative filtering-

based electricity 

plan recom-

mender system 

(HCF-EPRS) 

“Big Data-driven Electricity 

Plan RS” [36] 

Both aggre-

gated and dis-

aggregated 

data 

Instruc-

tions in re-

tailer and 

plan selec-

tion 

Home Area Net-

work (HAN) 

“Design and Evaluation of a 

Constraint-Based Energy Saving 

and Scheduling RS” [37] 

Disaggregated 

data from 

smart plugs 

High-level 

energy 

consump-

tion plans, 

electricity 

usage 

schedules 

 

Based Table 1 a conclusion can be made about the vital role of obtaining the disaggre-

gated electricity consumption data in order to build an electricity usage RS. Among all 

the analyzed published work only one RS was based solely on the usage of aggregated 

electricity consumption data. In all other cases either disaggregated data were used or 

both disaggregated and aggregated data. Thus, in order to develop a reliable RS, disaggre-

gation of the aggregated electricity consumption data is necessary. Below, a discussion 

of two way of disaggregation: intrusive and non-intrusive is provided.    

3.4 Intrusive disaggregation 

A RS that utilizes additional devices measuring the electrical power consumption data of 

each device was proposed in [21]. Smart plugs were used as a cost effective and easily 

implemented solutions to provide electricity consumption data of each appliance. Possi-

ble recommendations were given three labels: “no recommendation” if it is impossible to 

implement it, “short-term recommendation” for devices that can demonstrate a limited 

flexibility in their usage and “long-term recommendation” for devices that can be very 

flexible in terms of their usage timeframes.  

Although the RS developed in [21] was validated by testing, installing an individual smart 

plug for each device may be a burden for implementing the system. The decision regard-

ing the number of plugs and the devices to be controlled is to be taken solely by the 

consumer. This may cause installing devices that are eventually not used or installing 

them in a way that will not contribute significantly to the reduction of electricity con-

sumption. Apart from that, additional installations and interventions into the dwellings 

are necessary in order to set up the system. 
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3.5 Non-intrusive disaggregation 

For the purpose of retrieving the consumption curves of each individual appliance from 

the aggregate consumption curve various non-intrusive algorithms can be used. Many 

non-intrusive algorithms were proposed and published [38]–[46]. 

The available data provided by smart meters usually come in form of aggregated data that 

represent the electricity consumption of the building or house, without any visible deple-

tion of these data into the consumption of each individual device. In this case disaggre-

gation of the data are necessary to obtain the electricity consumption curve of each par-

ticular device. 

Non-Intrusive Load Monitoring (NILM) has supervised and unsupervised methods with 

published algorithms. One of the drawbacks of the supervised methods is that in order to 

use them some amount of already disaggregated data should be available as a training set. 

This might be expensive and difficult to obtain. On the other hand, the unsupervised 

methods are easier to implement although they are considered to be less accurate [46].       

NILM can be event-based and state-based. Event-based NILM approaches are based on 

identifying the event windows, which are the events of switching on or off of an appli-

ance. Each window is characterized by a power raise at the beginning and a power drop 

at the end of the window [47]. The state-based NILM approaches are based on represent-

ing the operation of each appliance using a state machine. These approaches normally use 

the Hidden Markov Model (HMM) [48]. 

Some other works were also published proposing NILM algorithms such as [49], where 

an unsupervised approach based on the nonparametric factorial hidden Markov model 

was proposed. Another unsupervised NILM algorithm was suggested in [50], which is an 

unsupervised algorithm based on graph signal processing. This algorithm will be used in 

this work to demonstrate how the NILM model can be embedded in the RS and provide 

the output for it.   
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4 Methodology 

This chapter describes the working principle of the proposed RS. Based on the analysis 

of published works, the proposed RS contains a part to disaggregate the whole-house 

electricity consumption data, using the output to provide recommendations regarding the 

electrical appliances’ usage. 

4.1 Cold-start problem 

The suggested system is based on the CF principle. In order to implement a CF algorithm, 

the similarity between the target user and other users should be measured. Normally, this 

can be done using the ratings that the target user has given to the recommendations before 

and the ratings that other users have given to these recommendations. After that, users 

whose ratings were similar to the ratings of the target user for the same recommendations, 

are considered to be the neighbors for the target user. The recommendations, which were 

highly rated by neighbors but were not introduced to the target user before, are then sug-

gested to the target user.   

However, in the case where there are no data about previous ratings of the target user, 

other data can be used to determine the similarity between users. This situation is typically 

classified as a the “cold-start problem” in the RS. 

The proposed RS tackles the cold start problem. Taking into account that the provided 

data include only the aggregated electricity consumption reading from the smart meter 

installed in the building and that there is no additional data that can be used to develop 

the RS, the cold start problem in this case forms a major issue that should be tackled. 

Below a more detailed explanation of the cold start problems encountered when develop-

ing RS are presented. 

According to the literature [51] cold start problems can be classified into three categories, 

namely: 

• New community: This problem is often faced when a new RS is being created. 

New community problem incorporates in itself both new item problem and new 

user problem at the same time. The reason of this problem is the lack of previously 

obtained information or data that could be relied on for making recommendations.    
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• New item: This problem occurs when a new item is presented to the RS. In this 

case the item does not have any votes yet, which causes that the system cannot 

recommend it to anyone. Although in the case that the item has a few votes and  

the system is already able to recommend this item, the quality of these recommen-

dations will be doubtful [52]. 

• New user: This problem occurs when a new user decides to use the system. When 

the user has not yet provided any votes, it is difficult to provide personalized rec-

ommendations to the user. Even after the user has provided a few votes, the RS 

cannot provide very reliable personalized recommendations until the number of 

votes provided by the new user will be enough to do that. 

From the above classification, the new user problem is tackled in the suggested system. 

To do so, the neighbors of the users are determined not by previously given ratings, but 

based on some basic information about the buildings. This information is selected as the 

factors that have an influence on the ratings of the recommendations by each user.  

4.2 Factors influencing recommendation ratings  

Many external factors have a major influence on the electricity consumption behavior in 

buildings. These factors also have a major contribution to the answers of many questions 

such as “How applicable a certain recommendation is for this particular building?”, “How 

effective the application of a certain recommendation is for this particular building?” etc. 

Which affects the ratings that each user attributes to each recommendation. Which in turn 

influences the predicted rating of the target user for each recommendation. Thus, includ-

ing these factors in the RS and using them as parameters determining the target user’s 

neighborhood as an approach to address the new user cold start problem in CF is a rea-

sonable solution.  

There are many factors influencing the ratings of the electricity consumption recommen-

dations. Such as climate, building related characteristics (age, size, envelop fabrics etc.), 

occupancy rate, socio-economic characteristics (education, culture, income etc.) [53] and 

many more. For developing the RS, the factors that are the easiest to obtain were used, 

but other factors can be added as well. The factors used to determine user neighborhoods 

can be distinguished as follows: 

• Location (country): Different countries may have different electricity pricing pol-

icies. Also, the habits, mentality and even the predominating religion in the 
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country can affect how people consume electricity and what electricity consump-

tion recommendations they would prefer the most. For example, the working 

hours vary from country to country, which affect the electricity consumption 

curve in the offices. 

• Climate [53]: The climate or climatic location in which the dwelling is located 

influences the needs of the dwelling in cooling and heating. In case of the usage 

of electrical appliances for these purposes, this factor affects user ratings of the 

suggested electricity consumption recommendations.  

• Type: Type of dwelling refers to the type of activities that are mainly practiced 

there. For example, this can be a library, restaurant, canteen, residential house etc.   

4.3 Description of the system 

The system focuses on providing recommendations targeting to reduce the level of elec-

tricity consumption and to reduce the cost of the energy bills paid by the customer. The 

schematic representation of the RS is depicted on Figure 5.  

No

NILM 

Model

Appliance 

Utilization Data

Basic Information 
(type of building, 

location, climate etc.)

Smart Meter

User 

Database

Feedback with the rating of 

each recommendation

Provide recommendations that 

were provided to the similar users 

with the average rating of 

recommendations  

Compare data about the target 

user with the database

Find similar users

User-to-user 

collaborative filtering 

1

2

Ratings

Aggregated 

electricity 

consumption data

Provide all recommendations 

regarding the appliances in 

the building
Yes

No

 

Figure 5: Schematic representation of the proposed RS 
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The proposed RS is based on the principle of CF type of RS. First, two types of data are 

collected from the user:  

• Aggregated electricity consumption data, extracted from the smart meter installed 

in the building. 

• Basic information about the user, such as the location of the building (country, 

city etc.), its type (residential house, school, office etc.), the climate where the 

building is situated and other features that can affect electric energy consumption 

patterns. 

After the aggregated electricity consumption data are collected, they are used as an input 

for the NILM model that disaggregates the data and provides information about what 

appliances are used inside the building forming the appliance utilization data. 

After that, the appliance utilization data together with the basic information data are fed 

into the user database.      

After the user database is formed, the CF principle of the RS is applied. The system 

searches for users that have the highest similarity to the target user, based on their basic 

information. After the closest neighboring users are found, the system takes the recom-

mendations that were given to these users and filters them to exclude recommendations 

regarding appliances that are not present in the target user building. Then, for each rec-

ommendation, the average value of the given ratings is computed. Finally, the recommen-

dations are given to the target user sorted in descending order of rating values.  

The last step of the system is getting feedback from the target user with their rating of the 

provided recommendations. These rating are added to the user building profile and this 

profile, including the basic information about the user and the feedback, are added to the 

database, which improves the accuracy of recommendations in the future. 

4.4 NILM model    

From the schematic representation of the system (Figure 5) it can be noticed that in order 

to disaggregate the whole-house electrical consumption values and find out what electri-

cal appliances are being used, a NILM model is being implemented. Below a detailed 

explanation of the NILM model algorithm is provided. The used algorithm was developed 

and proposed in [50]. 

This NILM algorithm was selected due to a number of reasons:  
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• It does not require the presence of a training dataset. Typically, NILM algorithms 

require a training dataset to be trained on before running the algorithm with the 

test dataset. This training dataset is formed using the disaggregated data from the 

buildings that are similar to the target building. However, the useful feature of this 

algorithm is that it can be run without the need to be previously trained on similar 

data. This feature is useful when addressing the condition of limited input data. 

• The algorithm is not specific to a certain type of buildings i.e., it can be used for 

residential buildings as well as for schools, offices and other common types of 

buildings. This is due to the fact the algorithm labels the discovered appliances on 

the very last stage of the disaggregation. Thus, most of the common appliances 

can be labeled with the aid of a proper signature database.   

Following a detailed description of the algorithm is provided [50]. In order to simplify 

the understanding of the working principle of the algorithm it is explained on a simple 

example first. Afterwards, a more detailed description is provided.  

4.4.1 Simplified explanation 

This is a demonstration of the algorithm on a simple example that was done in order to 

summarize and clarify the working principle of the algorithm.  

The algorithm takes as an input two data files: aggregated electrical power consumption 

and signature database.  

The aggregated electrical power consumption curve is depicted in Figure 6. 

 

Figure 6: Aggregated electricity consumption curve for the explanatory example 
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The second file is the file containing signatures of electrical appliances. These appliances 

may or may not be present in the building. In this example the signature database consists 

of signatures of three appliances labelled as refrigerator, electrical heater and microwave. 

The signatures of each of the appliances are depicted on Figure 7, Figure 8 and Figure 9 

respectively. 

 

Figure 7: Signature of “Refrigerator” for the explanatory example 

 

Figure 8: Signature of “Electric heater” for the explanatory example 
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Figure 9: Signature of “Microwave” for the explanatory example 

First, the algorithm identifies the increasing and decreasing power edges. This is repre-

sented on Figure 10. 
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Figure 10: Increasing and decreasing power edges for the explanatory example 

After that, the algorithm forms two clusters: one with increasing edges called positive 

cluster and one with decreasing edges called negative cluster (Figure 11). 
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Positive cluster Negative cluster

 

Figure 11: Positive and negative clusters for the explanatory example 

After that, depending on the magnitude and the time between these edges the algorithm 

finds the best match for each edge from the positive cluster with an edge from the negative 

cluster as depicted on Figure 12. 

2 h 30 min

 

Figure 12: Edge pairs for the explanatory example 

The final step is label matching. At this step the algorithm matches the pairs that were 

found with appliance signatures from the signature database. The pair matching the elec-

tric heater and refrigerator are represented on Figure 13 and Figure 14.  
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Figure 13: Label matching for electric heater for the explanatory example 
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Figure 14: Label matching for refrigerator for the explanatory example 

It can be noted that in this example there were no match for the edges with the signature 

of the microwave. Thus, it is defined that there is no microwave in this building. By re-

peating the label matching for each of the discovered edge pairs the disaggregated elec-

trical power consumption curves can be outputted (represented on Figure 15).  



-28- 

 

Figure 15: Disaggregation result for the explanatory example 

4.4.2 Detailed description 

First of all, the task that has to be solved by the algorithm is represented by [50]   (1). 

 𝑃𝑡𝑖
= ∑ 𝑃𝑚𝑡𝑖

+ 𝑛𝑡𝑖

𝑚∈Μ

 [50]   (1) 

where: 

𝑃𝑡𝑖
 – total measured active power of at each time instance 𝑡𝑖, where i = 1, …, n; 

𝑃𝑚𝑡𝑖
 – contribution of power of each appliance m into the total measured power; 

Μ – set of the known appliances in the building; 

𝑛𝑡𝑖
 – noise including the unknown appliances and the base load. 

So, the task of the algorithm can be simplified to finding 𝑃𝑚𝑡𝑖
 according to [50]   (2). 

 min
𝑃𝑚𝑡𝑖

|𝑃𝑡𝑖
− ∑ 𝑃𝑚𝑡𝑖

𝑚∈Μ

| [50]   (2) 

It is an event-based algorithm. The principle of this algorithm is first finding the window 

of events. This means that it finds the periods of time when each appliance changes its 

state from on to off and vice versa. After that, using a database that includes signatures 

of appliances that were formed by other people in the past or by any other means, it 

matches each device with its signature that is available in the database. In order to find 

the event windows, this approach uses Graph Signal Processing (GSP), that is obtaining 

graph signals from indexing a dataset by nodes of a graph. In this work the NILM 
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approach used is based on GSP. In other words, the data are represented in the form of a 

graph and its adjacency matrix. 

A graph G = {V, A} is built using a set of measurements x, where each node 𝑣𝑖 ∈ 𝑉 

represents one active power measurement, while 𝐴 is the adjacency matrix that represents 

the edges of the graph. After that, the set of nodes 𝑉 is mapped to a set of complex num-

bers, which represent the graph signal 𝑠. Each of the elements 𝑠𝑖 is indexed by one node 

𝑣𝑖 ∈ 𝑉.   

The flowchart of the algorithm of the NILM model used is represented in Figure 16 [50]. 

 

Figure 16: Flowchart of the NILM model [50] 

The algorithm consists of three main steps: edge detection, clustering and feature match-

ing. Clustering step is performed twice. First, the input data are fed to the algorithm. It is 

the aggregated power consumption 𝑃𝑡𝑖
, initial threshold 𝑇0, ρ is the scaling factor and 𝐾.  
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After that, comes the edge detection step, where using the threshold 𝑇0 and applying the 

condition Δ𝑃𝑖 ∈ (−∞, −𝑇0) ∪ (𝑇0, ∞) the set of values Π is generated. Π represents all 

possible events that happened in the dataset. An event is defined as switching on/off an 

appliance or changing the mode of operation. 

The first clustering step is initial clustering where the graph is built. In order to make the 

graph, the values from previously generated are used. Each value is a node 𝑣𝑖 of the graph. 

At the beginning the value of 𝑠1 is set depending on the value of Δ𝑃1. If Δ𝑃𝑖 > 𝑇0, then 

𝑠1 = 1. If Δ𝑃𝑖 < 𝑇0, then 𝑠1 = −1. All the remaining 𝑠𝑗for 𝑗 > 1 are set to 0. 

All samples that are statistically similar to 𝑠1 are clustered. To perform the clustering 𝑠∗ is 

calculated using [50]   (3): 

 𝑠∗ = 𝐿2:𝑁,2:𝑁
# (−𝑠1)𝐿1,2:𝑁

𝑇  [50]   (3) 

where: 

𝑠∗ – the smoothness optimization solution (minimizes the total graph variation); 

(. )# – the pseudo-inverse matrix; 

𝑁 – length of the discrete signal 𝑠; 

𝐿 – the graph Laplacian operator (𝐿 = 𝐷 − 𝐴), where 𝐷 – diagonal matrix with nonzero 

entries 𝐷𝑖,𝑖 = ∑ 𝐴𝑖𝑗𝑗 . 

A constant value of 𝑞 is defined and fixed. If 𝑠𝑗
∗ > 𝑞s, then Δ𝑃𝑗 with 𝑠1 is added to the 

first cluster of events and removed from Π. That is how the cluster 𝐶1 is formed. After 

that this procedure is repeated with the remaining elements of Π forming clusters 𝐶𝑖 until 

the set Π is empty. Each cluster 𝐶𝑖 will have either only positive or only negative edges.  

After that, the quality of clusters 𝐶𝑖 is evaluated by calculating [50]   (4): 

 𝑅𝑖 = |
𝜎𝑖

𝜇𝑖
| [50]   (4) 

where: 

𝑅𝑖 – relative standard deviation (RSD); 

𝜎𝑖 – standard deviation of cluster 𝐶𝑖; 

𝜇𝑖 – mean value of cluster 𝐶𝑖. 

The lower the value of 𝑅𝑖, the better the quality of the cluster 𝐶𝑖. 
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The final process of the initial clustering step is defining new thresholds. Two clusters 

with the highest RSD are selected. The mean values of these two clusters define the new 

thresholds 𝑇𝑃 and 𝑇𝑁 that are used for positive and negative edges respectively. 

The second clustering step is refined clustering. In this step all clusters that have 𝑅𝑆𝐷 >

𝐾 (𝐾 is heuristically obtained constant which represents the acceptable precision level of 

a cluster) are re-clustered by dividing 𝜌 into 2 in [50]   (5).  

 𝐴𝑖,𝑗 = 𝑒𝑥𝑝 {−
|𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗)|

2

𝜌2
} [50]   (5) 

where: 

𝜌 – scaling factor; 

𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗) – can be Euclidean distance. 

After every iteration all clusters which have 𝑅𝑆𝐷 ≤ 𝐾 are removed from the set Π and 

saved as final clusters. Clustering process runs until the set Π has no more elements to 

cluster. 

After that, small clusters can be merged into bigger clusters to ensure that the number of 

clusters with increasing power edges equals the number of clusters with decreasing power 

edges. 

The next step of the algorithm starts after all clusters are formed and Π becomes empty. 

This step is called Feature Matching. In this step each “positive” cluster is paired with a 

“negative” cluster. The pairs are formed by matching clusters with closest absolute mean 

values.  

After that, each cluster pair is processed separately. Each element from the “positive” 

cluster is matched with an element from the “negative” cluster. To do that the time inter-

vals between the edges are used in addition to the magnitude difference. 

First of all, the cluster with the largest mean is taken. If 𝐶𝑃 and 𝐶𝑁 are two paired “posi-

tive” and “negative” clusters respectively, then for each 𝐶𝑃𝑖
∈ 𝐶𝑃 a match 𝐶𝑁𝑖

∈ 𝐶𝑁 

should be found. Since the decreasing edge comes after the increasing edge when looking 

for a pair for 𝐶𝑃𝑖
 a graph containing only 𝐶𝑁 that come after 𝐶𝑃𝑖

 and before 𝐶𝑃𝑖+1
 is 

formed. This set of 𝐶𝑁 is denoted as Φ . The set Φ𝑀 will be a set of magnitude differences 

between 𝐶𝑃𝑖
 and each 𝑖. The set Φ𝑇 will be a set of time intervals between 𝐶𝑃𝑖

 and each 

𝑖.  
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After that GSP is applied to form two graphs: 

• 𝐺𝑀 = {𝑉𝑀, 𝐴𝑀}, where Φ𝑀 is used to form the nodes and 𝐴𝑀𝑖,𝑗
=

𝑒𝑥𝑝 {−
|𝑑𝑖𝑠𝑡(Φ𝑀𝑖

,Φ𝑀𝑗
)|

2

𝜌2 } and the graph signal 𝑠𝑀 is formed that 𝑠𝑀1
 is the average 

value of the elements in Φ𝑀 and 𝑠𝑀𝑗
= 0 for 𝑗 > 1. 

• 𝐺𝑇 = {𝑉𝑇 , 𝐴𝑇}, where Φ𝑇 is used to form the nodes and 𝐴𝑇𝑖,𝑗
=

𝑒𝑥𝑝 {−
|𝑑𝑖𝑠𝑡(Φ𝑇𝑖

,Φ𝑇𝑗
)|

2

𝜌2 } and the graph signal 𝑠𝑇 is formed that 𝑠𝑇1
 is the median 

value of the elements in Φ𝑇 and 𝑠𝑇𝑗
= 0 for 𝑗 > 1. 

Then [50]   (3) is calculated for each of the two graphs resulting in 𝑠𝑀
∗  and 𝑠𝑇

∗ . The de-

creasing edge that would be the best match for the increasing edge 𝐶𝑃𝑖
 is calculated using 

[50]   (6). 

 arg max
𝑖

{𝛼𝑠𝑀𝑖

∗ + 𝛽𝑠𝑇𝑖

∗ }  [50]   (6) 

where: 

𝑖 = 1, … , 𝑛; 

𝑛 – length of 𝑠𝑀
∗  and 𝑠𝑇

∗  (number of candidates); 

𝛼 and 𝛽 – chosen heuristically; 

𝛼 – weight given to magnitude; 

𝛽 – weight given to time. 

The result of this calculation gives the best matching edge. 

After all edges in the cluster pair are matched, if there are still some edges that were not 

paired from this cluster pair, these edges are included in the next cluster. This process is 

carried on until all clusters are paired.  

The last stage of the algorithm is generating the output. Each matched pair of clusters 

from the previous procedure defines one potential appliance state. Each matched sample 

represents the appliance running event. Each event is compared with the signature data-

base. This is how the appliance is labeled. If there is no match with the signature database, 

it can be added to the database. The customer can also add labels to the database. 

The main advantage of the algorithm is that it does not require training data and it can 

also be performed without any information about what appliances are present inside the 
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building. It just matches the output with the signature database which can contain any 

devices and if for some devices no match could be found, the user can suggest his own 

labels too. 

At this point the information about what appliances are present in the building is obtained. 

After that, this information is used as an input to the CF model that comes next. 

4.5 Collaborative-filtering model  

After the information about the appliances in the building is obtained, these data are fed 

to the CF model to obtain the suitable recommendations for the user. The schematic rep-

resentation of the model of the RS is depicted in Figure 17.  
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Figure 17: Schematic representation of the CF model 

After the disaggregation is done, NILM model outputs the list of appliances that are pre-

sent in the building. This serves as an input to the CF model. Apart from that, the basic 

information about the building including its location, type and climate is also an input to 

the model as shown in Figure 17.  

After that, the data are compared with the database of the buildings to find the closest 

match for the target building. The matches are determined based on the basic information 

provided about the buildings. So, the algorithm first tries to find buildings that match the 
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target building in all of the three parameters i.e., they have the same location, type and 

climate. If the algorithm finds such buildings, then these are considered the best match 

for the target building. Otherwise, the algorithm tries to find buildings with two matching 

features i.e., having the same location and type, but different climate or the same location 

and climate, but different type or the same type and climate but different location. If such 

buildings are found, the algorithm considers these buildings to be the closest match.    

In case if no such buildings are found, the algorithm tries to find buildings with one 

matching feature. It can be either the same location, type or climate. Then, it considers 

these buildings to be the best match. In case no building is found with even one matching 

feature, the recommendations are filtered by eliminating the recommendations for appli-

ances that are not present in the building. After that, all recommendations concerning the 

appliances in the building are given directly to the user.  

This algorithm of finding the best matching buildings can be mathematically expressed 

by calculating the cosine similarity between the target building and each of the buildings 

in the database. The cosine similarity is calculated using the formula (7).  

 𝑠𝑖𝑚(𝑥, 𝑦) =
𝑥 ∙ 𝑦

‖𝑥‖‖𝑦‖
 [54]   (7) 

 where: 

𝑥 and 𝑦 – two vectors (𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)); 

‖𝑥‖ and ‖𝑦‖ – Euclidean norm (√𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2 and √𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛

2 ) of the 

vectors 𝑥 and 𝑦 respectively; 

In order to clarify the application on the buildings database more a simple example is 

given. Let’s assume Table 2 represents the database of the buildings in the RS. The data-

base consists of 6 buildings. The building which is named “target” represents the target 

building for which the recommendations are being generated.  

Table 2: Buildings database for the explanatory example of the RS 

Build-
ing 

num-
ber 

UK Spain Ukraine Warm Cold Hotel 
Resi-

dential 
Office 

Similarity 
with target 

building 

1 1    1 1   1 

2  1  1  1   0. 3̅ 

3  1   1 1   0. 6̅ 

4 1    1   1 0. 6̅ 

5  1  1   1  0 
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6  1  1    1 0 

target 1    1 1   n/a 

 

The cosine similarity is measured between the target building and each of the buildings 

from the database. The calculations for each of the buildings are done as follows: 

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 1) =  
1 ∙ 1 + 1 ∙ 1 + 1 ∙ 1

√12 + 12 + 12 ∙ √12 + 12 + 12
= 1 

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 2) =  
1 ∙ 1

√12 + 12 + 12 ∙ √12 + 12 + 12
= 0. 3̅ 

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 3) =  
1 ∙ 1 + 1 ∙ 1

√12 + 12 + 12 ∙ √12 + 12 + 12
= 0. 6̅ 

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 4) =  
1 ∙ 1 + 1 ∙ 1

√12 + 12 + 12 ∙ √12 + 12 + 12
= 0. 6̅ 

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 5) =  
0

√12 + 12 + 12 ∙ √12 + 12 + 12
= 0 

𝑠𝑖𝑚(𝑡𝑎𝑟𝑔𝑒𝑡, 6) =  
0

√12 + 12 + 12 ∙ √12 + 12 + 12
= 0 

From the results a conclusion can be made that the buildings with the highest values of 

similarity to the target building are the neighbouring buildings. In this example the best 

matching building for the target building is building number 1 because its similarity with 

the target equals 1. In the case if building 1 was not in the database, the neighbouring 

buildings would be number 3 and 4 since they have the second biggest value of similarity 

with the target building. 

In case matching buildings are found, the recommendations given to these buildings are 

filtered too, by eliminating the recommendations given for appliances that are not present 

in the target building.  

After that, if the number of matching buildings is more than one, then for each recom-

mendation an average rating is calculated. The average rating is the sum of the ratings 

given to a particular recommendation by the matching buildings divided by the number 

of the matching buildings.  

Then, the resulting recommendations are sorted in descending order based on their rat-

ings, and displayed. For now, the system shows all the resulting recommendations in de-

scending order. However, it is possible to impose a threshold that will filter the 
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recommendations with rating below the threshold and display only the recommendations 

with higher average rating.  

It should be noted that in this algorithm in order to measure the distance between the 

buildings and to find the neighboring buildings only the parameters in the basic infor-

mation were used. At this point the output of the NILM algorithm containing the data 

about the appliances that are present in the building is only used to filter the recommen-

dations and eliminate the irrelevant once for this particular building. The NILM output is 

not used to find the neighboring buildings. This is due to the fact that the weight that each 

matching appliance would contribute to the similarity distance between two buildings 

would be considerably less than the weight of the contribution of each of the basic infor-

mation parameters. So, for example, there is more probability that two residential build-

ings will have similar preferences regarding the recommendations than that two buildings 

with microwaves but different building types will have similar recommendation prefer-

ences. Thus, for the NILM output to be considered in defining the neighboring buildings 

a weighting scale should be introduced that will reduce the weight of the matching of 

each of the appliances. For now, the NILM output was only used to filter out the irrelevant 

recommendations. However, taking into account the NILM output when defining the 

neighboring buildings is something that should be definitely taken into account for the 

future improvement of the system.     

The whole RS including the NILM model was written in Python 2.7 in PyCharm IDE. 

The NILM model code consists of “gsp_disaggregator.py” and “gsp_support.py” files. 

The recommender part itself consists of “Recommender.py” and “Database_forming.py” 

files. The screenshots from the PyCharm IDE with the NILM model code and the recom-

mendation part code are represented in Figure 18, Figure 19, Figure 20 and Figure 21.     



-38- 

 

Figure 18: Screenshot of the PyCharm IDE containing the code of the “gsp_disaggregator.py” 

file 

 

Figure 19: Screenshot of the PyCharm IDE containing the code of the “gsp_support.py” file 
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Figure 20: Screenshot of the PyCharm IDE containing the code of the “Recommender.py” file 

 

Figure 21: Screenshot of the PyCharm IDE containing the code of the “Database_forming.py” 

file 
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5 Experimental results        

A dataset from the publicly available electricity consumption dataset was chosen to run 

the RS algorithm. An overview on the publicly available electricity consumption datasets 

is provided here in addition to the results obtained. 

5.1 Electricity consumption dataset 

Currently there are many electricity consumption datasets that are publicly available and 

can be obtained in most cases for free for research purposes. These datasets have different 

sources with different buildings locations as well as various number of buildings. Another 

important parameter is the sampling frequency. This parameter defines the frequency with 

which the readings were obtained. Table 3 [55]–[57] provides a comparison summary of 

publicly available electricity consumption datasets. 

Table 3: Comparison of publicly available electricity consumption datasets [55]–[57]   

Dataset 
Institu-

tion/Source 
Location 

Number of 
buildings 

Appliance 
sample fre-

quency 

Aggre-
gate 

sample 
fre-

quency 

PLAID 
Crowdsourc-

ing 

Pittsburgh, 
Pennsylvania, 

USA 
65 30 kHz 30 kHz 

Dataport 
Pecan 

Street Inc. 
Texas, USA 722 1 min 1 min 

REDD 

Massachu-
setts Insti-

tute of Tech-
nology (MIT) 

Massachu-
setts, USA 

6 3 sec 
1 sec & 
15 kHz 

BLUED 

Carnegie 
Mellon Uni-

versity 
(CMU) 

Pennsylvania, 
USA 

1 N/A 12 kHz 

Smart UMass 
Massachu-
setts, USA 

3 1 sec 1 sec 

Household 
Electricity Use 
Study (HES) 

DECC, DE-
FRA, EST 

UK 251 2 or 10 min 
2 or 10 

min 

UK-DALE 
Imperial Col-

lege 
London, UK 5 6 sec 

1-6 sec & 
16 kHz 

ECO ETH Zurich Switzerland 6 1 sec 1 sec 

SustData 
University of 

Madeira 
Madeira, Por-

tugal 
50 N/A 50 Hz 

DRED TU Delft Netherlands 1 1 sec 1 sec 
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iAWE IIIT Delhi Delhi, India 1 1 or 6 sec 1 sec 

AMPds 2 
Simon Fra-
ser Univer-

sity 
BC, Canada 1 1 min 1 min 

GREEND 
Alpen-Adria-
U. Klagen-

furt 
Italy & Austria 9 1 sec N/A 

UMass Smart 
Data from 3 

houses 
UK 3 1 sec 1 sec 

Pecan Street 
Sample 

Pecan 
Street Inc. 

IND 10 1 min 1 min 

COMBED 

(Commercial 
Building En-
ergy Dataset) 

IIITD aca-
demic build-

ing 
NL 8 30 sec 30 sec 

BERDS 

(Berkeley En-
ergy Disaggre-

gation Data 
Set) 

Cory Hall on 
the UC 

Berkeley 
campus 

USA 1 20 sec 20 sec 

 

From the above-mentioned datasets the REDD dataset was chosen for applying the rec-

ommender algorithm in this work. This is due to the fact that this dataset is one of the 

easiest to obtain and interpret, in addition to the availability of both aggregated and dis-

aggregated electricity consumption data, and the comparatively low sample frequency 

rate. These are all parameters that are expected to help building a good disaggregation 

model for the RS algorithm. 

5.2 REDD data   

The REDD dataset consists of electricity consumption readings from 6 buildings. Each 

file consists of a timestamp and the corresponding reading of electricity consumption in 

watts. Each file corresponds to an appliance in the building and another file contains the 

labels referring to the content of each file.  

In this work the disaggregation results using the training-less NILM model were repro-

duced.  

For the purpose of running the algorithm data from house 2 of the REDD dataset was 

selected as an example. This house has the least number of appliances and the least num-

ber of repetitive devices. Thus, it is reasonable to use this dataset for the demonstrative 

purposes because of the clarity of the results. Thus, the results of the NILM algorithm 

were reproduced in this work and then utilized for running the RS algorithm.  
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For the purpose of simplification and in order to reduce the time needed for processing 

and running the algorithms, the algorithms were run on data for the period from 

23.04.2011 to 26.04.2011 of the dataset. In addition, the data were down sampled to the 

frequency of 1 minute between measurements. As an input, three files of “.csv” format 

were used. The first file contains the aggregated electricity consumption data of house 2 

down sampled to the frequency of one minute, depicted in Figure 22. 

 

Figure 22: Down sampled electricity consumption data of house 2 from the REDD dataset  

The second file contains the power consumption of appliances in house 2 and also down 

sampled to the frequency of one minute. The consumption data of five appliances were 

used, namely: refrigerator, kitchen_outlet1, kitchen_outlet2, microwave and lighting. 

This file was not used as an input for the disaggregation algorithm. However, it was only 

plotted as ground truth data in order to compare the output of the algorithm with the 

ground truth. So that it will simplify the validation of the algorithm output. The data are 

represented in Figure 23, Figure 24, Figure 25, Figure 26 and Figure 27. 
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Figure 23: Down sampled electricity consumption data for the refrigerator 

 

Figure 24: Down sampled electricity consumption data for the kitchen_outlets1 
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Figure 25: Down sampled electricity consumption data for the kitchen_outlets2 

 

Figure 26: Down sampled electricity consumption data for the microwave 
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Figure 27: Down sampled electricity consumption data for the lighting 

The third file is the signature database. It contains signatures of the electrical appliances. 

This database was formed by extracting from the ground truth values random sequences 

of readings when the device is turned on. For each device only one sequence is extracted. 

This is done mainly to see the behavior of the device during the time when it is turned on. 

Since the aim of the signature is only to indicate the behavior of each device, no 

timestamp is assigned in the signature database.  

5.3 Results of the NILM model 

The data described were fed into the disaggregation algorithm using Python code. The 

code [50] of the disaggregation part consists of two files “gsp_disaggregator.py” which 

is the main file and “gsp_support.py” which contains the supporting functions. The code 

from each file is provided in Appendix 1 [50] and Appendix 2 [50] respectively. 

After running the NILM algorithm on the dataset, the following results, depicted in Figure 

28, were obtained. 
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Figure 28: Output of the NILM model 

From the obtained results, it can be noticed that out of 5 appliances that were present in 

the building, the algorithm recognized 4, namely: refrigerator, kitchen_outlets2, micro-

wave and lighting.  

By comparing the results outputted by the algorithm with the ground truth, it can be no-

ticed that the algorithm was able to accurately identify the behavior of the fridge as well 

as the behavior of the microwave and the kitchen_outlets2 appliances. While for the 

lighting, the predictions were almost negligible.  

In order to compare the total energy consumption of each appliance in the result with 

the ground truth pie charts depicted in Figure 29 were generated.  
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Figure 29: Comparison of the total energy consumption of the disaggregated output with the 

ground truth 

The used NILM algorithm has proven its accuracy in identifying the appliances that are 

present inside the building. Nevertheless, it also has its drawbacks and space for improve-

ment. 

For example, this algorithm would perform with less accuracy when there is a similarity 

between the signatures of multiple appliances. In this case, the algorithm may falsely 

attribute the wrong label to the appliance. 

The performance accuracy of this NILM model would also drop if a certain appliance in 

the building is of a certain manufacturer but the same type of the appliance in the signature 

database belongs to a different manufacturer, and the working power and model are dif-

ferent for these two appliances. In this case the algorithm may not recognize the appli-

ance.    

Another point is that this algorithm does not take into account the noise that could be 

present in the data. This might also affect the accuracy of the performance of the algo-

rithm. 
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In order to improve the algorithm few suggestions could be made. It is suggested to add 

a filter that would eliminate the noise in the data. Also, creating a universal signature 

database for each type of buildings containing the signatures of typical appliances present 

in the building would be helpful to improve the performance of the algorithm.  

5.4 Results of the recommender system 

The accuracy of designed CF RS model increases with the increasing number of the build-

ings in the database. Thus, when running the algorithm on the very-first user, the output 

will be not personalized. It will contain all the recommendations regarding the appliances 

present in the building. It is assumed that when using this algorithm for real life cases, at 

the beginning non-personalized recommendations will be given and every time after the 

feedback is received, the user is added to the database. This way, the database will be 

formed out of the real users and their real feedbacks. 

Thus, in order to verify the accuracy of the model, a synthetic database was formed. The 

database consists of 20 buildings. These are existing buildings the data about which were 

obtained from [58]. The data about the climate of the area where each building is located 

were collected from the Temperature Regime map in [59]. The buildings that were used 

to form the database are represented in Table 4. A snapshot of the database is provided in 

Appendix 3. 

Table 4: Buildings database for the RS algorithm 

Building Type Location Climate 

Hotel Me (Madrid) hotel Spain warm temperature dry 

Plaza De Las Cortes 3 (Ma-
drid) 

residential Spain warm temperature dry 

Centro Civico Aldabe (Vito-
ria-Gasteiz) 

office Spain cool temperature 

W Hotel City Center (Chi-
cago) 

hotel USA cool temperature 

150 Powell Street residential USA warm temperature dry 

Travis Tower (Houston) office USA sub tropical 

Domaine Du Mandravasaro-
tra (Belobaka) 

hotel Madagascar tropical 

Kk Home Tomasina (Toama-
sina) 

residential Madagascar sub tropical 

NSI Office (Antananarivo) office Madagascar warm temperature dry 

Embassy Suites Hotel Hou-
ston/Downtown (Houston) 

hotel USA sub tropical 

Hotel Dnipro (Kyiv) hotel Ukraine cool temperature 

Admiralty Arch (London) office UK warm temperature dry 
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The Palace Hotel (San Fran-
cisco) 

hotel USA warm temperature dry 

Objet Deco (Mahajanga) residential Madagascar tropical 

Horizon Office Tower (Kyiv) office Ukraine cool temperature 

Sofitel Madrid Plaza De Es-
pana (Madrid) 

hotel Spain warm temperature dry 

One Thousand Powell Apart-
ments (San Francisco) 

residential USA warm temperature dry 

Adlington House (Liverpool) residential UK cool temperature 

Vulytsia Vorovskogo 11 
(Kyiv) 

residential Ukraine cool temperature 

Gulliver (Kyiv) office Ukraine cool temperature 

 

For each of the buildings from the table above, certain recommendations were given to 

reduce the energy consumption. These recommendations are summarized according to 

the appliance in concern in Table 5.  

Table 5: Recommendations for the RS algorithm 

Appliance Recommendations 

Refrigerator “Place the refrigerator away from heat sources” 

 “Avoid putting hot food directly in the refrigerator” 

 “Try to keep the refrigerator filled in to save energy” 

Microwave 
“Cover the dishes before putting them in the microwave to cut down 

the cooking time” 

 “Cut the food into small pieces to reduce the cooking time” 

Lighting 
“Place movement detectors to turn off the lights when the room is 

empty” 

 
“Install task lightings in places like on the study desk etc. to reduce 

the electricity consumption from using the general lighting” 

 “Consider using light colored paint” 

Stove “Shift the usage of electrical stove to the late hours” 

 
“Take into account the heating area of your stove to choose pans 

with proper diameters” 

Air Conditioner 
“Keep the curtains and blinds closed to reduce the space from heat-

ing up” 

 
“Use a programmable thermostat that turns off the AC when the 

space is empty” 

Washing Ma-
chine 

“Use the washing machine of the right size since the bigger the ma-
chine is, the more power it consumes” 

 
“Use front load washing machines which consume less electricity 

than the top load” 

 “Do not leave the machine in standby mode” 

Water Heater “Insulate the pipes connected to the heater” 

 “Prefer taking a short shower instead of a bath” 

 “Consider installing heat traps on the water heater” 

 

After that, to assign each recommendation a rating that was given by each of the buildings 

from the formed dataset, several assumptions were made regarding each of the appliances. 
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These assumptions were made because different factors of each building have an influ-

ence on the final rating that will be given to each recommendation, as was already de-

scribed in section  4.2. In real life the factors may differ from the assumptions that were 

made in this work. However, the main goal of making such assumptions is to systematize 

the ratings in the database, make them consistent, and to be able to validate the model by 

comparing the outputted ratings with the ratings that should be assigned following the 

assumptions made. 

Some general assumptions were made in addition to assumptions regarding each of the 

appliances and each recommendation in particular. These assumptions are summarized in 

Table 6. 

Table 6: Assumptions for validating the RS 

Appli-
ance 

Recommen-
dations 

Assumption 

Refrig-
erator 

“Place the re-
frigerator 

away from 
heat 

sources” 

This recommendation is not applicable for the buildings in hot cli-
mate zones (warm temperature dry, sub-tropical and tropical) due 
to the overall hot temperature which makes it difficult to follow the 

recommendation. 

 

“Avoid put-
ting hot food 
directly in the 
refrigerator” 

This recommendation is not applicable for hotels and offices be-
cause due to the amount of food being prepared and stored in the 
hotel it is difficult to keep storing it outside of the fridge while it is 
cooling down. In offices there is a very low possibility that office 

workers will follow the recommendation because of the lack of re-
sponsibility in paying the bill and priorities shifted more towards 

productive work rather than reducing energy bill for the employer. 

 

“Try to keep 
the refrigera-
tor filled in to 
save energy” 

This recommendation is not applicable for the residential and of-
fice buildings. Because it is difficult to maintain having a big 

amount of food all the time in these types of buildings. This rec-
ommendation is not applicable for countries with GDP lower than 
20000$ per capita because of the difficulty to maintain having a 

big amount of food due to the low level of economy. 

Micro-
wave 

“Cover the 
dishes before 
putting them 
in the micro-
wave to cut 
down the 

cooking time” 

This recommendation is not applicable for the offices due to the 
lack of equipment and different priorities of the employees. 

 

“Cut the food 
into small 

pieces to re-
duce the 

cooking time” 

This recommendation is not applicable for offices and hotels be-
cause it requires time and ruins the visual presentation of the dish 

which is not acceptable in these types of buildings. 

Light-
ing 

“Place move-
ment detec-
tors to turn 

off the lights 
when the 

This recommendation is not applicable because countries with 
GDP lower than 20000$ per capita will not apply recommenda-

tions that need additional investments. 
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room is 
empty” 

 

“Install task 
lightings in 
places like 

on the study 
desk etc. to 
reduce the 
electricity 

consumption 
from using 
the general 

lighting” 

This recommendation is not applicable for hotels and offices be-
cause in these types of buildings it is difficult to control the behav-
ior of the people inside. It is also not applicable because countries 
with GDP lower than 20000$ per capita will not apply recommen-

dations that need additional investments. 

 
“Consider us-
ing light col-
ored paint” 

This recommendation is not applicable for hotels because it is im-
portant to maintain the unique interior design of the hotel which 

may not accept having some light colors. It is also not applicable 
for countries with GDP lower than 20000$ per capita because it 

needs additional investments. It is also not applicable for buildings 
with warm climate types since the effect of the light paint is negli-

gible due to the big amount of sunlight received. 

Stove 

“Shift the us-
age of elec-

trical stove to 
the late 
hours” 

This recommendation is not applicable to residential buildings and 
offices because of the difficulty of shifting the operation hours in 

these types of buildings. 

 

“Take into 
account the 
heating area 
of your stove 

to choose 
pans with 

proper diam-
eters” 

This recommendation is not applicable in offices because of the 
difficulty of purchasing new pans by the employees. It is also not 
applicable for countries with GDP lower than 20000$ per capita 

because of the additional investments needed. 

Air 
Condi-
tioner 

“Keep the 
curtains and 
blinds closed 
to reduce the 
space from 
heating up” 

This recommendation is not applicable for hotels and offices be-
cause of the difficulty of controlling the behavior of people inside 
these buildings. It is also not applicable for buildings located in 

cold climates (polar, boreal and cool temperature) because of the 
negligible amount of sun that heats up the space through the win-

dows in these climates. 

 

“Use a pro-
grammable 
thermostat 

that turns off 
the AC when 
the space is 

empty” 

This recommendation is not applicable for countries with GDP 
lower than 20000$ per capita because it requires additional in-

vestments. 

Wash-
ing Ma-
chine 

“Use the 
washing ma-
chine of the 

right size 
since the big-
ger the ma-
chine is, the 
more power 
it consumes” 

This recommendation is not applicable for residential buildings 
and offices because the amount of clothes to be washed will vary 
each time. It is also not applicable for countries with GDP lower 

than 20000$ per capita because it requires additional investments 
for purchasing a new washing machine. 

 

“Use front 
load washing 

machines 
which 

This recommendation is not applicable for countries with GDP 
lower than 20000$ per capita because it requires additional in-

vestments for purchasing a new washing machine. 
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consume 
less electric-
ity than the 
top load” 

 

“Do not leave 
the machine 
in standby 

mode” 

This recommendation is not applicable for hotels because of the 
difficulty of turning off the machine after each wash due to the 

high frequency of usage. 

Water 
Heater 

“Insulate the 
pipes con-

nected to the 
heater” 

This recommendation is not applicable for buildings in hot climate 
zones due to the low impact of insulation because of generally 

high temperatures in these climates. 

 

“Prefer taking 
a short 

shower in-
stead of a 

bath” 

This recommendation is not applicable for offices because typi-
cally it is rare to have showers in office buildings and almost unre-
alistic to have bathtubs. So, this recommendation simply does not 

change the behavior of the people inside the building. 

 

“Consider in-
stalling heat 
traps on the 

water heater” 

This recommendation is not applicable for countries with GDP 
less than 20000$ per capita because it requires additional invest-
ments. It is also not applicable for hot climate zones because of 

the overall hot temperatures in these climates. 

 

GDP data are based on [60]. 

Based on this information another assumption was made, that each category of the basic 

information (type, location and climate) contributes by one point to the resulting rating 

of each recommendation. If the recommendation is not applicable for a certain type of 

basic information (for example, not applicable for hotels), a contribution of zero will be 

made from that category towards the resulting rating of the recommendation. With this 

being said, if, for example there is a building with the basic information (type: hotel, 

location: UK, climate: polar) and the recommendation is applicable for hotels as well as 

for the UK and for cold climates, then the rating for this recommendation will be 3. If 

another recommendation is considered for this building, which is applicable for hotels as 

well as for the UK but it is not applicable for cold climates, then this recommendation 

will gain the rating of 2 and so on.  

Based on this, ratings were assigned to each recommendation for each of the buildings 

from the database. The ratings assigned by each building for each recommendation are 

depicted in the snapshots in Appendix 4.  

After that, the output resulting from the NILM model was fed into the CF model and the 

recommendations for this building were given. The CF model was implemented in Python 

in PyCharm and connected to the NILM python code to form one connected system. The 

code that was written for the CF part of the model consists of two files “Database_form-

ing.py” and “Recommender.py”. The first file reads the data from the .csv file containing 
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the database of the buildings and forms an internal dataset. The second file takes the out-

put of the NILM model and gives the recommendations for the considered building. The 

codes from the files “Database_forming.py” and “Recommender.py” can be found in Ap-

pendix 5 and Appendix 6 respectively.  

As an input for the model the following basic information was used: location: ‘USA’, 

type: ‘residential’, and climate: ‘warm temperature dry’. From the output of the NILM 

model it was identified that the following appliances are present in the building: refriger-

ator, kitchen_outlets2, microwave and lighting. As a resulting output the following rec-

ommendations were given with the predicted ratings: 

• 'Cut the food into small pieces to reduce the cooking time', 3 

• 'Avoid putting hot food directly in the refrigerator', 3 

• 'Install task lightings in places like on the study desk etc. to reduce the electricity 

consumption from using the general lighting', 3 

• 'Cover the dishes before putting them in the microwave to cut down the cooking 

time', 3 

• 'Place movement detectors to turn off the lights when the room is empty', 3 

• 'Place the refrigerator away from heat sources', 2 

• 'Try to keep the refrigerator filled in to save energy', 2 

• 'Consider using light colored paint', 2 

From the obtained results it can be seen that all the suggested recommendations concern 

only the appliances that were identified by the NILM algorithm. Which means that the 

filtering of the recommendations was done correctly. In order to measure the accuracy of 

the predicted ratings, the ratings for the considered building were also calculated based 

on the assumptions that were made previously in Table 6. After that, the accuracy was 

measured by considering the calculated ratings based on the assumptions to be ground 

truth. The closer the ratings predicted by the model to the ground truth, the higher the 

accuracy.  

The “ground truth” ratings were calculated as following: 

• 'Cut the food into small pieces to reduce the cooking time', 3 

• 'Avoid putting hot food directly in the refrigerator', 3 

• 'Install task lightings in places like on the study desk etc. to reduce the electricity 

consumption from using the general lighting', 3 
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• 'Cover the dishes before putting them in the microwave to cut down the cooking 

time', 3 

• 'Place movement detectors to turn off the lights when the room is empty', 3 

• 'Place the refrigerator away from heat sources', 2 

• 'Try to keep the refrigerator filled in to save energy', 2 

• 'Consider using light colored paint', 2 

In this case it can be seen that the predicted ratings fully match the ground truth ratings. 

Thus, the accuracy can be calculated using (8). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (8) 

Where:  

TP – true positive (the predicted rating is positive and the ground truth is positive), 

TN – true negative (the predicted rating is negative and the ground truth is negative), 

FP – false positive (the predicted rating is positive but the ground truth is negative), 

FN – false negative (the predicted rating is negative but the ground truth is positive). 

In order to apply (7) it was assumed that the maximum possible rating, which is 3 in our 

case is the positive rating and everything below that value (2, 1 and 0) are negative ratings. 

This way the accuracy of the predicted values for this case was calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(5+3)

(5+3+0+0)
= 1. 

This means that in this case the model managed to predict the ratings with 100% accuracy.  

In order to further validate the model recommendations were generated to six more build-

ings with different basic information. After that, the accuracy of the predicted ratings was 

measured. 

A summary of the buildings used for validation and the calculated accuracy of the ratings 

predictions for each building is summarized in Table 7. 
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Table 7: Validation summary of the RS 

 
Loca-

tion (L) 
Type (T) 

Climate 
(C) 

Appliances 

Match-
ing 

build-
ings 

Matching 
features 

Ac-
cu-
racy 

Fea-
tures 

Num-
ber 

 

1 USA 
residen-

tial 

Warm tem-
perature 

dry 

Refrigerator, 
microwave, 

lighting, 
kitchen_out-

lets2 

15 All 

3 1 

17 All 

2 Ukraine Office 
Cool tem-
perature 

Refrigerator, 
lighting, micro-
wave, air con-

ditioner 

15 All 

3 1 

20 All 

3 USA Hotel 
Warm tem-

perature 
dry 

Refrigerator, 
lighting, micro-
wave, washing 

machine 

13 All 3 1 

4 UK Office 
Cool tem-
perature 

Microwave, 
lighting, air 
conditioner, 
water heater 

3 T, C 

2 0.5 

12 T, L 

15 T, C 

18 L, C 

20 T, C 

5 Ukraine 
residen-

tial 
Cool tem-
perature 

Microwave, 
lighting, stove, 
washing ma-
chine, water 

heater 

19 All 3 1 

6 
Ka-

zakh-
stan 

residen-
tial 

Cool tem-
perature 

Microwave, 
lighting, stove, 
washing ma-
chine, water 

heater 

18 T, C 

2 1 

19 T, C 

7 
Ka-

zakh-
stan 

hotel 
Cool tem-
perature 

Microwave, air 
conditioner, 
water heater 

4 T, C 
2 1 

11 T, C 

 

From Table 7 it can be seen that the accuracy of the predicted ratings is 1 when the algo-

rithm can find one or more building in the database that have all the features matching 

the features of the building in concern. The prediction accuracy is also 1 when the algo-

rithm finds buildings in the database with a smaller number of matching features, but the 

features that match are the same in each of the matching buildings. For example, in case 

6 in the table there are two matching buildings that have the same type and climate of the 

target building. 
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However, in the case when the algorithm finds more than one matching building and each 

of the buildings have different matching features with the target building, the prediction 

accuracy is comparatively low. For example, like in the case 4 in the table above. The 

algorithm found 5 matching buildings. Three of them have same type and climate as the 

target building. One of them has the same type and location as the target building, and 

another one has the same location and climate as the target building. In this case the ac-

curacy of the predictions was 0.5, which is considerably lower than the prediction accu-

racy in the other cases. 

With this being said, a conclusion can be made on how to improve the overall accuracy 

of the system. This is explained in more details in the next chapter. 
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6 Conclusions and future work 

Many RS have been proposed for a variety of fields, yet their application for improving 

electricity usage has not been widely explored. Thus, in order to implement an electricity 

usage RS in real life may necessitate implementing such a system from scratch. 

Due to this fact, the available data can be very limited, because no previously given rec-

ommendations are available. Also, there is limited availability of data that accurately de-

scribe target user preferences.  

In order to tackle this issue and find a way to develop an electricity usage RS without the 

availability of extensive data, the system described in this work was proposed. This RS 

can be used in order to provide customers with personalized electricity usage recommen-

dations. Each time the system is used to provide recommendations for a new building, 

this building is added to the system’s database. Feedback from customers along with their 

ratings are also added to the database. This way, with more data, recommendations be-

come more accurate.   

The electricity usage RS proposed in this work can be used for cases when there are lim-

ited input data. The algorithm of the system was implemented in Python. The RS consists 

of two parts: the NILM model and the recommender model. Depending on the available 

input data, any NILM model can be embedded in the system. In case of very limited input 

data like in this work, using a training-less NILM model is a reasonable solution. Any of 

the NILM models (introduced in section 3.5) can fit the system as long as it outputs the 

names of the appliances present in the building. For this work the NILM algorithm sug-

gested in [50] was used as the first part of the system. 

The second part is the recommender model itself. The algorithm for this model was de-

signed to make the most out of the limited available data. The algorithm is based on the 

principle of user-to-user CF RS. In order to find the neighboring users, some general 

information about the user was utilized, referred to as “basic information”. After identi-

fying the neighboring users, the algorithm filters the recommendations that were given to 

these users to eliminate the recommendations for appliances that are not present in the 

target building. Then, the resulting recommendations are given to the user in descending 

order, based on the average rating given by the neighboring users for each recommenda-

tion.  
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Based on the validation of the RS algorithm a conclusion on the accuracy of the system 

can be drawn. It was discovered that the system demonstrates 100% accuracy when the 

neighboring users match the target user according to all the general parameters. It also 

demonstrates the same level of accuracy when all the matching buildings have the same 

parameters that match the target building. However, when the matching features are dif-

ferent in each neighboring building, the accuracy of the algorithm may decrease down to 

50%.  

Thus, some suggestions can be made as future work, in order to enhance accuracy of the 

system:  

• A weighting scale can be introduced to improve the measurement of the distance 

from the target user to the neighboring users. For example, the level of importance 

of each of the parameters can be defined and after that, in the case when matching 

buildings have different matching parameters, this weight can be included in cal-

culating the rating of each of the recommendations. In this way the accuracy of 

the model can be improved.  

• Other parameters can be added to these identifying neighboring users. For exam-

ple, the output of the NILM algorithm which identifies what appliances are pre-

sent in the building can also be used to assess the similarity between the buildings. 

In this way, the similarity of appliances that are present in two or more buildings 

will increase the level of similarity between these buildings and vice versa.     

RS in general are gaining more popularity in all sectors due to the rapid development of 

technologies. Thus, the necessity for developing and implementing effective tools that 

can provide the users with recommendations to improve their performance and reduce the 

bills is an important task that can tremendously help both the consumers and the service 

providers.  

In real life the available data may be limited. The limitation may be as a consequence of 

a variety of factors for example, the privacy policy can limit the amount of data available 

or simply the difficulty of obtaining the data can be an issue as well. Thus, when designing 

a recommender system these factors should also be taken into account. Moreover, when 

designing a RS, it is necessary to have some previously existing data in the system. This 

data helps the RS to identify what are the interests of the target user, what are the interests 

of the other users that are present in the database, and to measure the level of similarity 

between the target user and the other users in the database.  
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The unavailability of these data creates a challenge when developing a new RS. One of 

the ways to tackle this challenge is to search for some publicly available datasets to form 

the database that the RS can rely on. 

However, there could be no relevant data found that can be used for this purpose. In this 

case, a reasonable solution could be to accumulate the data about the users every time the 

RS is used to generate recommendations. This is the principle that was used in the pro-

posed RS.      

By proposing an electricity usage RS with limited input data, a solution was suggested 

for such cases when there is no enough data that allows to directly implement a RS algo-

rithm. The algorithm was proposed for generating recommendations for the usage of elec-

trical appliances. However, the described challenge may arise when developing a RS in 

any other field, especially the ones on which only few researches were done. In this case 

another algorithm should be developed in order to design the RS with limited input data 

for this particular purpose.  

Thus, further research and work in the field of designing RS with limited input data con-

ditions in different fields is a topic with undoubtful importance and many open questions 

that need to be answered.        
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Appendix 1 

Python code for the NILM model (file “gsp_disaggregator.py”) 

This appendix provides the Python code that was used for the application of the NILM 

model. It contains the code from the file “gsp_disaggregator.py”.  This code was obtained 

from the GitHub repository, where according to the provided description, it was devel-

oped based on the MATLAB code that was provided by the authors of [50]. In this work 

this publicly available code was used. It was adopted to read the files that were formed 

during the work and a part of the code that connects it to the RS was added.  

from __future__ import division 

import warnings 

warnings.filterwarnings("ignore") 

import pandas as pd 

import gsp_support as gsp 

import matplotlib.pyplot as plt 

 

print("1 of 6> reading data") 

csvfileaggr = "./aggr.csv" 

csvfiledisaggr = "./disaggr.csv" 

df = pd.read_csv(csvfileaggr, index_col = "Time") 

df.index = pd.to_datetime(df.index) 

dfd = pd.read_csv(csvfiledisaggr, index_col = "Time") 

dfd.index = pd.to_datetime(dfd.index) 

 

start_date = '2011-04-23' 

end_date = '2011-04-26' 

mask = (df.index > start_date) & (df.index < end_date) 

df = df.loc[mask] 

mask = (dfd.index > start_date) & (dfd.index < end_date) 

dfd = dfd.loc[mask] 

 

fig, axs = plt.subplots(3, 1, sharex=True) 

axs[0].plot(df) 

axs[0].set_title("Aggregated power of house 2 from April 23th to 26th 

2011, downsampled to 1 minute", size=8) 

axs[1].stackplot(dfd.index, dfd.values.T, labels = list(dfd.col-

umns.values)) 

axs[1].set_title("Disaggregated appliance power [Ground Truth]", 

size=8) 

axs[1].legend(loc='upper left', fontsize=6) 

 

sigma = 20; 

ri = 0.15 

T_Positive = 20; 

T_Negative = -20; 

alpha = 0.5 

beta  = 0.5 

instancelimit = 3 

 

main_val = df.values 

main_ind = df.index 
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data_vec =  main_val 

signature_database = "./signature_database_labelled.csv" 

threshold = 2000 

 

delta_p = [round(data_vec[i+1] - data_vec[i], 2) for i in range(0, 

len(data_vec) - 1)] 

event =  [i for i in range(0, len(delta_p)) if (delta_p[i] > T_Posi-

tive or delta_p[i] < T_Negative) ] 

 

clusters = gsp.refined_clustering_block(event, delta_p, sigma, ri) 

 

finalclusters, pairs = gsp.pair_clusters_appliance_wise(clusters, 

data_vec, delta_p, instancelimit) 

appliance_pairs = gsp.feature_matching_module(pairs, delta_p, fi-

nalclusters, alpha, beta) 

 

power_series, appliance_signatures = gsp.generate_appliance_pow-

erseries(appliance_pairs, delta_p) 

 

labeled_appliances = gsp.label_appliances(appliance_signatures, signa-

ture_database, threshold) 

 

power_timeseries = gsp.create_appliance_timeseries(power_series, 

main_ind) 

 

gsp_result = pd.concat(power_timeseries, axis = 1) 

 

labels= [i[1] for i in list(labeled_appliances.items())] 

gsp_result.columns = labels 

 

axs[2].stackplot(gsp_result.index, gsp_result.values.T, labels=labels) 

axs[2].set_title("Disaggregated appliance [Results]", size=8) 

axs[2].legend(loc='upper left', fontsize=6) 

 

print("6 of 6> plotting the input and results :)") 

 

disaggregated_building = {'location': 'USA', 

                          'type': 'residential', 

                          'climate': 'warm temperature dry'} 

 

for i in range(1, len(gsp.disaggregated_appliances)): 

    for key, value in gsp.disaggregated_appliances.items(): 

        disaggregated_building[key] = value 

print (disaggregated_building) 

plt.show() 

gsp.calculate_energy_pct(dfd, gsp_result) 

import Recommender as recommender 

recommender.recommend(disaggregated_building) 
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Appendix 2 

Python code for the NILM model (file “gsp_support.py”) 

This appendix provides the Python code that was used for the application of the NILM 

model. It contains the code from the file “gsp_support.py”. This code was obtained from 

the GitHub repository, and according to the provided description, it was developed based 

on the MATLAB code that was provided by the authors of [50]. The code is publicly 

available and in this work it was reused.  

from __future__ import division  

import numpy as np 

import pandas as pd 

from collections import OrderedDict 

from copy import deepcopy 

from collections import defaultdict 

from scipy.stats import norm 

import math 

import matplotlib.pyplot as plt 

import csv 

from IPython.display import display 

from math import sqrt 

import os 

 

disaggregated_appliances = {} 

 

def gspclustering_event2(event,delta_p,sigma): 

  

  winL = 1000  

  Smstar = np.zeros((len(event),1)) 

  for k in range(0,int(np.floor(len(event)/winL))): 

    r = [] 

    event_1 =  event[k*winL:((k+1)*winL)] 

    r.append(delta_p[event[0]]) 

    [r.append(delta_p[event_1[i]]) for i in range(0,len(event_1))] 

    templen = winL + 1 

    Sm = np.zeros((templen,1)) 

    Sm[0] = 1; 

 

    Am = np.zeros((templen,templen)) 

    for i in range(0,templen): 

      for j in range(0,templen): 

         Am[i,j] = math.exp(-((r[i]-r[j])/sigma)**2); 

    Dm = np.zeros((templen,templen)); 

    for i in range(templen): 

      Dm[i,i] = np.sum(Am[:,i]); 

    Lm = Dm - Am; 

    Smstar[k*winL:(k+1)*winL] = np.matmul(np.linalg.pinv(Lm[1:tem-

plen,1:templen]), ((-Sm[0].T) * Lm[0,1:templen]).reshape(-1,1)); 

  if (len(event)%winL > 0): 

    r = [] 

    event_1 =  event[int(np.floor(len(event)/winL))*winL:] 

    newlen = len(event_1) + 1 

    r.append(delta_p[event[0]]) 
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    [r.append(delta_p[event_1[i]]) for i in range(0,len(event_1))] 

    Sm = np.zeros((newlen,1)) 

    Sm[0] = 1; 

    Am = np.zeros((newlen,newlen)) 

    for i in range(newlen): 

      for j in range(newlen): 

         Am[i,j] =  math.exp(-((r[i]-r[j])/sigma)**2); 

    Dm = np.zeros((newlen,newlen)); 

    for i in range(newlen): 

      Dm[i,i] = np.sum(Am[:,i]); 

    Lm = Dm - Am; 

    Smstar_temp = np.matmul(np.linalg.pinv(Lm[1:newlen,1:newlen]), ((-

Sm[0].T) * Lm[0,1:newlen]).reshape(-1,1)); 

    Smstar[(int(np.floor(len(event)/winL))*winL):len(event)] = 

Smstar_temp 

  cluster = [event[i] for i in range(len(Smstar)) if (Smstar[i] > 

0.98)] 

  return cluster 

 

def johntable(clusters,precluster,delta_p,ri): 

  import math 

  for h in range(0,len(clusters)):   

    stds = np.std([delta_p[i] for i in clusters[h]],ddof=1) 

    if(math.isnan(stds)): 

      stds = 0 

    means = np.mean([delta_p[i] for i in clusters[h]]) 

    if abs(stds/means) <= ri : 

      precluster.append([i for i in clusters[h]]) 

  return precluster 

 

def find_new_events(clusters,delta_p,ri): 

  import math 

  newevents = [] 

  for h in range(0,len(clusters)):   

    stds = np.std([delta_p[i] for i in clusters[h]],ddof=1) 

    if(math.isnan(stds)): 

      stds = 0 

    means = np.mean([delta_p[i] for i in clusters[h]]) 

    if abs(stds/means) > ri : 

      newevents.append([i for i in clusters[h]]) 

  newevents = [subitem for item in newevents for subitem in item] 

  return newevents 

 

def feature_matching_module(pairs,DelP,Newcluster,alpha,beta): 

    appliance_pairs = OrderedDict() 

    for i in range(len(pairs)): 

      pos_cluster = sorted(Newcluster[pairs[i][0]]) 

      neg_cluster = sorted(Newcluster[pairs[i][1]]) 

      flag = 0 

      state_pairs = [] 

      for j in range(len(pos_cluster)): 

         if j==len(pos_cluster)-1:  

             flag = 1  

             start_pos = pos_cluster[j] 

         if flag: 

             neg_set = [h for h in neg_cluster if (h > start_pos)] 

         else: 

             start_pos = pos_cluster[j] 

             next_pos = pos_cluster[j+1] 

             if (next_pos - start_pos) == 1:  

                 continue 
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             neg_set = [h for h in neg_cluster if (h > start_pos and 

h< next_pos)] 

         if len(neg_set)==1: 

             pair= (start_pos,neg_set[0]) 

             state_pairs.append(pair) 

         elif len(neg_set)==0: 

             continue 

         else: 

             phi_m = [DelP[h]+DelP[start_pos] for h in neg_set] 

             phi_t = [(h-start_pos) for h in neg_set] 

             newlen= len(neg_set) 

             Am = np.zeros((newlen,newlen)) 

             At = np.zeros((newlen,newlen)) 

             sigma = 1 

             for k in range(newlen): 

                 for p in range(newlen): 

                     Am[k,p] = np.exp(-((phi_m[k]-

phi_m[p])/sigma)**2); 

             for k in range(newlen): 

                 for p in range(newlen): 

                     At[k,p] = np.exp(-((phi_t[k]-

phi_t[p])/sigma)**2); 

             Dm = np.zeros((newlen,newlen)); 

             for z in range(newlen): 

                 Dm[z,z] = np.sum(Am[:,z]); 

             Lm = Dm - Am; 

             Sm = np.zeros((newlen,1)) 

             Sm[0] = np.average(phi_m) 

             Smstar = np.matmul(np.linalg.pinv(Lm[0:newlen,0:newlen]), 

((-Sm[0].T) * Lm[0,0:newlen]).reshape(-1,1)) 

             Dt = np.zeros((newlen,newlen)); 

             for z in range(newlen): 

                 Dt[z,z] = np.sum(At[:,z]); 

             Lt = Dt - At; 

             St = np.zeros((newlen,1)) 

             St[0] = np.median(phi_t) 

             Ststar = np.matmul(np.linalg.pinv(Lt[0:newlen,0:newlen]), 

((-St[0].T) * Lt[0,0:newlen]).reshape(-1,1)) 

             result_vec = [] 

             for f in range(Smstar.shape[0]): 

                 temp = np.nansum([alpha * Smstar[f][0] , beta  * 

Ststar[f][0] ]) 

                 result_vec.append(temp) 

             best_pos = [a for a in range(len(result_vec)) if (re-

sult_vec[a] == min(result_vec))][0] 

             pair = (start_pos,neg_set[best_pos]) 

             state_pairs.append(pair) 

      appliance_pairs[i] = state_pairs 

    return appliance_pairs 

 

def generate_appliance_powerseries(appliance_pairs,DelP): 

    print ("3 of 6> generates full power series of appliances") 

    appliance_signatures = OrderedDict() 

    power_series = OrderedDict() 

    ctlf = OrderedDict() 

    for i in range(len(appliance_pairs)): 

        events = appliance_pairs[i] 

        timeseq= [] 

        powerseq  = [] 

        for event in events: 

            start= event[0] 
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            end = event[1] 

            duration = end - start 

            instance = [] 

            instance.append([DelP[start]]) 

            temp= np.repeat(np.nan,duration-1).tolist() 

            instance.append(temp) 

            instance.append([abs(DelP[end])]) 

            final = [j for sub in instance for j in sub] 

            timeval = range(start,end+1,1) 

            powerval = interpolate_values(final) if sum(np.isnan(fi-

nal)) else final 

            timeseq.append(timeval) 

            powerseq.append(powerval) 

        powerseq =  [j for sub in powerseq for j in sub] 

        timeseq =  [j for sub in timeseq for j in sub] 

        power_series[i] = pd.Data-

Frame({'timestamp':timeseq,'power':powerseq}) 

        appliance_signatures[i] = pd.DataFrame(powerseq) 

 

    return power_series, appliance_signatures 

 

 

def label_appliances(appliance_signatures, signature_database, thresh-

old): 

    print ("4 of 6> checking appliance power signatures matches") 

    labeled_appliances = OrderedDict() 

    dfw = pd.concat(appliance_signatures, axis = 1, ignore_index=True) 

    dfw.drop(dfw.index[1], axis=1) 

 

    dfr = pd.read_csv(signature_database, index_col=0) 

    rowr, columnsr = dfr.shape 

    roww, columnsw = dfw.shape 

    print("        > found "+ str(columnsw) + " appliances. Verifying 

signature matching") 

    for i in range(columnsw): 

        for j in range(columnsr): 

            last_idxr = dfr.iloc[:,j].last_valid_index() 

            last_idxw = dfw.iloc[:,i].last_valid_index() 

            D = FastDTW(dfw.iloc[:last_idxw,i].values, 

dfr.iloc[:last_idxr,j].values, 10) 

            if D < threshold: 

                print("          > found match " + str(i+1) + " with " 

+ dfr.iloc[:0,j].name) 

                M = 'appliance' + str(i+1) 

                disaggregated_appliances[M] = str(dfr.iloc[:0,j].name) 

                labeled_appliances[i] = dfr.iloc[:0,j].name 

    print (disaggregated_appliances) 

    return labeled_appliances 

 

def DTW(s1, s2): 

    DTW={} 

     

    for i in range(len(s1)): 

        DTW[(i, -1)] = float('inf') 

    for i in range(len(s2)): 

        DTW[(-1, i)] = float('inf') 

    DTW[(-1, -1)] = 0 

     

    for i in range(len(s1)): 

        for j in range(len(s2)): 

            dist= (s1[i]-s2[j])**2 
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            DTW[(i, j)] = dist + min(DTW[(i-1, j)],DTW[(i, j-1)], 

DTW[(i-1, j-1)]) 

 

    return sqrt(DTW[len(s1)-1, len(s2)-1]) 

 

def FastDTW(s1, s2, w): 

    DTW={} 

     

    w = max(w, abs(len(s1)-len(s2))) 

     

    for i in range(-1,len(s1)): 

        for j in range(-1,len(s2)): 

            DTW[(i, j)] = float('inf') 

    DTW[(-1, -1)] = 0 

     

    for i in range(len(s1)): 

        for j in range(max(0, i-w), min(len(s2), i+w)): 

            dist= (s1[i]-s2[j])**2 

            DTW[(i, j)] = dist + min(DTW[(i-1, j)],DTW[(i, j-1)], 

DTW[(i-1, j-1)]) 

 

    return sqrt(DTW[len(s1)-1, len(s2)-1]) 

 

def write_csv_df(path, filename, df): 

    pathfile = os.path.normpath(os.path.join(path,filename)) 

    files_present = os.path.isfile(pathfile) 

    if not files_present: 

        df.to_csv(pathfile) 

    else: 

        overwrite = raw_input("WARNING: " + pathfile + " already ex-

ists! Overwrite <y/n>? \n ") 

        if overwrite == 'y': 

            df.to_csv(pathfile) 

        elif overwrite == 'n': 

            return 

        else: 

            print "Not a valid input. Data is NOT saved!\n" 

    return 

 

def calculate_energy_pct(dfd, dfc): 

    fig = plt.figure() 

    ax1 = fig.add_axes([0, .3, .5, .5], aspect=1) 

    ax2 = fig.add_axes([.5, .3, .5, .5], aspect=1) 

    fig.suptitle('Total energy consumption', fontsize = 14) 

 

    cons1 = dfd[dfd.columns.values].sum().sort_values(ascending=False) 

    cons2 = dfc[dfc.columns.values].sum().sort_values(ascending=False) 

 

    ax1.pie(cons1.values, autopct='%1.1f%%', startangle=90) 

    ax2.pie(cons2.values, autopct='%1.1f%%', startangle=90) 

    first_legend = ax1.legend(dfd.columns, loc = 'lower center', 

bbox_to_anchor=(.5, -.4), fontsize = 8) 

    second_legend = ax2.legend(dfc.columns, loc = 'lower center', 

bbox_to_anchor=(.5, -.4), fontsize = 8) 

    ax1.set_title('Ground truth') 

    ax2.set_title('Disaggregated') 

    ax1.axis('equal') 

    ax2.axis('equal') 

    plt.tight_layout() 

    plt.show() 
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def interpolate_values(A): 

    if type(A) ==list : 

        A= np.array(A) 

    ok = ~np.isnan(A) 

    xp = ok.nonzero()[0] 

    fp = A[~np.isnan(A)] 

    x  = np.isnan(A).nonzero()[0] 

    A[np.isnan(A)] = np.interp(x, xp, fp) 

    A = [round(i) for i in A] 

    return A 

 

def create_appliance_timeseries(power_series,main_ind): 

    print ("5 of 6> creating appliance power timeseries") 

    result = OrderedDict() 

    for i in range(len(power_series)): 

        temp = power_series[i] 

        if len(temp) < 1: 

            continue 

        temp.index = temp.timestamp 

        dummy = pd.Series(0,main_ind) 

        dummy = dummy.loc[~dummy.index.duplicated(keep='first')] 

        dummy[main_ind[temp.index.values]] = temp.power.values 

        result[i] = dummy 

    return(result) 

 

def refined_clustering_block(event,delta_p,sigma,ri): 

    sigmas = 

[sigma,sigma/2,sigma/4,sigma/8,sigma/14,sigma/32,sigma/64] 

    Finalcluster = [] 

    for k in range(0,len(sigmas)): 

        clusters = []      

        event = sorted(list(set(event)-set(clusters)))  

        while len(event): 

            clus =  gspclustering_event2(event,delta_p,sigmas[k]); 

            clusters.append(clus) 

            event = sorted(list(set(event)-set(clus))) 

        if k == len(sigmas)-1: 

            Finalcluster = Finalcluster + clusters  

        else: 

            jt = johntable(clusters,Finalcluster,delta_p,ri) 

            Finalcluster = jt 

            events_updated = find_new_events(clusters,delta_p,ri) 

            events_updated = sorted(events_updated) 

            event = events_updated 

    if len(event) > 0: 

      Finalcluster.append(event) 

    return Finalcluster 

 

def find_closest_pair(cluster_means,cluster_group):  

    distances = []    

    for i in range(len(cluster_means)-1): 

        for j in range((i+1),len(cluster_means)): 

           distance = abs(cluster_means[i] - cluster_means[j])   

           distances.append((i,j,distance)) 

    merge_pair = min(distances, key = lambda h:h[2]) 

    cluster_dict = {} 

    for i in range(len(cluster_group)):  

        cluster_dict[i] =  cluster_group[i] 

    tempcluster = [] 

    tempcluster.append(cluster_dict[merge_pair[0]] + clus-

ter_dict[merge_pair[1]]) 
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    del cluster_dict[merge_pair[0]] 

    del cluster_dict[merge_pair[1]] 

    for k,v in cluster_dict.items(): 

        tempcluster.append(v) 

    return tempcluster 

 

def pair_clusters_appliance_wise(Finalcluster, data_vec, delta_p, in-

stancelimit): 

    print ("2 of 6> pair clusters appliance wise") 

    Table_1 =  np.zeros((len(Finalcluster),4)) 

    for i in range(len(Finalcluster)): 

      Table_1[i,0] = len(Finalcluster[i]) 

      Table_1[i,1] = np.mean([delta_p[j] for j in Finalcluster[i]]) 

      Table_1[i,2] = np.std([delta_p[j] for j in Finalclus-

ter[i]],ddof=1) 

      Table_1[i,3] =  abs(Table_1[i,2]/ Table_1[i,1]) 

    sort_means = np.argsort(Table_1[:,1]).tolist()  

    sort_means.reverse()  

    sorted_cluster =[] 

    FinalTable = [] 

    for i in range(len(sort_means)): 

      sorted_cluster.append(Finalcluster[sort_means[i]]) 

      FinalTable.append(Table_1[sort_means[i]].tolist()) 

     

    DelP = [round(data_vec[i+1]-data_vec[i],2) for i in 

range(0,len(data_vec)-1)] 

    Newcluster_1 = [] 

    Newtable = [] 

    for i in range(0,len(FinalTable)): 

      if (FinalTable[i][0] >= instancelimit): 

        Newcluster_1.append(sorted_cluster[i]) 

        Newtable.append(FinalTable[i]) 

    Newcluster = Newcluster_1 

    for i in range(0,len(FinalTable)): 

      if(FinalTable[i][0] < instancelimit ): 

        for j in range(len(sorted_cluster[i])): 

          count =  [] 

          for k in range(len(Newcluster)): 

            count.append(norm.pdf(DelP[sorted_cluster[i][j]],New-

table[k][1],Newtable[k][2])) 

          asv = [h == max(count) for h in count] 

          if sum(asv) == 1: 

            johnIndex = count.index(max(count)) 

          elif DelP[sorted_cluster[i][j]] > 0: 

            tablemeans = [r[1] for r in Newtable] 

            tempelem = [r for r in tablemeans if r < DelP[sorted_clus-

ter[i][j]]][0] 

            johnIndex = tablemeans.index(tempelem) 

          else: 

            tablemeans = [r[1] for r in Newtable] 

            tempelem = [r for r in tablemeans if r > DelP[sorted_clus-

ter[i][j]]].pop() 

            johnIndex = tablemeans.index(tempelem) 

          Newcluster[johnIndex].append(sorted_cluster[i][j]) 

    Table_2 =  np.zeros((len(Newcluster),4)) 

    for i in range(len(Newcluster)): 

      Table_2[i,0] = len(Newcluster[i]) 

      Table_2[i,1] = np.mean([delta_p[j] for j in Newcluster[i]]) 

      Table_2[i,2] = np.std([delta_p[j] for j in Newclus-

ter[i]],ddof=1) 

      Table_2[i,3] =  abs(Table_2[i,2]/ Table_2[i,1]) 
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    Newtable = Table_2 

     

    pos_clusters = neg_clusters = 0 

    for i in range(Newtable.shape[0]): 

        if Newtable[i][1] > 0: 

            pos_clusters += 1 

        else: 

            neg_clusters += 1 

    Newcluster_cp = deepcopy(Newcluster) 

    while pos_clusters != neg_clusters: 

        index_cluster = Newcluster_cp 

        power_cluster = [] 

        for i in index_cluster: 

            list_member = [] 

            for j in i: 

                list_member.append(delta_p[j]) 

            power_cluster.append(list_member) 

             

        clustermeans = [np.mean(i) for i in power_cluster] 

        positive_cluster_chunk= [] 

        negative_cluster_chunk = [] 

        positive_cluster_means= [] 

        negative_cluster_means = [] 

        pos_clusters = neg_clusters = 0 

        for j in range(len(clustermeans)): 

           if clustermeans[j] > 0: 

                pos_clusters += 1 

                positive_cluster_chunk.append(index_cluster[j]) 

                positive_cluster_means.append(clustermeans[j]) 

           else: 

                neg_clusters += 1 

                negative_cluster_chunk.append(index_cluster[j]) 

                negative_cluster_means.append(clustermeans[j]) 

                 

        if pos_clusters > neg_clusters: 

             positive_cluster_chunk = find_closest_pair(positive_clus-

ter_means, positive_cluster_chunk) 

        elif neg_clusters > pos_clusters: 

             negative_cluster_chunk = find_closest_pair(negative_clus-

ter_means, negative_cluster_chunk) 

        else: 

            pass 

        Newcluster_cp = positive_cluster_chunk + negative_clus-

ter_chunk 

     

    clus_means = [] 

    for i in Newcluster_cp: 

        list_member = [] 

        for j in i: 

            list_member.append(delta_p[j]) 

        clus_means.append(np.mean(list_member))     

    pairs = [] 

    for i in range(len(clus_means)): 

      if clus_means[i] > 0: 

        neg_edges = [ (abs(clus_means[i] + clus_means[j]),j) for j in 

range(i+1,len(clus_means)) if clus_means[j] < 0] 

        edge_mag = [j[0] for j in neg_edges] 

        match_loc = neg_edges[edge_mag.index(min(edge_mag))][1] 

        pairs.append((i,match_loc)) 

    dic_def = defaultdict(list) 

    for value,key in pairs: 
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        dic_def[key].append(value) 

 

    updated_pairs= [] 

    for neg_edge in dic_def.keys(): 

        pos_edges = dic_def[neg_edge] 

        if len(pos_edges) >1: 

            candidates = [abs(clus_means[edge]+ clus_means[neg_edge]) 

for edge in pos_edges] 

            good_pos_edge =  [el_pos for el_pos in range(len(candi-

dates)) if candidates[el_pos] == min(candidates)][0] 

            good_pair = (pos_edges[good_pos_edge],neg_edge) 

        else: 

            good_pair = (pos_edges[0],neg_edge) 

        updated_pairs.append(good_pair) 

    return Newcluster_cp,updated_pairs 

 

def find_closest_pairs(start_cluster,end_cluster,cluster_means,re-

quired_reduction):  

    distances = []    

    for i in range(start_cluster, end_cluster): 

        for j in range((i+1),end_cluster+1): 

           distance = abs(cluster_means[i] - cluster_means[j])   

           distances.append((i,j,distance)) 

    distances  = pd.DataFrame.from_records(distances) 

    distances.columns = ['cluster_1','cluster_2','difference'] 

    distances.sort_values('difference',axis=0,inplace=True) 

    return distances.head(required_reduction) 
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Appendix 3 

Buildings database 

This appendix provides a screenshot of the database that was formed for the validation of 

the RS algorithm. 
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Appendix 4 

Ratings of the recommendations 

This appendix provides a screenshot of the ratings that were provided by each of the 

buildings in the database for each recommendation. 
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Appendix 5 

Python code for the RS (file “Recommender.py”) 

This appendix provides the Python code that was used for the application of the collabo-

rative-filtering part of the RS algorithm. It contains the code from the file “Recom-

mender.py”. This code was written specifically for the purpose of this work.  

import pandas as pd 

import glob 

import openpyxl 

import math 

 

data = './My_buildings_database.csv' 

db = pd.read_csv(data) 

my_database = {} 

for i in range(0, len(db)): 

    my_database[db.iloc[i]['building number']] = {} 

    my_database[db.iloc[i]['building number']]['type'] = 

db.iloc[i]['type'] 

    my_database[db.iloc[i]['building number']]['location'] = 

db.iloc[i]['location'] 

    my_database[db.iloc[i]['building number']]['climate'] = 

db.iloc[i]['climate'] 

    my_database[db.iloc[i]['building number']]['name'] = 

db.iloc[i]['name'] 

 

path = './Ratings_database.xlsx' 

files = glob.glob(path) 

for file in files: 

    wb = openpyxl.load_workbook(file) 

sheets = wb.sheetnames 

 

for i in range(0, len(db)): 

    my_database[db.iloc[i]['building number']]['recommendations'] = {} 

 

for i in range(0, len(sheets)):                         #for each ex-

cel sheet, do the following 

    appl = pd.read_excel(path, sheets[i]) 

 

    for k in range(0, len(appl)):                         #for each 

building, do the following 

        my_database[appl.iloc[k][0]]['recommenda-

tions'][str(sheets[i])] = {} 

        for n in range(1, len(appl.columns)):           #for each rec-

ommendation, do the following 

            if math.isnan(appl.iloc[k][n]) == False:    #if the rank-

ing value is not empty, do the following 

                my_database[appl.iloc[k][0]]['recommenda-

tions'][str(sheets[i])][appl.keys()[n]] = appl.iloc[k][n] 

        if my_database[appl.iloc[k][0]]['recommenda-

tions'][str(sheets[i])] == {}: 

            del my_database[appl.iloc[k][0]]['recommenda-

tions'][str(sheets[i])] 

print (my_database) 
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Appendix 6 

Python code for the RS (file “Database_formming.py”) 

This appendix provides the Python code that was used for the application of the collabo-

rative-filtering part of the RS algorithm. It contains the code from the file “Data-

base_forming.py”. This code was written specifically for the purpose of this work. 

 

import operator 

from Database_forming import my_database 

 

 

def recommend(considered_building): 

    print ("HERE RECOMMENDER STARTS") 

    print (considered_building) 

    # save the characteristics of the considered building into varia-

bles 

    my_location = considered_building.get('location') 

    print ("MY_LOCATION") 

    print (my_location) 

    my_type = considered_building.get('type') 

    my_climate = considered_building.get('climate') 

 

    # char_num - number of characteristics of the considered building 

    char_num = len(considered_building.items()) 

    my_appliances = [] 

    for char, info in considered_building.items(): 

        for i in range(0, char_num): 

            appliance_num = 'appliance' + str(i) 

            if appliance_num in char: 

                my_appliances.append(info) 

    print (my_appliances) 

 

    matching_buildings = [] 

    # buildings_number = len(buildings) 

    buildings_number = len(my_database) 

 

    # loop over all buildings verifying if the characteristics of each 

building match the caracteristics variables of the considered building 

    for i in range(1, buildings_number + 1): 

        b = 'building_' + str(i) 

        loc_b = my_database[b]['location'] 

        type_b = my_database[b]['type'] 

        climate_b = my_database[b]['climate'] 

        if loc_b == my_location: 

            matching_buildings.append(b) 

        if type_b == my_type: 

            matching_buildings.append(b) 

        if climate_b == my_climate: 

            matching_buildings.append(b) 

    print ('MATCHING BUILDINGS') 

    print (matching_buildings) 

 

    # 'matching_buildings' - all the builings that have at least one 
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characteristic in common with the considered building 

    if not matching_buildings: 

        print ('NO MATCHING BUILDINGS') 

    else: 

        # save the buildings with the highest number of characteris-

tics that match the considered building into 'best_buildings' 

        dic = {} 

        for num in matching_buildings: 

            if num in dic: 

                dic[num] += 1 

            else: 

                dic[num] = 1 

        vals = max(dic.values()) 

        best_buildings = [k for k, v in dic.items() if v == vals] 

        print ("BEST BUILDINGS") 

        print (best_buildings) 

        print (len(best_buildings)) 

 

        best_buildings_number = len(best_buildings) 

        all_recommendations = {} 

        # put all the recommendations of the similar buildings into 

one dictionary 

        for i in range(0, best_buildings_number): 

            recommendations = my_database[best_buildings[i]]['recom-

mendations'] 

            # mutual_appliances = set(considered_building.val-

ues()).intersection(recommendations) 

            for dk, dc in recommendations.items(): 

                if dk not in all_recommendations: 

                    all_recommendations[dk] = {k: [v] for k, v in 

dc.items()} 

                else: 

                    for k, v in dc.items(): 

                        if k in all_recommendations[dk]: 

                            all_recommendations[dk][k].append(v) 

                        else: 

                            all_recommendations[dk][k] = [v] 

        # 'all_recommendations' - all recommendations from the most 

similar buildings merged into one dictionary 

        # loop over all the recommendations from the most similar 

buildings and put the recommendations for the appliances in the con-

sidered building into 'matching_appliances' 

        matching_recommendations = {} 

        for k, v in all_recommendations.items(): 

            for i in my_appliances: 

                if i == k: 

                    matching_recommendations[k] = v 

 

        # remove the appliance labeling from the mathing recommenda-

tions 

        pure_recc = [] 

        for appl, rec in matching_recommendations.items(): 

            pure_recc.append(rec.items()) 

            values = rec.values() 

 

        # recalculate the ratings by finding the average values and 

form the recommendations with new ratings in 'new_recc' dictionary 

        new_recc = {} 

        for list in pure_recc: 

            for statement in list: 

                ratings = statement[1] 
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                pure_statement = statement[0] 

                new_ratings = sum(ratings) / len(ratings) 

                print (pure_statement) 

                print (new_ratings) 

                new_recc[pure_statement] = new_ratings 

        print (new_recc) 

 

        new_rec_sorted = sorted(new_recc.items(), key=opera-

tor.itemgetter(1), reverse=True) 

        print (new_rec_sorted) 

 

        final_recommendations = [] 

 

        for key, value in new_rec_sorted: 

            final_recommendations.append(key) 

 

        print (final_recommendations) 

 


