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Abstract 

Over the last thirty years, literature on smart cities has dominated both academia and 

industry, however, much of the foundational elements of this field remains ambiguous, 

subjective, unreproducible and non-quantitatively defined. In light of this, this author first 

conducted a critical review of existing literature on (smart) city planning to investigate 

its foundational elements, motivating problem, common themes and barriers. The ensuing 

knowledge implied that due to a city’s inherent chaotic dynamics and presence of tipping 

points, it is not possible to accurately forecast the possible future states of a city (for 

specific initial conditions and intervention context) without using non-traditional tools, 

such as agent-based modeling. This author then implemented a simulation study of four 

city contexts under stress in order to deconstruct how the crisis trajectories of each was 

affected by their initial conditions and intervention strategies. Since the motivating 

problem of the crisis (a disease outbreak) is a symptom of rapid urbanization, much like 

most cities which need the smart city transformation, the author then ventured to explicate 

whether each of those four cities would benefit from becoming a “smart” city and, if true, 

assuming they have the same political and socioeconomic context: would the smart city 

design for each of those cities be the same? Based on these three modes of analysis, this 

thesis was able to, via case study, highlight the link between initial conditions, optimal 

intervention strategies and crisis trajectory, and posit that, if such an impossibly simple 

model of four improbably similar cities fails to validate the veracity of the one-size-fits-

all smart city planning conceit, then, based on the nonlinear dynamics, feedback loops 

and emergence phenomenon present within real-world cities, such a generalized 

foundational framework would not be optimal in the real world. Lastly, this thesis also 

provides a quantitative and holistic analysis framework for smart city planning built upon 

reducing the dimensionality, and feature set cardinality, of city data. 

Keywords: smart city planning, epidemic simulation, complexity theory of cities, agent-

based modeling, smart city analysis 
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1 Introduction 

 “Similarly to many material and organic natural systems, cities too are complex self-

organizing systems. But what about the uniqueness of cities— of the properties that 

differentiate them from material and organic entities, how do these are [sic] related to 

their complexity and dynamics?” 

- Complexity Theories of Cities Have Come of Age [1] 

 

According to Google Scholar data, around 50 percent of all publications, from 2017 to 

2019, related to urban planning, mention smart cities. Despite this, a lot of smart city 

planning is shrouded in the unknown [2]. 

Due to the evolutionary nature, multilevel complexity, and socio-technical organizational 

elements within smart cities, traditional urban planning measures are no longer enough 

to contain the entirety of the smart city concept, with respect to its theory, function and 

practice. Thus, there is a call for a new type of smart city planning. However, before such 

a revolution can take place, it is important that the foundation of the smart city field be 

stabilized and confirmed by the majority of its practitioners. 

However, despite the significant resources and research conducted on trying to define the 

whats and hows of smart city design, there is still no convergence upon a definition, 

metrics or framework that can hold true for the abstracted, general case of transforming 

a city into a smart city. So, a question arises: is such an abstraction even feasible or 

logically sound within the real-world context of cities, considering their innate 

complexity? 

This thesis has a threefold aim, to, 1)  investigate, via a review of the state of the art: the 

motivation behind, themes from, and existing barriers within the field of (smart) city 

planning, 2) deconstruct, via a simulation-based case-study, how exactly crisis trajectory 

is affected by the initial conditions (of the analysis, city and crisis context) and chosen 

intervention strategies, and 3) explicate, by virtue of the theoretical and case-study led 

results, if a one-size-fits-all smart city solution strategy is optimally applicable to the four 

chosen simulated city contexts. Based on the three avenues of analysis, this author then 

recontextualizes the implications, born from the designed model, on the smart city field 

at large. 
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This thesis begins with a review of the state of the art of (smart) city planning, pointing 

out the ambiguous foundations within the smart city field and the lack of quantitative and 

holistic research within it. It also stresses the importance of the field which was motivated 

by the need to solve the downsides of unsustainable rapid urbanization and the 

environmental and social problems, which, if left unchecked, would adversely impact the 

quality of life and wellbeing of the people within those cities. 

This thesis then analyzes city planning through three lenses: ecology, complexity and 

organization. The first two perspectives explain why multilevel complex systems, such 

as cities, are sensitive to initial conditions, never stabilize long-term and have 

unpredictable dynamics and future states. The organizational perspective goes on to 

suggest the importance of urban sustainability as a vision for smart city planning and 

using evolutionary planning-without-a-plan strategy to deal with the three types of 

unknowabilities in city planning.  

The middle of the thesis contains the design and analysis of a simplified model of a city 

under stress, concluding that, much like real cities, the model too is sensitive to initial 

conditions, has feedback loops and subcomponents which co-evolve competitively. An 

analysis framework is identified for quantitatively and holistically recognizing which 

hyperlocal parameters most affected the success metric and these results were compared 

across two cities of different scales. 

Lastly, this thesis was able to better justify the instinct that a one-size-fits-all solution 

would not be recommended when planning for smart cities, as every city (and problem) 

has a different context and it is more important for a smart city solution to be customized 

to the individual needs of, and people within, the city. 

2 The Smart City 

The section examines the existing literature with respect to three key questions 1) what it 

means to be a smart city, 2) what problems motivated the need for the smart city concept, 

and 3) how to identify a smart city. 
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2.1 “Smart” City Definition 

The field of smart cities is a burgeoning one with limitless research potential, which, if 

utilized democratically, has the potentiality to disrupt and elevate the way individuals live 

and engage with their micro and macro world. 

But to do so, one must first contend with the fact that currently there is no generally 

accepted definition of what exactly constitutes a “smart city” [3]–[6]; This foundational 

ambiguity is further exacerbated by the perspective, discipline and background of the 

authors who are invoking the concept of “smart cities” in order to help shed light on a 

specific problem context [7].  

As a primary consequence of this foundational ambiguity, there is often confusion 

between the concept of “smart cities'' with similar - but non-equivalent - concepts such as 

“intelligent,” “knowledge” or “digital” cities [3], [5], [6]. Which in turn muddies the 

applicability and reproducibility of the research and resultant models in another context. 

This intuition is validated by the reality that in the past three decades of research (a 

timespan which constitutes the majority of smart city-based academic and industry 

ventures), a large majority of papers dealt with either conceptualizing and qualitatively 

defining the field (rather than quantifiably or mathematically), or focusing on the 

underlying technical aspects (rather than its societal implications) [6]. 

As a secondary consequence of not having a conclusive definition of smart cities is the 

manner in which this concept is siloed (with respect to application) and, as mentioned in 

Pereira et al., this may be a reason as to why the majority of smart city research focuses 

on specific dimensions of the concept rather than treating it holistically [8], [9]. The 

complexity of a more holistic analysis is often cited as a barrier [3]. 

Some authors have recognized this issue and attempted to reconcile the different 

perspectives and sources on the existing body of smart city-based research and 

applications, offering possible metrics and frameworks for evaluating smart cities. 

However, despite the considerable work on stabilizing the theoretical framework of the 

field, there are mutually exclusive views present, even within the prominent literature, on 

several key metrics and issues. 

For example, considering the first and second most influential papers in the field, by co-

citation analysis [6]: the 2011 paper by Carigliu, et al. and the 2015 paper by Albino et 

al. respectively. The former’s theoretical framework of a smart city - formulated on  
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findings from a project at the Vienna University of Technology, which identified six key 

dimensions (smart mobility, smart environment, smart people, smart living and smart 

governance [10]) by which to rank seventy European mid-sized cities - finally concluded 

that, “a city is smart when investments in human and social capital and traditional 

(transport) and modern (ICT) communication infrastructure fuel sustainable economic 

growth and a high quality of life, with a wise management of natural resources, through 

participatory governance” [11].  

However, the latter paper by Albino et al. posits that a potential reason for lack of 

consensus for the smart city term may be because any working definition needs to 

accommodate both “hard” and “soft” domains (the former consist of areas where ICT can 

“decisively” impact the functioning of the systems (such as buildings, energy grids, etc.) 

and the latter contain areas which are not as impacted by ICT (education, culture, policy 

innovation, social inclusion, etc.); after citing the different available definitions for smart 

cities (including the definition by Caragliu et al.), acknowledges that any definition must 

accommodate the multi-faceted nature of smart cities (i.e., within both hard and soft 

domains), but concludes that any measurement framework for a smart city must depend 

on that particular city’s vision and objectives, and that existing definitions by self-

identified smart cities lack universality, moving on to prove that many smart city ranking 

systems propagate a non-trivial loss of information due to the inherent complexity of 

smart cities [3]. The first paper’s focus on using the same set of metrics by which to 

universally measure the smartness of every city clashes against the second paper’s claim 

that even the measurement metrics for smartness should specifically depend on every 

city’s individual context lest important information be lost. 

As a quick note, it is important to understand that due to the rapid and continuous growth 

in “smart” technology, over the span of a few years, many smart-technology-led 

definitions (i.e., which were not technology-agnostic), much like their specified 

technologies, fell out of favor [12]. 

Thus, despite existing devoted research focused on the conceptualization of smart cities, 

there is still a long way to go before there is any strong convergence on the foundational 

elements of this field. This is an urgent source of concern, as this would hinder 

interoperability between independent research within the field and potentially act as a 

barrier to mainstream application. 
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2.2 Smart City Motivation  

According to the 2018 World Urbanization Prospects report by the United Nations, the 

world’s urban population has increased from 30% in 1950 to 55% in 2018 to an estimated 

68% in 2050 [13]. This urban population growth - in part due to the increase in overall 

population and the upward trend of more people choosing to reside in urban areas - is set 

to hasten in an age of “rapid urbanization” especially in lower and lower-middle income 

countries [14]. And, as Ignatieff assures us, this rapid urbanization will result in cities 

(and megacities) which will be “multilingual, multiracial, and multicultural” [15]. This 

sentiment is seconded in Echebarria et al.’s 2020 review of eighty-four works within the 

smart city literature, from 1997-2020, wherein the background industry’s trend analysis 

supports the hypothesis that currently the world is undergoing a “third revolution in urban 

development” wherein cities “stop being passive human settlements and start generating 

an indigenous force through their creative and innovative potential” [5].  

However, as a consequence of this revolution - resultant from accelerated economic and 

technological growth in urban areas - new challenges have emerged that necessitate the 

concept of “smarter” cities; Challenges ranging from general environmental issues, such 

as air pollution, traffic congestion, and poor waste management, to more societal 

problems, such as dearth of, and unequal access to, resources and increasingly 

disproportionate social inequality [5], [16], [17]. 

There is substantial evidence to believe that the current environmental concerns are 

deeply interlinked with the consequences of human actions and rapid urbanization. As 

explained through their river delta planning study of the forty largest deltas globally, 

Sijmons et al. were able to identify that all those areas shared “an analogous cluster of 

spatial puzzles,” wherein urbanization, due to its spatial nature, was deeply entwined with 

the current global environmental problems; this paper offered the opinion that “the web 

of urbanisation is patent evidence for the fact that humanity can be seen as a formidable 

force of nature on a planetary level“ - this view of humanity’s unignorable and nontrivial 

impact on the environment is echoed by other authors [18], [19]. Sijmons et al. go on to 

offer the stronger claim that those global environmental problems would not be solved 

unless the urban problems were solved. Thus, any city planning must take this dimension 

into consideration, and should recognize that it is not feasible to use traditional methods 

of urbanistic research and design for problems of this magnitude and complexity [20]. 
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The smart city concept was in part motivated by the socio-economic need to positively 

leverage the benefits of the natural rapid urbanization already underway, while also 

covering for its downsides via “smart computing technologies”, processes and cyber-

physical systems [21]–[23]. The rapid, real-time growth of the aforementioned 

technologies was a key reason for the industry's confidence in the readiness of smart city 

solutions [22]. 

In short, the rapid urbanization and the consequential problems within modern cities, 

mixed with the growth of novel information and communication technologies (ICT) 

proved to be the impetus that motivated the smart city concept while also providing a path 

for a feasible execution [22]. 

2.3 Smart City Identification 

Since a generalized and accepted definition is not currently available, a possible solution 

could be to agree on common dimensions which, if present in a city, would then identify 

it as “smart.” However, this too is difficult in execution, as most existing characterization 

frameworks are either holistic or quantitative, but rarely both.  

For example, this potential avenue for recognition of smart cities was studied by Albino 

et al. in their 2015 paper (which evaluates the available post-2008 published peer-

reviewed literature) enumerating key dimensions that exist within the realm of smart 

cities. The paper identified that many researchers in this thematic area agree that “in a 

dense environment, like that of cities, no system exists in isolation” but noted that despite 

this assertion, smart cities are seldom evaluated in their totality [3]. Additionally, Albina 

et al. were also quick to emphasize the literature that focuses on the importance of human 

capital on a smart city‘s goals and execution, writing: “the label “smart city” should refer 

to the capacity of clever people to generate clever solutions to urban problems” [3]. 

Consequently, based on their literature review analysis, the most commonly identified 

characteristics of a smart city were: “a city’s networked infrastructure that enables 

political efficiency and social and cultural development; an emphasis on business-led 

urban development and creative activities for the promotion of urban growth; social 

inclusion of various urban residents and social capital in urban development; the natural 

environment as a strategic component for the future” [3]. However, while 

interdisciplinary and holistic, this qualitative characterization introduces significant 

ambiguity and subjectivity in the smart city qualification process, with the lack of 
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quantitatively defined key performance indicators making it difficult to compare across 

cities. 

On the other hand, when quantitative analysis is conducted in the smart city field it is 

seldom holistic and instead only addresses one sub-discipline (typically technology-

related) within the issue. For example, several of the studied bibliometric and 

scientometric research were able to prove that technical engineering was the most 

explored discipline within the smart city literature [4] and that most co-citation analysis 

related smart cities to specific technological solutions (such as internet of things, data 

analytics, etc.) [4], [6], [24]. 

Thus, there is a noticeable lack of both quantitative and holistic analysis of the smart city 

concept. There are both practical and theoretical reasons for this research gap. 

Considering the practical barriers within the execution of such an analysis: as discussed 

earlier, smart city researchers tend to talk about the concept from their field of expertise 

and due to the aforementioned lack of clarity and universality in the foundational elements 

of the field, it is often not possible to perform quantitative meta-analysis on the results. 

For example, as reasoned by Echebarria et al. in their literature review analysis wherein 

the authors congregated the existing literature into a descriptive (versus, say an 

econometric or statistical) meta-analysis cited that the degree of interdisciplinarity and 

heterogeneity (with respect to their dates of publication, theoretical frameworks and 

research methods) within the sampled papers did not lend themselves to a more 

quantitative approach. The authors also go on to assert the need for a holistic analysis of 

the field and identified holistic analysis as the future the industry was converging towards 

[5]. 

As for the theoretical barriers to a more quantitative and holistic analysis: as further 

explained in the complexity section, a city’s properties are the same as that of a natural 

complex system (i.e., “open, complex and self-organized, and often fractal and chaotic”) 

and, the 2016 paper by Portugali goes as far as to assert that “a city is a simple-complex 

system” arguing that a city is an artifact (and thus, a simple system) if only its material 

components (such as buildings, roads, etc.) are considered. However, by virtue of the 

city’s human components (i.e., its urban agents) who have cognitive and planning 

capabilities and participate in complex interactions, this artifact is made a complex system 

[25]. 
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Due to this complexity, also echoed by other authors [1], [23], [26]–[30], there is no 

convenient dependence on the assumption of a separation of scales; separation of scales 

makes it possible to assume that mean field theory can be accurately applied or that 

network interdependencies will not lead to fat-tailed behavior [31], [32]. This inability to 

depend on Euclidean geometry and Gaussian statistics for guidance and ensuing 

mathematical need to take the road less researched, with fractal geometry, power law 

statistics and Alexander’s living geometry when analyzing cities, is often cited as a barrier 

to research [31]. As an added consequence, due to this lack of dependence on the 

separation of scales concept and cities being subject to power law dynamics, any non-

holistic analysis for cities might not be accurate long-term. 

In order to better understand the ramifications of the above choices, it is important to first 

understand the base unit: the city. 

3 The City from 3 Perspectives 

A city is often referred to by its dynamics, complexity and organizational architecture. 

For example, the 2019 paper by Komninos et al. defined cities as “complex systems 

shaped by bottom-up processes with outcomes that are hard to foresee and plan for.“ [2]. 

Thus, in order to better understand the base unit of a smart city, it is vital to first reflect 

on it as a function of its ecology, complexity and organization. 

3.1 Ecological Perspective 

This section aims to understand cities from an ecological perspective. The first subsection 

attempts to categorize what makes a city more like an ecosystem than like a living 

organism and why that distinction matters. The second subsection then builds upon that 

qualification by exploring the dynamics-related implications of cities having complexities 

akin to that of an ecosystem. 

3.1.1 A City as a Problem of Organized Complexity 

Jane Jacobs’ now classic 1961 book The Death and Life of Great American Cities 

cemented the link for many between cities, biology and organized complexity [33]. 
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However, a closer analysis of the surrounding context behind the term ‘organized 

complexity’ (such as, the four subtypes of this term: artefactual, system, biological and 

ecological complexities, and the inherent fuzziness of the boundaries between ‘object’ vs 

‘system’ or ‘natural’ vs ‘artificial’) is enough to highlight that the city-as-an-organism 

analogy isn’t convenient or informative enough to be used for understanding, or planning 

within, cities due to the different type of complexity that cities actually display [34]. 

For example, when considering the nuance between a biological system (as referring to 

an organism) versus ecology (as it refers to an ecosystem); an organism is finite and 

defined as being in ‘equilibrium’ if it is stable in its function, i.e., it changes in a manner 

predictable according to a developmental process. An ecosystem, by contrast, is indefinite 

in extent, due to it being made up of co-evolving sub-components, and it can never be in 

a state of equilibrium; even if it is seemingly stable for a short period of time its state is 

not predictable in the long-term [27]. Thus, a city is not so much an organism, but rather, 

an ecosystem [35] with a complexity born from its sub-components that function 

competitively [34]. 

A city can be identified as an example of system (organized) complexity, which also leans 

more towards ecological complexity than the alternatives; Generally associated with 

artificial open systems, examples of system complexity are characterized by changes over 

time and are typically not pre-designed as a whole from the very start, but rather emerge 

from the interactions between the different actors within the system. Whereas ecological 

complexity are natural open-ended systems. Using an illustrative example of the subtype: 

ecosystems are dynamic to a somewhat unpredictable extent and the relationships 

between the constituent elements may change as they evolve. Formally, the complexity 

of an ecosystem is multi-faceted, open, adaptive, having nonlinear dynamics and 

irreversible history [34]. This perspective on the organized complexity subtype is helpful 

when studying, and intervening for, cities. 

If the city is the human habitat, with urbanization as its habit and the physical and 

functional relationship with the environment as its metabolism analogous, then the city 

can be viewed as human ecology, which, as Sijmons defines in their 2012 paper, is “a 

complex ecology that includes language and technology, and that produced and continues 

to produce its spatial organization as an emergent order” [20]. 
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Thus, the study of city dynamics can be abstracted to an ecological perspective as city 

dynamics are, when abstracted, a result of the human (AKA urban agents) and non-human 

(AKA material components) interacting with their environments and each other [25]. 

3.1.2 A City as Subject to Evolutionary Processes 

Evolutionary perspective of urban growth can be applied to smart city planning and 

evolutionary processes heavily influence smart city planning. This was argued by 

Komninos et al. in their 2019 paper wherein evolutionary processes are “characterized 

and affected by essential diversifications in the capacity of societies to generate technical 

innovations that are suitable to their needs” [2]. The impact of evolutionary processes on 

smart city planning is in part due to the underlying socioeconomic and political context 

of the city but also due to the behavior of people in the communities within that city. 

When cities formulate policies that can best leverage existing funding and research while 

also attracting more externally-sourced opportunities and investment, they are attempting 

to optimize drivers of innovation and complexity. Thus, these policy decisions in turn 

affect the developmental trajectory of the city. However, the “selection environments” or 

the realistic paths available for leveraging and exploiting innovation at that time period 

based on public funding, governmental rules, etc. are constrained by the socio-political 

and economic climate as well as the efficacy of the stakeholders at that time. Or, as 

explained by Komninos et al.: “urban contexts influence the ways in which local 

governments can create and shape opportunities for innovation” [2]. 

Moreover, societies are, by their very nature, evolutionary and adaptive; Pelletier 

characterizes societies as having worldviews and attendant behavior sets which are 

“variably successful in perpetuating specific configurations of social relations and 

human/nature interactions within the constraints of particular social and environmental 

conditions.” and goes on to conclude that a civilization’s ability to survive long-term is 

largely dependent on either the stability of those social and environmental conditions or 

its ability to adapt as those conditions change [36]. 

As mentioned earlier, a city is made up of human and material components which interact 

with each other in a complex way. By themselves, the human entities, when considered 

collectively, form that city’s community (or, society). Thus, it can be claimed that 

considering the lack of long-term equilibrium (or stability) due to the nature of complexity 

in cities (as explained in the previous section), a city community’s ability to survive 
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depends mostly on its ability to adapt to changing circumstances within their individual 

and global context. 

Thus, the evolutionary and adaptive entity (also known as that city’s community), in the 

context of the complexity and multidisciplinary nature of cities [2] gives credence to the 

finding that city planning is, in turn, shaped by a city’s evolutionary processes.  

3.2 Complexity Perspective 

Just considering the perspective of Sijmons’s 2012 consideration of a city as a 

representation of human ecology, large scale urbanization processes fall under the 

purview of complexity theory [20]. However, even a wider context - the evolutionary 

dynamics inherent within a city, the identification of cities with subtypes of organized 

complexity and the categorization of a city as an urban ecosystem - all provide an even 

stronger argument for complexity theory as the next step in the modern study, and 

planning, of cities. 

Complexity Theory of Cities (CTC) is a relatively new field which attempts to better  

understand urban dynamics, that is: how cities work [1]. In its three decades of study, 

CTC was able to unify a variety of urban phenomena and properties under a single 

theoretical umbrella; phenomena and properties, which until then, hadn’t been thought to 

have been dependent on each other (or even influenced by the same base theoretical 

forces). Moreover, CTC was also able to leverage concepts, defined within complexity 

science (such as, chaos, emergence and nonlinearities), which have application in urban 

dynamics and helped clarify that chaos and order in cities are not mutually exclusive [37].  

While CTC may have some credible gaps in the current state of the art (the ability to 

understand what makes a specific city unique being one of them [1]), the field and its 

practitioners are far from done with recontextualizing urban dynamics (and more recently, 

urban planning) through the lens of complexity science. It would behoove any smart city 

practitioner to familiarize themselves with this burgeoning field which has a novel point 

of view and relevant quantification tools to offer. 

The following subsections reframe the city as multilevel systems of systems of systems, 

a complex adaptive system and an instance of agglomeration effects, and discusses how 

all those three traits can coexist and add further complexity to a city’s dynamics. 
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3.2.1 A City as Multilevel Systems of Systems of Systems 

In Johnson’s 2012 paper, they explained that cities are highly entangled, multilevel 

systems of systems of systems which are hard to understand and predict dynamics of, and 

have coupled subsystems (wherein changes in one subsystem may affect, or be affected 

by, changes in another). These traits make the subsystems have “ill-defined boundaries,” 

which adds ambiguity to the ownership process - i.e., not being able to confidently 

identify whether a property, or consequence, can be uniquely attributed to a specific 

subsystem [8]. 

It is important to note that the subsystems that are a part of the city, such as the 

transportation or energy system, are also innately complex and feed into the overall 

complexity of the city [38]. 

As explained earlier in the thesis, and is further validated by Johnson [8], cities are 

typically planned with an amalgamation of technical, verbal and pictorial analysis; with 

a projected goal state the city should be in the future, and identifying which interventions 

can achieve that state. Which, as explained independently by Johnson and Marshall, has 

mixed success due to the types of  ‘unknowabilities’ birthed by the type of complexity in 

cities [8], [34]. Thus, many authors advocate the need for network theory, collective 

intelligence, agent-based computing to deal with such systems (of systems of systems) 

[8], [39]–[44]. 

3.2.2 A City as a Complex Adaptive System 

A Complex Adaptive System (CAS) is a system with a large number of interconnected 

subcomponents with nonlinear dynamics in which the behavior of the whole system 

cannot be predicted from the behavior of its individual subcomponents. A CAS tends to 

be adaptive and self-organizing, and can learn from past events [45], [46]. 

A city is a Complex Adaptive System [30], [38], [47], [48], with the people within that 

city reacting to changing infrastructure, policies and general context, while also 

interacting with their environment and each other [46]. 

Furthermore, as a consequence of a city being a CAS, it is argued that the self-

organization and emergence tendencies within a city can be leveraged to design strategic 

interventions in order to bring about certain outcomes and make the city more adaptive 

[38].  
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Other consequences of planning for, and studying, cities is that by virtue of its complexity, 

a city is sensitive to initial conditions [39] and its individual layers (or subsystems) are 

interconnected in a nonlinear manner that makes the eventual outcomes very difficult to 

predict [32]. Even in a simple model of a city, the behavior trajectories are chaotic due to 

the system’s inherent unpredictability, resulting in the modeler’s inability to forecast 

(sans a simulation) which specific initial conditions will be the most interesting (i.e., 

fruitful in giving specific dynamics and/or future states, if those are even possible at all) 

[27].  

So, to recap: a city’s future state is highly dependent on the city’s initial conditions, but 

it is impossible to accurately predict the result states possible from a specific iteration of 

initial conditions and, conversely, it is not possible to backtrack and identify which initial 

conditions will cause a certain future state, and at tipping points, due to the resulting 

emergence, the system may even tip into an unpredictable and qualitatively different state 

[27]. 

3.2.3 A City as an Instance of Agglomeration Effects 

Literature has proof linking the so-called ‘agglomeration effects’ as a foundational 

concept for explaining the emergence and persistence of cities globally [49]–[51]. 

Explained by Ortman et al. as the balance between centripetal and centrifugal forces, or 

in the context of the city: the socio-economic benefits of having a densely populated area 

versus the associated costs. For cities, agglomeration effects parallel the average socio-

economic performance and infrastructure characteristics within cities with changing city 

size [29]. 

This result is further supported by other research findings, such as: 

● Socio-economic indicators are super-linearly connected (by virtue of 

agglomeration non-linearities) with population size, enabling larger cities to 

become centers of innovation, wealth and crime [52]. They have a scaling 

exponent (on a log-log scale) of 𝝱 ≈ 1.15 (> 1) 

● Material infrastructure metrics are sub-linearly linked to a city’s population size, 

implying a kind of “economies of scale”. They have a scaling exponent (on a log-

log scale) of 𝝱 ≈ 0.85 (< 1) [53], [54] 



-24- 

● However, metrics which are dependent on individual human needs (total 

employment, water or electricity consumption, etc.) have a scaling exponent (on 

a log-log scale) of 𝝱 = 1 [53], [54] 

● Local urban dynamics display long-term memory, with cities maintaining their 

size-enabled advantages (or disadvantages) for decades [52] 

The above scaling exponents are useful when trying to ascertain information for 

infrastructure and socio-economic scores for a target city based on the same metrics’ 

corresponding scores in another base city. However, this comparison is only applicable 

when comparing cities within the same national boundary [55]. Moreover, it is important 

to note that these scaling exponents are only applicable in cross-sectional, and not 

temporal, scale [56], [57]. 

These scaling exponents are a result of two competing forces: the economies of scale 

influencing the infrastructure metrics versus the wealth and innovation-creating forces 

born from social interactions between people in cities which majorly shape the socio-

economic metrics [54]. According to the growth models by Bettencourt et al., any city 

for which economies of scale forces are more influential will eventually stop growing as 

the population reaches a finite carrying capacity. On the other hand, in cities with growth 

driven by innovation and wealth creation, there will be an infinite population within a 

finite time which, when constrained by the existing limited resources, will lead to 

stagnation and eventual collapse of that city. The only human-led action that can then 

protect that city is by inspiring accelerating cycles of innovation which will initiate a new 

period of wealth creation and innovation-driven growth. However, this too is not 

sustainable long-term as the time to singularity shortens each time a new cycle of 

innovation is initialized [54]. 

When placing this disconcerting knowledge within the context of tipping points from the 

prior sections, it is clear that attempting to identify the exact initial conditions which can 

facilitate an environment for the urgently needed “good” tipping points (which will 

initiate a new cycle and stave off collapse) would be no mean feat. 

3.3 Organizational Perspective 

The following sections shed light on the purpose, unanswered foundational questions and 

key areas of unknowability within cities (and ergo, also within smart cities). 
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3.3.1 A City as an Unsustainable Liability 

While many authors argue that a smart city’s execution strategy must be shaped by the 

specific goals, vision and mission of that specific city in addition to its culture, context 

and citizens [2], [3], it might be useful to also highlight a generalized smart city vision in 

the context of rapid global urbanization. This section argues that (urban) sustainability is 

one such global metric that every smart city planner must keep in mind during designing, 

implementing and operating a smart city; a view that aligns with many researchers in the 

literature [2], [5], [12], [38], [47]. 

As pointed out by the 2019 United Nations reports, rapid urbanization requires 

sustainable urbanization in order to fully leverage the positives of this phenomenon and 

avoid the negatives [13], [14]. Furthermore, as pointed out by Yin et al. through their 

literature review, this umbrella of sustainability must also be able to provide information 

and decision-making tools for governance, citizens, businesses and the environment [22]. 

As validated through the earlier section on agglomeration effects, continuing cycles of 

innovation are necessary for the survival of an innovation-driven city, which is growing 

at a faster-than-exponential-rate, in order to avoid stagnation and eventual collapse. As 

West explains in his book Scale, that in order “to sustain continuous growth the time 

between successive innovations has to get shorter and shorter. Thus paradigm-shifting 

discoveries, adaptations, and innovations must occur at an increasingly accelerated pace. 

Not only does the general pace of life inevitably quicken, but we must innovate at a faster 

and faster rate!” [55]. However, even if this unsustainable pace can be somehow 

maintained, every time there is a new urban problem which requires a disruptive solution 

(which will then kickstart the new cycle of innovation and stave off the imminent 

collapse), there will be hysteresis in the changing of public opinion, especially when it’s 

regarding paradigm-shifting ideas or innovations (which often accompany the 

accelerating cycles of innovation). This hysteresis property makes it difficult to adapt to 

new problems, or prioritize newer problems with more urgency, quickly because of the 

accompanying inertia. As identified by the model by Scheffer et al., public opinion 

changes nonlinearly and has tipping points, this, in turn, is further complicated by the lag 

between recognition and regulation of a problem, the latter of which is shaped by the 

political climate. Their model also goes on to explain the significance of the hysteresis 

points, claiming that “homogenous societies with strong peer control will remain locked 

into inaction until relatively high problem level. Once active, the reverse switch to 
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inaction is delayed until perceived costs are quite low. Thus there is a tendency to hang 

on to old problems until they are thoroughly solved”  [18]. The resulting spillover costs 

from this inertia in public opinion might, in turn, pose new problems which could 

aggravate the already existing environmental and social concerns. 

So, the problem and the solution are the very same. For the global community to survive, 

we need accelerating cycles of innovation, resulting in a faster pace of life (among other 

consequences), however, this very acceleration facilitates rapid urbanization (due to 

agglomeration effects [29]) which in turn negatively affects the environment, people and 

planet. By the very nature of this paradox, this feedback cycle isn’t sustainable as it 

currently stands. 

The answer to this need for, and yet fear of, unconstrained growth according to ecological 

economics, as elucidated by Pelletier, is an organized and restructured attempt at 

sustainability: 

“The insights of ecological economics, founded on a recognition of the 

implications of the Laws of Thermodynamics for human organization, point 

towards a partial recourse to the pathologies of industrial society and clear 

direction for a more effective form of environmental governance. Although this 

perspective does not overturn the spectrum of problematic assumptions inherent 

in the modernist enterprise, it does effectively constrain their most 

environmentally pernicious potentials by challenging the concept of 

unconstrained growth. Moreover, it makes explicit the recognition that 

sustainability is a global, community concern that transcends the capacity of 

market-mediated instrumental rationality to provide. It also reveals that industrial 

society can only be assured of long-term viability if we restructure our economic 

activities with respect to the absolute biophysical limits to sustainability inherent 

in a finite environment.“ [36] 

Many authors  [2], [18], [38], [47], [58] are pursuing this avenue of research. Using 

sustainability as a barometer for smart city planning is a common theme that the field 

appears to be converging upon [12]. 

3.3.2 A City via Uncertain Everyday Decision-making 

When talking about smart cities, authors tend to focus on the complexity and inherent 

uncertainty in the surrounding context [2], [34], [48]. For example, by categorizing a city 
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as a type of open system, Marshall identified three types of ‘unknowabilities’ that arose 

due to the inherent complexity of such a system [34]. They are, unknowability of… 

1. The system as it is 

2. Effects of intervention, and 

3. Optimal future state 

The first unknowability is due to needing to take into consideration the wider (or even 

global) scope when talking about a local urban ecosystem as a city does not exist in 

isolation. Moreover, a city is seldom the result of a single planner or design team (thus 

there is no single source of ownership one can reference, poll or consult when needed), 

nor is there any consistency or predictability in the patterns of change when studying the 

interacting components that make up a city which, may in actuality, change their roles at 

any time. 

The second unknowability deals with the inability to accurately predict the long-term 

effects of any intervention strategies in cities. Unlike biological organisms, which have a 

reasonably stable lifecycle and it is easier to know the causal effects of (for example) 

medical strategies when applied to their bodies, cities are not the same.  

The last unknowability is due to not knowing the optimal future state that the ideal 

‘matured’ city (or ecosystem which, similarly, is made up of many competitively co-

evolving species) should have. 

Each of the above unknowabilities is one step worse than the one before it, adding 

ambiguity to the city planning process. For, if it is not possible to know the initial state, 

the causal effects of a strategy or the optimum goal to steer towards, how can one plan? 

This finding is also recognized as a problem by Komininos et al. who then argue that the 

current wealth of a cumulative and interdisciplinary city planning knowledge-base, 

juxtapositioned with the heterogeneous, uncoordinated and oft-unintegrated digital 

technologies, in addition to the fragmented and diverse novel producer and user behavior, 

has moved city planning from the well-trodden roads of traditional planning into a realm 

of “planning without a plan” wherein cities are grown through evolution (versus detailed 

plans of the entire city lifecycle outlined from the very beginning). Their proposed 

“planning without a plan” approach (with all the implied associated uncertainties and 

chaotic interactions born of multiple organizations, with shifting agendas and priorities, 

acting in parallel) is led by novel technologies - which are now available for smart city 

usage - and their influence on the innovation ecosystems, and also leverages opportunities 
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that appear over time, which in time shapes into a final result that could not have been 

foreseen at the start of the evolutionary process [2]. 

4 The Model 

As has been indicated by the investigation into the existing literature, due to the existing 

power laws and nonlinear dynamics inherent within cities (which make forecasting 

impossible at worst and inaccurate at best), non-traditional tools, such as agent-based 

modeling, are essential for mapping out the sample space of possible future states for a 

given initialization of initial conditions and intervention strategies. 

This section delineates a design for an agent-based model which simulates, via cellular 

automata, a disease outbreak crisis, within a closed population, in a city. This is done in 

order to better understand which, if any, of the available initial and/or intervention 

conditions, within the simulated city, disproportionately affect the crisis trajectory. 

The model borrows from existing work [59]–[61] regarding models on, and smart city 

applications within the field of, epidemic management. The former of which was used to 

validate the veracity of the designed model by virtue of the base dynamics (the plot for 

%healthy and %infected over time being S-shaped for a closed population with post-

recovery immunity, or having oscillatory dynamics otherwise), and the latter literature 

was used to validate the feasibility of the selected intervention strategies based on their 

documented use within real cities. 

Furthermore, the model assumes a certain degree of “smartness” in the simulated city: 

open data and resource transparency that facilitates instantaneous hospital matchmaking 

and accurate data on infected adults (and their home location), automated contact tracing, 

and real time notifications to every resident in the simulated city which allows them to 

follow zoning policies without any lag. 

The Overview, Design Concepts and Details (ODD) Protocol [62] was followed below 

to describe the implemented agent-based model. The first section provides the problem 

and solution context for the model and its design, which is then compounded upon by a 

succeeding section on the utilized design concepts, then followed by a section that 

includes the execution and other miscellaneous information in order to understand and 
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replicate the model. The last two sections highlight the design decisions and assumptions 

for the model.1 

4.1 Overview 

The following subsections outline the purpose of the model, as well as the simulation 

world, variables and processes present in it. 

4.1.1 Purpose 

As seen in the prior sections, a general, widely-accepted smart city definition - i.e., a 

universally agreed upon one-size-fits-all characterization of what makes a city smart - is 

currently not available. Thus, this author, instead of expending further resources on this 

already well-studied avenue of research, attempts to quantitatively understand whether 

such a “one-size-fits-all definition” is even a desirable quality when talking about smart 

city implementations. 

Since the advent of smart cities was chiefly motivated by a need to solve problems that 

arose in cities due to rapid urbanization (as seen in the earlier sections), a simulation of 

one such problem - a disease outbreak - was designed and city response parameters were 

changed in order to see if the same intervention strategies proved equally fruitful in all 

the cases with different outbreak-specific parameters (after controlling for the city-

specific context, such as population and its dynamics). 

This simulated case study was designed in order to 1) analyze a simplified model of a city 

under stress, 2) identify techniques for quantitatively and reproducibly recognizing which 

hyperlocal and/or intervention-related parameters, if any, in such models 

disproportionately affected the success metrics, and 3) understand how smart city design 

would change in different (simulated) city contexts. 

Bluntly speaking, the goal of this thesis is not to equate or draw conclusions about real-

life outbreaks from the below simulation, as such an endeavor would veer into 

oversimplification of a deeply complex phenomenon with little to no real-world impact. 

Rather, this thesis aims to quantitatively prove the broader claim that the reason no 

general definition of a smart city exists is because such a definition would be 

 

1 The model can be found at: https://deekshasinghvs.github.io/disease-outbreak-

model/index.html 

https://deekshasinghvs.github.io/disease-outbreak-model/index.html
https://deekshasinghvs.github.io/disease-outbreak-model/index.html
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counterproductive to the conceit of the smart city concept and every smart city 

implementation must take into consideration the specific city’s context, vision, mission 

and residents. 

As explained by Taleb, while a wrong ruler might not be able to accurately output the 

height of a child, it will nonetheless be able to identify whether that child’s height is 

increasing [63]. By not depending on the model to be 100% accurate and true to real-

world conditions (which would be difficult to do, much like a map is not the territory 

itself, no model can comprehensively represent the dynamics of a real-world system), and 

instead only behave as a signifier of growth progress, we allow ourselves to move from 

failing at being predictive to reasonably succeeding at being prescriptive. 

If a one-size-fits-all intervention strategy proves successful regardless of the dynamics of 

the problem in question, then this large-scale simulation study will recommend the need 

to invest more resources into finding that elusive generalized solution. On the other hand, 

if such a premise is negated, by case-study, then an argument can be made that instead 

resources should be redirected to find a bespoke smart city solution for every city based 

on the needs, dynamics, vision and mission of the city under question. 

4.1.2 The Simulation World 

Netlogo (version 6.0.2 [64]) was used to simulate the premise with an accompanying 

Python script which automated the simulation instantiation and execution. The following 

sections detail the general design within the Netlogo environment. 

Netlogo was chosen for the ease and speed of prototyping both spatial and temporal 

dynamics, its free and open-sourced nature, and ability to integrate with existing 

automation tools (such as Python) via Application Programming interfaces (APIs). 

Netlogo’s available functionality for simulating independent actors who behave and 

interact according to predefined micro-level rules in a “physical” space merged with its 

frontend interface allowing a holistic white-box-esque analysis per discrete-time step (aka 

a tick) enables researchers to easily identify emergent patterns and macro-level 

interaction dynamics. 

The Netlogo environment provides us with a user-sized grid consisting of - as relevant to 

our interests - three types of agents: patches, turtles and links. Patches are the digital 

representation of a physical space, with each patch being a fixed constituent square within 
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the grid, which represents the world being simulated. Turtles are mobile actors who can 

move on that grid. Links (both undirected and directed) connect two turtles together. 

Ticks are a stand-in for discrete-time steps within the simulation world. In addition to 

viewing the results of the simulation, the frontend interface also allows for user-defined 

variables which are then instantiated, and used, by the backend. 

A view of the simulation world and the entire interface can be seen in Figure 1 and Figure 

2 respectively. 

 

Figure 1: Simulation world for a specific instantiation, at ticks = 0 

 

Figure 2: Simulation’s frontend interface for a specific instantiation, at the end of simulation 
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4.1.3 Entities, state variables and scales 

The model’s key mobile actors are collectively termed as “adults,” i.e., a breed of turtles 

who each have a specific occupation (essential worker, non-essential worker or doctor) 

and an assigned location for the building for that occupation, a list consisting of their 

current state (which can be a logically sound subset of {“immune”, “healthy”, “infected”, 

“quarantined”, “recovered”, “treatment”}), location of their house, a Boolean value that 

denotes if this adult is asymptomatic and three counters for the time (AKA ticks) they 

have spent sick, untreated and quarantined. 

The simulation world in this model wraps horizontally and vertically and consists of 

33x33 patches. The patches have two key attributes: zone and infection-cases. The former 

denotes the epidemic zone (i.e., red, orange or green) as characterized by the decision-

making event, in the event of an outbreak, whereas the latter variable is an aggregated 

quantity that represents how many adults from (i.e., housed within) that patch have been 

infected. The latter variable, when sorted and compared, is solely responsible for deciding 

the city’s zones (red zone patches are patches with infection cases which are 75th 

percentile or above, whereas the orange patches are assigned from the 50th percentile). 

For the sake of concision, only links which directly impact the interpretability or influence 

the final result of the simulation are considered: the directed interaction and treatment 

links, and the undirected house and occupation links.  

Two interaction links (directed each way) are formed between any two adults who interact 

with each other within the last (user-defined) average incubation hours of the disease. If 

the interaction follow-up option is toggled on, then for every adult who tests positive for 

the illness, automated contact tracing can be simulated by having every other adult, with 

an interaction link with the now-infected adult, automatically alerted and sent for testing 

for the illness. 

Treatment links are directed links from the adult under treatment to the hospital building 

they are being treated under. The undirected house and occupation links connect every 

adult to their house and occupation-relevant building respectively. The object diagrams 

for this simulation are given in Figure 3. 
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Figure 3: Object Diagram of Model 

It is assumed that one tick in the simulation is equal to one hour of real-world time. Every 

tick increases the number of tests available by the user-defined value (defined within the 

interface) for available-tests-per-tick. 

Initial Condition Variables: User-Defined 

As can be seen in Figure 2 there are many user-defined variables. The 20 variables are 

categorized as follows: 

1. Initial Context Initialization 

These variables denote the hyperlocal city-specific context with respect to the 

population (both individually and collectively) and infrastructure 

a. City-specific variables  

i. total-doctors-init: the total number of doctors in the population. 

Range of values: 1-100. 

ii. total-essential-workers-init: the total number of essential workers 

in the initial population. Range of values: 1-100. 

iii. total-non-essential-workers-init: the total number of non-essential 

workers in the initial population. Range of values: 1-100. 

iv. num-hospitals-init: the total number of hospital buildings in the 

simulated city, with every doctor (as defined in a.i) randomly 

assigned to a hospital). Range of values: 1-10. 

v. num-essential-buildings-init: the total number of buildings which 

comprise of essential workplaces in the simulated city, with all 
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essential workers (as defined in a.ii) randomly assigned to a 

building). By definition, an essential building is any building 

which scales with β = 0.85 on a log-log scale with the population. 

Range of values: 1-10. 

vi. num-non-essential-buildings-init: the total number of buildings 

which comprise non-essential workplaces in the simulated city, 

with all non-essential workers (as defined in a.iii) randomly 

assigned to a building). By definition, a non-essential building is 

any building which scales with β = 1 on a log-log scale with the 

population. Range of values: 1-10. 

vii. num-houses-init: the total number of houses available in the city, 

all adults are randomly assigned a house. Range of values: 1-10. 

b. Resource-specific variables 

i. available-tests-per-tick: the number of tests (for the disease) 

available per tick. If this number is low, adults who are suspected 

of infection may have to wait in a first-in-first-out queue in order 

to get tested. Range of values: set of natural numbers. 

ii. beds-per-hospital: the total number of beds (initially, at ticks = 0, 

all beds are unoccupied) per hospital at the start of the simulation. 

Thus, total number of beds at any moment in the city = number of 

hospitals x beds-per-hospital. Range of values: set of natural 

numbers. 

c. Individual-specific variables 

i. interaction-rate: represents the probability (out of 10) that any two 

adults, who are not from the same household, interact upon 

meeting (i.e., sharing the same patch location). Note: Interaction 

rate between adults from the same household is 100%. Range of 

values: 0-9. 

ii. infection-chance: represents the probability (out of 10) of an adult 

getting infected upon interacting with an infected adult. Range of 

values: 0-9. 

iii. treatment-recovery-chance: represents the probability (out of 10) 

that an adult under treatment (from a hospital) successfully 

recovers after time-sick ≥ recovery-hours. Range of values: 0-9. 
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iv. natural-recovery-chance: represents the probability (out of 10) of 

an adult successfully recovering (by natural means, without the 

need for medical intervention) after time-sick ≥ recovery-hours. 

Range of values: 0-9. 

2. Problem Response Initialization 

These variables represent the problem context (with respect to the specific 

dynamics of the outbreak) and the response of the local authorities to the outbreak. 

a. Outbreak-specific variables 

i. incubation-hours: the number of ticks that need to pass between 

the moment of infection and the onset of symptoms of the disease 

(necessitating a trip to the hospital for testing), if adult is not 

asymptomatic. This value also determines the quarantining period 

and the valid set of interaction-links which direct to adults who 

would need to be tested as a result of automated contact tracing. 

Range of values: set of natural numbers. 

ii. recovery-hours: the average time that needs to pass for recovery 

from the disease to be a viable state for an infected adult. That is, 

this is the number of ticks after time of infection that an infected 

adult can be tested for recovery (depending on the appropriate 

natural recovery and/or treatment probabilities). Range of values: 

set of natural numbers. 

iii. immunity-after-recovery?: is a previously-infected, now-

recovered adult immune from the disease and cannot be reinfected 

with it again? Range of values: {True, False} 

iv. asymptomatic-chance: represents the probability (out of 10) of an 

infected adult being asymptomatic (i.e., not having visible 

symptoms of the illness). Asymptomatic (infected) adults will 

(unless called upon by contact tracing) not know that they have 

been infected and thus not be quarantined or otherwise tested. Due 

to there being no quarantine-related mobility restrictions, they may 

infect other adults after suitable interaction and infection 

conditions have been met. Range of values: 0-9. 

b. Intervention-specific variables 
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i. decision-making-lag: the ticks (post-first infection in the city) 

needed for local authorities to make and enact a decision (in this 

case, zoning). Range of values: set of natural numbers 

ii. interaction-followup?: Is automated contact tracing available? If 

true, then all the adults, from an adult who has been tested positive 

for the disease (connected via the most recent interaction links (i.e., 

within the last incubation-hours period)), will be notified and 

asked to come in for testing. Range of values: {True, False} 

iii. quarantine-just-in-case?: If there are not enough tests or 

unoccupied beds available, should an adult suspected of being 

infected quarantine just-in-case? If true, then the quarantine exit 

condition depends on the adult testing as healthy (when the testing 

queue reaches them). Range of values: {True, False} 

4.1.4 Process Overview and Scheduling 

As mentioned before, this agent-based model simulates, via cellular automata, a disease 

outbreak crisis, within a closed population, in a city. This is done in order to better 

understand which, if any, of the available initial and/or intervention conditions, within 

the simulated city, disproportionately affects the crisis trajectory. 

Thus, the mobile agents (adults) move around the city to work or wander (assuming they 

are allowed to do so with respect to zoning policies and quarantine requirements), and 

also interact with each other. 

Upon the starting of the outbreak, based on the allowed intervention strategies and (the 

testing and hospital) resources available, the adults may be required to work from home 

due to quarantine requirements, quarantine at home or the hospital, go to the hospital for 

testing and/or treatment, and wait in queues for testing and/or available hospital beds. 

The rules for adults are further outlined in the following two sections. 

4.2 Design Concepts 

The disease outbreak is initiated via the infection of a randomly selected, non-naturally 

immune, adult within the city's population (via the "infect random adult" button in the 

interface), and is spread by infected adults interacting with non-infected, non-immune 

adults (who may or may not be asymptomatic). 
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Upon infection, and after time sick has eclipsed the incubation time for the disease, 

provided the adult is not asymptomatic, it is assumed that the adult will fully realize that 

they are sick as the symptoms of the disease will have become apparent post-incubation 

period, and the adult will then directly go to the hospital for testing. 

Every hospital has a limited number of available beds. Thus, every adult, who wants to 

get tested, will be directed to the hospital nearest to their current location which has an 

available bed. 

Upon identification of a hospital, the suspected adult is tested (if a test is available), and 

if they are proven to be infected, they are officially put under treatment and required to 

quarantine at the hospital, thus taking up a bed until they recover. Otherwise, they are 

deemed healthy and can return to the default action for adults (to wander or go to work). 

If there are no hospitals or tests available, the adult is put in the apropos queue and, if 

quarantine-just-in-case? is true, told to quarantine at home, otherwise, if false, allowed 

to wander the city like normal. 

The hospital and testing queues are dequeued in a first-in-first-out fashion and the start 

of every “go” procedure begins with dequeuing as many adults in the queues as possible 

(based on any newly available beds and/or tests). 

For every adult who tests positive for the illness, if interaction-followup? is true, then 

automatic contact tracing occurs and every adult the infected adult had interacted with, 

within the past incubation period, will be required to go to a hospital to get tested. 

The interaction between adults from different households will occur according to the 

interaction-chance, but interaction between non-quarantining (at home) adults from 

within the same household, will occur at a 100% probability. 

Zoning policies are decided every user-defined decision-making-lag period, and they are 

decided based on the locations of households with infected adults, with a neighboring 

radius of 1.  

Non-quarantined essential workers and doctors are required to always go to work by 

default, regardless of their house's zone. Whereas, non-essential workers can only leave 

their homes if they live in a green or orange zone. Non-quarantined, non-essential workers 

either wander the city or go to work by default. 

Quarantined adults can leave quarantine if they test negative for the illness after they've 

been quarantined for longer than the disease incubation time (as the test cannot accurately 
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ascertain infection unless time sick > incubation hours). This negative test result can be 

because the adult was never sick and thus tested healthy with no change, or (if time sick 

> recovery hours) if the adult recovered either by natural means or by treatment (under a 

hospital). If immunity-after-recovery? is true, then every recovered adult is deemed 100% 

immune to the disease. 

If two adults interact and one of the adults is infected, the other adult may also be infected 

based on the infection-chance. Any infected adult may be asymptomatic according to the 

asymptomatic-chance probability. 

4.3 Details 

This section outlines the way the world is set up and initialized, whether there is any input 

data required for the model to work and the sub-procedures and agent rules (with 

pseudocode) that is necessary for the model logic. 

4.3.1 Initialization 

After selecting the necessary initial conditions, “setup” should be selected, followed by 

"infect random adult" which will infect an adult and thus begin the outbreak. Then 

selecting the “go” procedure will begin the simulation in earnest. 

4.3.2 Input Data 

Model has no input data, as the simulated environment is assumed to not change. 

4.3.3 Submodels 

The pseudo-code for non-trivial procedures explained below is given in section 10.5 in 

the appendix. 

The setup Procedure 

The setup procedure resets the world to the starting position with respect to the 

initialization of the global variables, patches and turtles. 

At the beginning, outbreak-time equals -1, as the outbreak has not started yet, and thus, 

all patches are in the "green" zone with their infection-cases attribute set to 0. 

The turtles are set up by creating a user-defined number of buildings and adults with their 

respective occupations. All buildings and adults are randomly placed in the simulated 
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city. For every adult, a house and an occupation-appropriate building is assigned, along 

with an undirected house and occupation link respectively. 

The go Procedure 

The “go” procedure is repeatedly 

called (or, in the macro-analysis case 

studies, for a maximum of 10,000 

ticks) after the user clicks on the “go” 

button in the simulation interface 

screen for the first time. Clicking on 

the “go” button signifies that the ticks 

have officially started and the 

simulation has begun. By virtue of the 

programming logic, for every run of 

the go procedure, the tick counter 

increments by one. 

Figure 4: Flowchart of the go 

procedureFigure 4 outlines the main 

flow of logic for the go procedure. 

Within it, we can see that if the 

outbreak has not yet started (if 

outbreak-time = -1), that adults who 

are not currently at their respective 

assigned workplace buildings (given 

by every adult’s occupation-location attribute) are programmatically ordered to randomly 

wander the simulated city space by calling the go-wander procedure. 

However, if the outbreak has started, the testing and hospital queues are checked. Since 

the total number of available tests increase after every tick (by the user-set available-

tests-per-tick property), the globally defined testing-queue - if its length is non-zero - can 

be dequeued (with the implied first-in-first-out strategy) and the available-tests-per-tick 

number of dequeued adults are then tested for the infection. Similarly, the hospital-queue 

global variable is also dequeued, if there are any newly available beds from the last tick. 

The ask-adults-go procedure is a turtle-level function in which every adult’s general 

behavioral rules are outlined. Its behavior is explained in the following section. 

Figure 4: Flowchart of the go procedure 
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Penultimately, the ticks-parameterized make-decision procedure is called as a 

programmatic substitute for the city’s local government’s decision-making actions and 

ensuing policies. For every tick past the outbreak-time, after a multiple of the user-defined 

decision-making-lag period, zoning decisions are made based on the total infection-cases 

property of each patch. Zoning is based on assigning patches whose infection-cases 

attribute is at least above the 50th or 75th percentile in the orange zone and red zone 

respectively. 

Finally, all the relevant counter attribute values are updated (including incrementing the 

tick counter by one) in update-values and the procedure ends. 

Unless constrained externally, the go procedure stops when the number of infected adults 

(after the outbreak has already begun) equals zero. This property signifies that the 

outbreak has been handled and the crisis is now over. 

The ask-adults-go Procedure 

Note: the pseudocode for this procedure is included in section 10.5 in the appendix. 

This procedure checks if a non-quarantined adult is infected with the illness. If true, then 

the adult’s time-sick attribute is compared against the incubation-hours, for, if the former 

is greater, then unless the adult is asymptomatic, the symptoms of the illness are felt by 

the adult and the adult will go to the hospital (via the “go-to-hospital” procedure). 

However, if that adult is asymptomatic and if they have been sick for longer than the 

recovery-hours, the adult is checked for recovery (by natural means, as they are not under 

treatment under a hospital (because otherwise if they had been under treatment, they 

would have been under quarantine)). Otherwise, if the adult is asymptomatic but has not 

been sick for long enough to be checked for recovery, or if they have been infected but 

symptoms have not been apparent yet (due to being < incubation-hours), then the adult 

is programmed to go to work or wander via the “to-work-or-wander” procedure. 

All adults not in quarantine may interact with other non-quarantined adults via the 

“interact” procedure. 

If the adult is under quarantine and under treatment, the adult’s behavior is controlled by 

the “ongoing-treatment” procedure which determines if that adult qualifies for getting 

checked for recovery (and exit quarantine) or if they must continue their quarantine at the 

hospital uninterrupted. 

However, if the quarantined adult (who may or may not be infected) is not under 

treatment, and if the time-quarantined attribute is less than the incubation-hours (i.e., the 
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condition that determines if an adult can be accurately tested for the illness): the adult 

who is quarantining “just in case” is allowed to go home (“go-home” procedure) to 

quarantine. But if the testing qualification condition is met, then the adult is directed to 

the “exit-quarantine?” procedure which determines whether an adult, post-testing (if a 

test is available) can be assigned as “recovered” or “healthy” and exit quarantine. 

4.4 Decisions 

● Zoning radius is 1 (the 8 nearest patches and the calling patch itself) 

● Red zone is declared for the infection-cases at least in the 75th percentile among 

the patches, and orange zone for 50th percentile 

● As it is difficult in real life to precisely trace back to which location an infection 

occurred in, zoning is decided by aggregating the infections at the houses of those 

infected, rather than the precise location of the transmission 

● In the event an adult’s house location is in an official red zone, if the adult is a 

non-essential worker, then they cannot leave their house and are implied to “work 

from home.” 

● Interaction rate is 100% for adults within the same household 

● An adult under treatment is quarantined at the hospital, an adult who has to 

quarantine just-in-case quarantines in their assigned house 

● The simulation is terminated when the number of infected adults equal zero or 

when ticks equal 10,000, whichever comes to pass first 

4.5 Assumptions 

● The model assumed a closed population, with no fatalities due to the illness 

● Unemployment rate is assumed to be 0% with every adult having an assigned 

occupation and appropriate workplace building 

● Every adult has an assigned home 

● Essential workers and doctors are required, regardless of zoning, to go to work 

● An adult can go to any hospital for treatment, there is no accounting for health 

insurance policies which may have some adults preferring some hospitals over 

others 
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● Adults have full information about available hospital resources (i.e., unoccupied 

beds). This is not unrealistic as this can be replicated in the real world by querying 

through phone calls or web search. 

● There is no information transmission lag between governmental policy issuance 

and public compliance. Thus, every time a decision is made by the local 

authorities (regarding zoning), it is in effect and complied with immediately 

● The disease-causing pathogen does not mutate; however, an adult may be 

reinfected if the immunity-after-recovery? option is toggled off, otherwise the 

recovered adult is fully immune to the disease 

● Natural immunity to the illness is assumed to be null 

● All testing is assumed to be 100% accurate. No false positives or negatives. 

● Testing results are immediate; there is no lag between an adult taking an available 

test and knowing the result, both happen within the same tick period. 

● A non-asymptomatic infected adult will notice disease symptoms after time-sick 

≥ incubation-hour. 

● A non-asymptomatic infected adult upon noticing symptoms of disease will 

always go for testing at a hospital 

● Compliance to zoning and quarantine rules is assumed to be 100% 

● A quarantined adult can be accurately tested for the illness after time-quarantined 

≥ incubation-hours, and tested for recovery when time-quarantined ≥ recovery-

hours 

● An infected adult can recover (either naturally or via treatment) when time-sick ≥ 

recovery-hours  

5 Methodology 

The analysis was primarily conducted on a macro level, with four case studies identified 

which varied the initialization parameters outlined in the 4.1.3 section. 

The four chosen case studies (as explained further in the succeeding section) were 

partitioned by their two parent categories, with the two nested case study scenarios under 
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the same parent, based on having the same population. Thus, case 1.1 (2.1) had the same 

population as case 1.2 (2.2) respectively. 

Case analysis strategy was of three types: per case, between cases and all cases. That is, 

by considering the individual cases (case 1_1, 1_2, 2_1 and 2_2) in isolation, by 

comparing between cases in different parent categories (cases1 (case 1_1 and 1_2) vs 

cases2 (case 2_1 and 2_2)) and the entire, unfiltered dataset built from rows from all the 

four case studies respectively. 

Every one of the 256 unique simulation cases within each of the four case study scenarios 

was run three times in order to account for the randomness in the initial starting spatial 

position of all the turtle agents. A Python script was created which ran all simulation 

combinations in parallel in headless mode in Netlogo using the ipyparallel [65], 

pyNetLogo [66] and NL4Py [67] libraries. 

The number of ticks to completion (or 10,000 ticks, whichever came first) was 

documented for every one of the 3 x 256 = 768 simulations per case study scenario, and 

the ticks were then aggregated by three metrics: average, minimum and maximum, per 

unique simulation scenario. A total of 3,072 simulations were run. 

Then, for each case analysis strategy: for every aggregated ticks metric, the resultant ticks 

data was clustered via the K-Means algorithm, with the number of clusters (k) varied from 

3 to 10. This resultant dataset, case analysis strategy defined, with each clustered 

aggregated tick type, further parameterized by the number of clusters, was saved and 

passed to the next step of the analysis workflow. 

Gradient Boosted Trees algorithm was used (using the XGBoost python library [68]) on 

the above saved datasets in order to determine the feature importance scores (using the 

permutation-scoring metric on the fitted model), per cluster number, tick aggregation 

metric and case analysis strategy. 

Then, the resultant model from every iteration of the parameterization was used to fit the 

dataset using only the F most important features (scored by feature importance score), 

where F was iterated from 3 to 5 (inclusive). The resultant accuracy per F, for each 

iteration was saved. This was done via the sklearn Python library [69]. 

Thus, the analysis was parameterized on case analysis strategy, tick aggregation metric, 

number of clusters and number of important features chosen. 
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This optionality in parameterization was conducted in order to answer the following meta-

analysis questions: 

1. Considering the overwhelming amount of data when holistically studying smart 

cities, is there a way to pre-process and “bin” values without losing a significant 

amount of information? 

2. Which aggregation method should be used when analyzing the success metric 

(i.e., ticks to termination) on a macro-scale? 

3. How many features (i.e., user-defined variables) of the simulated city in crisis can 

most accurately estimate the crisis trajectory (i.e., the ticks to completion)? 

4. How does the final result change when moving from intra-city level to inter-city 

level macro analysis? 

The justifications for analysis methodology are explained in section 5.2. 

5.1 Macro Analysis 

The macro analysis was conducted through four simulation case studies. Table 1 outlines 

the constant and varying elements of each case study, the fixed and variable initialization 

values for each attribute in every case study scenario is listed in section 10.1 in the 

Appendix. 

For base population A, two key case study groups can be identified: 1) Best case: 

Resources, i.e., when the city has enough resources available at every tick to deal with 

the outbreak, and 2) Worst case: Resources, i.e., when the city has a dearth of resources 

to deal with the outbreak and there are delays due to testing and/or hospital queues. 

In another city with population B, which is calculated to be 20% more than A, the same 

best- and worst-case scenarios for resources are simulated, however, all but two of the 

properties (treatment-recovery-chance and natural-recovery-chance) in the two new 

cases are a scaled-up version of the respective properties in the prior seen cases. The 

scaling occurs in linear fashion (i.e., increasing linearly by 20%) for the city-specific 

variables, but occurs in a log-log fashion for every fixed-valued property with a (super or 

sub-linear) scaling factor as decided by the urban scaling laws as explained in section 

3.2.3. Section 10.2 in the appendix contains the scaling factors and final values used for 

the relevant properties.  
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Table 1: Table outlining the four simulation cases 

Category Subcategory 

Macro-Analysis Cases 

1. At Closed Population A 
2. At Closed Population B (> 

A) 

1.1. Best 

Case: 

Resources 

1.2. Worst 

Case: 

Resources 

2.1. Best 

Case: 

Resources 

2.2. Worst 

Case: 

Resources 

Initial 

Context 

Initialization 

City Fixed Fixed Fixed2 Fixed1 

Resource Fixed - High Fixed - Low Fixed - High1 Fixed - Low1 

Individual Fixed Fixed Fixed1 Fixed1 

Problem 

Response 

Initialization 

Outbreak Variable Variable Variable Variable 

Intervention Variable Variable Variable Variable 

 

Note that it is assumed that parent cases 1 and 2 occur in different cities within the same 

country. This assumption is important to note as the scaling laws that are the foundation 

of this analysis are 1) not valid temporally upon population growth within the same city 

(only cross-sectionally across different cities with differing populations), and 2) only 

comparable for cities within the same country. 

Furthermore, it is defined that an essential building is any building for which the scaling 

exponent, β < 1 (such as car dealer, petrol stations, etc.) and a non-essential building is 

one where β = 1 (such as post offices, pharmacies, etc.) [53], [54]. 

5.2 Decisions 

This section details the rationale for the decisions made in the analysis process. 

Why Ticks to Completion as the Success Metric? 

 

2 Not the same values as in cases 1, but scaled based on the scaling exponent and the new, increased 

population (see section 10.2 in the appendix for more details) 
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Since the final “ticks” value depends on when in the simulation the number of infected 

adults becomes null (or 10,000 ticks is reached first), it is a useful success metric for the 

crisis. Additionally, since this is a quantitative value that can be compared, in an apples-

to-apples manner, across different city contexts and it has a real-world equivalent (1 tick 

= 1 hour), it was chosen. 

Why Clustering? 

In order to reduce the number of unique ticks to completion values that the analysis 

process needed to contend with, K-means clustering was chosen to group the different 

rows according to their ticks to completion. This way, it was also possible to broadly and 

visually analyze the different clusters according to their mean. 

Number of clusters, k, was parameterized from 3 to 10 because for any k > 10, the 

resultant clustered means were not dissimilar enough to justify their inclusion and 

increased cost of complexity. 

Why Gradient Boosted Trees? 

As gradient boosted trees [70] provide high predictive accuracy, work in classification 

scenarios and with heterogeneous data types, it was identified as a useful tool for this 

scenario. Since this model’s analysis is not meant to be online, the associated 

computational expense was not a barrier to use. Moreover, since the datasets used were 

not following the traditional training-testing-cross-validation framework, and instead 

needed to be holistically and uniquely analyzed only once (and the model wouldn’t be an 

input for future classification) in order to score the feature importance, the associated risk 

of overfitting was also not a barrier to adoption. 

Why Permutation-based Feature Importance Scoring? 

Permutation-based feature scoring was selected as most other impurity-based scoring 

metrics are biased in favor of high cardinality features over features which were binary 

or otherwise had a small set of possible values [71]. 

For example, when the gains metric was used for feature scoring, although the accuracy 

of the selected features was high, features with a low number of possible values (such as 

quarantine-just-in-case?) were negatively impacted despite their actual importance in the 

model. This was not the case with permutation-based feature scoring. 
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While the selected scoring metric could have problems with highly-correlated features, 

upon calculating a correlation matrix [72], this was deemed to not be a cause of concern 

for this analysis. 

6 Results 

The case datasets were compared as follows: 

1. By case: each case scenario was studied in isolation. That is four case datasets: 

case1_1, case1_2, case2_1, case2_2 

2. Between cases: each child case scenario was aggregated with their sibling (under 

the same parent) case scenario. Resulting in two case datasets: cases1 (case1_1 

and case1_2), cases2 (case2_1 and case2_2) 

3. All Cases: all four cases were considered in one dataset 

6.1 Do Initial Conditions Matter? 

As seen in the complexity section, real cities are sensitive to initial conditions, so the 

question arises, is this trait also true when analyzing the model’s results? 

6.1.1 Analysis Initial Conditions 

The analysis data was collected along several dimensions which were also varied in order 

to identify which specific initialization along each dimension would afford the results the 

best (aggregated) accuracy. 

Number of Clusters Selection 

After grouping the resultant dataset by case, aggregation metric and number of features 

chosen (in that order), the row with the highest accuracy and the lowest number of clusters 

was chosen from each group. All 105 groups of rows calculated that number of clusters, 

k = 3, as the initialization was optimal, with an average accuracy of 86.2%. 

Aggregation Metric Selection 

When grouping the resultant (k = 3 filtered) dataset by case and aggregation metric, as 

can be seen from Table 2, max-ticks (which is the maximum of the ticks to completion 

values from all three iterations of the same unique case scenario) is able to provide a 
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minimum average accuracy, across all feature subset sizes, of 88.3% for all cases and 

feature subset sizes.  

As a side note, the improvement between the accuracy values of max-ticks versus the 

other two aggregation metrics is even more apparent when considering the minimum 

average accuracy per case comparison in the original dataset, where k is iterated from 3 

to 10. The minimum average accuracy improves from 64.7% to 75.3% when the max-

ticks metric is chosen. 

This makes logical sense as this metric can be seen as an adequate (within our limited 

scope) representation of the “worst case” scenario for a specific unique simulation case, 

answering: what is the longest period a city in crisis can take to deal with the outbreak? 

Table 2: Selection of aggregation metric which provides the best accuracy score when grouped 

by case and aggregation metric (at number of clusters = 3) 

Subcase Avg-ticks Max-ticks Min-ticks 

Case Average(Accuracy) 

All Cases 77.1 88.3 86.2 

Cases1 83.6 89.0 86.5 

Cases2 78.6 89.5 86.8 

Case1_1 82.3 90.0 89.8 

Case1_2 81.1 92.0 87.8 

Case2_1 83.1 92.7 88.4 

Case2_2 80.1 91.8 86.2 

Minimum(Avg(Accuracy) 77.1 88.3 86.2 

 

Important Features Subset Selection 

As can be seen in Figure 5 which contains the plot between the cardinality of the most 

important features set which were included in the test set (with the rest excluded) versus 

the accuracy of their model-fitted predicted values, at a) number of clusters, k=3 and b) k 

not constrained to any specific value, with both plots having max-ticks as the aggregation 

metric. 

It is easy to discern from the top plot that, for the most part, at number of clusters = 3, 

only considering the three most important features (as decided by the permutation-based 

feature importance algorithm) is enough to identify the cluster label (and thus, by proxy, 
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estimate the ticks to completion range for that K-Means clustered row) for a simulation 

scenario with an average accuracy of 92.7% and, sans the all-cases scenario, give a case 

comparison accuracy of more than 89%. 

It needs to be noted that the accuracy value improvement for every comparison scenario 

barring the all-cases scenario, where the size of the feature set > 3 is within a ~5% range 

of the chosen feature set size’s accuracy counterpart. Thus, when balancing resources, 

computational storage and time and analysis expediency, it makes logical, scientific and 

fiscal sense to choose a smaller feature set based on the above proposed methodology. 

Figure 5: Number of features tested (legend) vs avg. accuracy, grouped by case study 

comparison scenario at aggregation metric = max-ticks at… a) (top) k=3, b)(bottom) k ∈ {3-

10}.  

Any bar plots not shown in the figure have an accuracy < 80%, and were thus ignored for 

visual clarity 
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6.1.2 City and Problem Context Initial Conditions 

As seen in Figure 6 and Figure 7, on changing the problem context’s initial conditions 

(outbreak and intervention-specific scenarios resp.), the maximum ticks to termination 

changes. 

There is significant improvement in the outbreak-specific variables, wherein, simply 

toggling on the immunity-after-recovery? variable may result in ticks growing from 165 

ticks to 8495 ticks. 

 

Figure 6: Max-ticks vs Outbreak-specific variables for all cases 

Figure 7 also hints that the quarantine-just-in-case? intervention strategy is most 

effective when interaction-followup? is also enabled, with the combination being 4.15 

times more effective with respect to maximum ticks (at decision-making-lag = 100). The 

next best combination for optimizing ticks to termination is ensuring only interaction-

followup? = True.  

Interestingly, if automated contact tracing is not possible, there is no general rule of thumb 

for selecting a decision-making-lag (DML) value. As seen in the bottom plot, reducing 

the decision-making-lag does not always result in a shorter simulation completion time 

(ticks(DML = 150) < ticks(DML = 100)), which may seem counterintuitive but manually 

validates the finding that quarantine-just-in-case? is more important (ranking as the 

second most important intervention-specific variable in the all cases analysis) than 

decision-making-lag. This finding also validates the thesis’s underlying hypothesis that a 

perfect or optimal solution on paper might not be the most resource-friendly or effective 

strategy. Based on this simulation, it could be argued that more resources should be 

directed towards implementing policies to quarantine just-in-case (especially in the event 

of lack of testing resources) versus updating the zoning policy. 
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Figure 7: Maximum ticks vs intervention-specific variables for the all cases dataset 

6.2 Intervention Strategies in Cities 

As can be seen from Figure 8 and Figure 9, which contain the scores and names 

respectively of the three most important features, per case comparison type (at k=3, 

aggregation metric = max-ticks). 
 

For all case comparison scenarios, immunity-after-recovery? property is universally the 

most important. As seen from the number of features per case vs accuracy table in section 

Figure 8: Importance scores 
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10.4 in the appendix, by only including this sole feature in the clustered dataset the trained 

XGBoost model is able to, with more than 80% accuracy, predict the cluster, and thus, 

the ticks to termination for that initialization. 

The second most frequent important feature (for all cases other than case2_1 and case2_2, 

for which it is the third most important feature) is interaction-followup? which determines 

whether automated contact tracing is taking place when an adult tests positive for the 

infection. Inclusion of this feature in the testing dataset improves the accuracy of the 

prediction to more than 85% for every case.  

For the low resource cases (case1_2 and case2_2), it can be hypothesized that quarantine-

just-in-case? should rank higher than interaction-followup? based on the rationale that 

compared to needing automated contact tracing, such cities would more importantly 

prefer that adults suspected of infection be required to quarantine just-in-case and not 

wander the city while potentially spreading the illness even further into the population. A 

suspected adult is defined as someone who has gone to a hospital for testing either because 

of automated contact tracing or due to feeling symptoms of the disease (which would then 

imply that their time-sick > incubation-hours). Even if interaction-followup? is 

unavailable, for the latter case of suspicion, a policy of mandatory quarantining for 

suspected adults should prove beneficial towards controlling the crisis (and reducing the 

ticks to completion).  

Figure 9: Ranked important features per case scenario 
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However, it can be then argued that in the case with population B (>A by 20%) and 

corresponding higher interaction-chance, the relative importance score of interaction-

followup? would be higher compared to that from the corresponding case in population 

A, as the contact tracing functionality of interaction-followup? depends on the probability 

of interaction and incubation-hours of the disease and a higher probability of interaction 

would statistically beget more infected adults within the same incubation period, and if a 

specific percentage of the population is asymptomatic and/or incubation period is high, 

then an infected adult would not be made aware that they are to quarantine and would 

continue wandering the city and spreading the illness among their interaction circle. Thus, 

within two populations - after controlling for the illness - automated contact tracing 

functionality should be relatively more important and urgent to enable when the 

population (and ergo, interaction-chance) increases.  

This intuition is proven true by the model and feature importance rankings, with case1_2 

and 2_2 having quarantine-just-in-case? and interaction-followup? as the second and 

third most important features respectively, and case2_2’s interaction-followup? feature 

importance score be 16.4% of the total (almost on par with its score for quarantine-just-

in-case?), which is more than that for case1_2’s (14.5%, a comparatively lower score 

compared to its 18.7% score for quarantine-just-in-case?). 

On that note, while available-tests-per-tick ranks high in the holistic cases (i.e., cases1, 

cases2, and all cases), it is not the most important feature. This implies that while 

resources to manage the crisis are a key element of any crisis management strategy, they 

are not the most pressing crisis management technique, with automated contact tracing 

(interaction-following?) and understanding of the disease dynamics (immunity-after-

recovery?) being more important. 

Interestingly enough, decision-making-lag, which theoretically should have been an 

important metric that affected the final ticks to termination, did not rank in the top 5 most 

important features for any of the holistic cases but did rank fourth in the individual cases. 

However, even for the individual cases, the inclusion of this feature in the important 

features columns in the testing set did not result in any significant improvement (< 0.8%) 

in the final model prediction accuracy. 

Note: Importance scores and rankings for all features by case comparison type are 

included in section 10.3 in the appendix. 
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6.3 Influence of Hyperlocal Parameters on Crisis 
Impact 

In order to better understand the dynamics of each case on a micro-scale, the best and 

worst initializations in each case were chosen (based on, respectively, the lowest and 

highest ticks to completion values, wherein ticks from each of the three iterations per 

unique case were averaged), with the constraint that the initializations for all best cases 

and that for all worst cases be the same. The two chosen initializations can be seen in the 

interface screenshots. 

6.3.1 Best Case Comparison 

On a micro-scale, it can be hypothesized that on average, infected adults within cities, 

which have limited testing resources, will have time-sick ≈ time-untreated, as the lack of 

testing resources will ensure that not many people recover via treatment, and instead will 

have to depend on their immune system for natural recovery (i.e. natural-recovery-

chance).  

Furthermore, if quarantine-just-in-case? is true then the average time under quarantine 

for all adults should be more than the average time-sick for infected adults (this value 

disparity should also worsen when interaction-followup? is true). However, for cities 

which don’t have to worry about testing resources, for ticks > incubation-hours: on 

average, it can be rationalized as most of the recovery will happen via medical treatment, 

that time-sick > time-untreated and time-quarantined ≤ incubation-hours.  

This instinct is proven true when comparing the best-case scenario “adults” plot as well 

as the “Total Treatment” and “Total Recovered” values for Case1_1 (2_1) with that of 

Case1_2 (2_2) in Figure 10 (Figure 12) and Figure 11 (Figure 13).   

Furthermore, the epidemic curve (in which the x-axis time-step is parameterized by the 

incubation-hours) also subtly changes. In Case1_1 (or Case2_1), the epidemic curve 

implies a propagated source pattern of spread, which occurs when a pathogen is spread 

from one susceptible person to another, and the peaks, separated by one incubation period, 

get successively higher and higher until the infection is controlled or the number of 

susceptible persons decrease [73]. Note: in all the Epidemic Curve plots, 1 time step = 

(incubation-hours / 4). However, in Case1_2 (or Case2_2) the epidemic curve’s pattern 

of spread is more visually similar to that of a point source with secondary transmission 

(or index case with limited spread). This is when one person is able to infect other 
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susceptible people, starting the outbreak, but control measures are able to reduce the 

number of secondary transmissions. This helps validate the efficacy of the selected 

intervention strategies. This curve, combined with the fact that the quarantine-just-in-

case? control option was toggled on and that the majority of the infected adults recovered 

by natural means in both cases (see “Total Recovered” and “Total Treatment”), proves 

that in cases with low testing resources, it is possible to control the outbreak by 

economically feasible control measures. Counterintuitively, the total number of infected 

adults in the latter low resource cases is comparable to (or even better than) their high 

resources counterparts. 

 

Figure 10: Best case scenario for Case 1_1 group 
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Figure 11: Best case scenario for Case 1_2 group 

 

Figure 12: Best case scenario for Case 2_1 group 
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Figure 13: Best case scenario for Case 2_2 group 

6.3.2 Worst Case Comparison 

In all the worst-case scenarios, the outbreak never ends. However, by capping the results 

at 30,000 ticks, it is possible to draw some conclusions about the overall dynamics of the 

crisis.  

Firstly, it can be hypothesized that cities with higher interaction scores and infection rates 

(such as both cases under population B) will have a higher total recovery to total infection 

ratio than their population A counterparts. Moreover, it can be rationalized that cities with 

high testing resources (such as case1_1 and case2_1) will have an overall higher total 

recovery value as their residents are not solely dependent on natural recovery (and 

quarantining just-in-case is disabled in all worst cases). This rationalization is validated 

by the simulation, with cases 2_1 > 1_1 > 2_2 > 1_2 with resp. ratios of 0.995, 0.9946, 

0.9926, 0.9912. Section 10.6 in the appendix can be referred to for the initialization 

information and interface results. 
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Figure 14 contains the % infection - % treatment plots for each case wherein the color of 

each point on the plots is parameterized by the tick it occurred on, during the 30,000 ticks 

run. 

It is visually evident that compared to their sibling counterparts, cases 1_1 and 2_1 are 

spread more on the vertical axis, which makes logical sense as the abundant testing 

resources in both cases ensures that infected adults can be treated without having to wait 

in the testing (or hospital) queues. 

Moreover, it is interesting to note that in all four cases, there occurs some kind of 

convergence, which can be visually identified by the plot location that the points, 

colored within the red and pink spectrum, are more abundant around. For cases 1_1 and 

1_2, this convergence happens when % infected is around the [0.8, 1] range, and for 

cases 2_1 and 2_2 around the [0.85, 1] range. Thus, it can be hypothesized from these 

results that a city’s hyperlocal parameters significantly affect the dynamics of the crisis 

trajectory. 

The peak of the percentage of treated adults in all four cases occurs early in cases 1_2 

and 2_2, with the latter converging points occurring within the lower right quarter of the 

Figure 14: Worst Case Infection-Treatment Plots parameterized by time 
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plots. This could be because during the early days of the outbreak, there are existing 

reserves of testing resources which would account for the initially high treatment 

percentages. This would imply that a city’s existing reserves of testing resources may 

help alter the crisis initial trajectory significantly, giving the city the opportunity to 

enforce other intervention strategies. 

7 Discussion 

As seen from the results, much like real-world cities, there exists a link between the 

simulated city and crisis’s initial conditions, the intervention strategies used, and the 

impact and duration of the crisis trajectory. 

Firstly, a city and crisis’s initial conditions affect the optimal intervention strategy, as 

seen in section 6.2. This result is then compounded, by the second result that initial 

conditions influence the duration and impact of the crisis trajectory, as seen in sections 

6.1.2 and 6.3 respectively. Finally, this feedback trifecta is completed by the results from  

Figure 7 (in section 6.1.2) and the worst-case and best-case comparisons in section 6.3, 

which show that intervention strategies (after controlling for initial conditions) influence 

the duration and impact of the crisis trajectory respectively. The worst-case and best-case 

comparison in particular have the same initial conditions applied to the same four city 

contexts, but a difference in the intervention strategy makes the crisis duration go from a 

small finite duration (best-case) to a potentially never-ending disease outbreak (in the 

worst-case). 

Since the dynamics of the four simulated cities are, for the current scope and purpose, 

similar to that of a real city and all four of the simulated cities’ motivating problem (a 

disease outbreak) is a symptom of rapid urbanization [74], much like most cities which 

require the smart city transformation, this section first explores if improving the 

healthcare system of each of the four cities and transforming it into “smart” healthcare 

would improve the crisis trajectory. Then this section posits the implications of the 

previous result on a smart city design for each of the four cities, and what that would 

mean for a one-size-fits-all generalized smart city planning solution. Finally, this section 

concludes with possible threats to validity. 
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7.1 Implications 

There are several direct consequences from the model, however, this section deals with 

the three key implications, born of the results, which are the most applicable to the field 

of smart cities and smart city planning. The first section explains how the simulated cities 

can be integrated with smart technologies and frameworks, which is then followed by a 

section which explores the planning of a smart healthcare system for each of the four 

simulated cities. The final section answers the motivating question of this thesis: should 

there be a one-size-fits-all smart city solution? 

7.1.1 Inherent Source of Smartness in Simulated Cities 

The four simulated cities have some inherent sources of smartness, by virtue of automated 

contact tracing, real time notifications (which is why there is no lag in zoning policy 

compliance) and holistic information transparency, resource sharing and open data. 

Firstly, as seen in the above results, automated contact tracing (and implicitly, real-time 

notifications to residents) ranks as the most important intervention-specific feature in the 

most general scenario: the all cases dataset. These two features can be implemented as 

subprocedures through an urban operating system (UrbanOS). An UrbanOS enables 

dynamic governmental decision-making as well as acts as a single-source-of-truth for 

residents to interact with their city. For example, Ignatieff, whose UrbanOS concept is 

built on the premise of urban ethics and an implicit understanding that a city’s operating 

system is owned by everyone and its resilience highly depends on the success of the city’s 

leadership [15], defines the key institutional elements of an UrbanOS as enabling: 

“pathways to documentation for all new arrivals; equality before the law and fair policing; 

interethnic coalition building in governance; intercommunal fairness in the distribution 

of contracts and patronage; open real estate ladders; and open job ladders.” On the other 

hand, authors [2], [75], [76] have also defined UrbanOS in terms of consolidating all the 

city’s ICT, by - to paraphrase Komninos et al. - integrating all the network infrastructure, 

sensors and other hardware devices, software - and equally important - people across the 

different domains and urban systems. By integrating citizens as a stakeholder (via 

participatory governance or other means) back into smart city planning, the execution of 

smart cities moves more towards the motivating ideal. 
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Secondly, despite there not being a clear consensus on smart city definitions or general 

frameworks, there are literature narratives which the field generally agrees upon as best 

practices, with open data as a key area of unanimous assent. 

Data and APIs which are open, and secure, ensure that residents are able to access and 

build upon their own information in a democratic fashion. The above model was only 

possible due to the underlying assumption of resource sharing, open data and hospital 

information transparency. If this assumption was not made, then the crisis trajectory 

would be harder to predict, control and optimize. The UrbanOS equivalent in the model 

(i.e., matchmaking adults with hospitals with available beds and automated contact 

tracing) is only possible with the implicit understanding that all data is accessible, open 

and secure. By ensuring open-sourced and freely available datasets and APIs, innovation 

is also improved as residents can then build products leveraging these inputs to better 

their circumstances. 

As gleaned in a 2015 paper, Yin et al. categorizes available smart city architecture as 1) 

data-centric, and 2) multidisciplinary smart city. The former category recognizes that data 

is the foundation for all future realizations of smart cities, and that almost all available 

literature on smart city architecture identifies data sensing and data transmission as the 

smart city’s fundamental starting point. It is important to understand that the reason data 

is king when talking about smart cities is because the key challenge within smart cities is 

understanding the interactions between the city and its people [77]; and 

programmatically, a city can be understood as its sensed data. Which is also why almost 

all proposed smart city infrastructures include the use of sensors [22]. 

Moreover, the latter multidisciplinary category, in the paper by Yin et al., highlights the 

smart city as a systematic concept, wherein, ICT solutions not only help solve 

multidisciplinary problems, but it is also vital to use multidisciplinary knowledge to 

understand and solve problems in the urban domain [22]. Relatedly, many papers further 

validate the model’s assumption by rationalizing that since ICT is used to facilitate the 

operation, maintenance and strategy of smart cities, and, despite strong corporate interests 

within this field, that it is vital that these ICT systems (and related data) remain open-

access [3], [12], [75]. 

Tangentially, capitalist interest should be minimized as much as possible - on both the 

smart city branding and the overall design. The former because corporations have a 

conflict of interest when defining smart cities, due to wanting to play to their company’s 
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strengths and thus are incentivized to position themselves as a thought leader in the field 

for better Search-Engine Optimization and brand loyalty. On the other hand, corporate 

influences, due to their proprietary processes and technologies, make it difficult to ensure 

that the datasets and APIs are open-sourced and freely accessible, thus it is preferable to 

not heavily depend on corporations for smart city design. This view on the corporate 

smart city model was also identified as a major theme in a scientometric review of more 

than 7,800 smart city papers which were published over a span of three decades [12]. 

7.1.2 Is a Smart Healthcare Transformation Possible? 

According to the previous section, the four simulated cities have the same level of 

inherent smartness. By further assuming that all four cities also have the same socio-

political and economic climate as well as the same goals, resident demographics and 

problems in the non-healthcare sectors, the question arises: would enabling “smart 

healthcare” in these cities help improve their crisis trajectories (with respect to crisis 

impact and duration), based on the known results on their individual intervention strategy 

importance? 

Firstly, as can be seen by the feature importance ranking results, for city scenarios with 

low resources (case1_2 and case 2_2), control measures (such as, quarantining just-in-

case) rank higher than research and innovation measures (such as studying the disease 

to learn more about its average recovery time, which would then determine the 

minimum quarantining period an adult under treatment would have to wait before 

taking a test). Secondly, as seen in the 6.3.2 section, for such cities, the initial days of 

the crisis are especially vital as at that time, there are existing reserves of testing 

resources which would allow for treating, by percentage, more adults than would be 

possible later in the crisis trajectory. By treating more adults earlier rather than later, the 

flattened infection curve may allow the city the opportunity to enforce other 

intervention strategies. Thirdly, it is important to note that control measures without 

social security as a backup, especially earlier on in the outbreak lifecycle (when the 

public may not even recognize it as a problem – as seen by the research on inertia in 

public opinion in section 3.1.1) may worsen public trust and quality of life, the ensuing 

spillover costs may include unrest, noncompliance with policies and even crime. 

These three observations imply that a smart healthcare design for cities with low testing 

resources would have to prioritize early detection and treatment, smart community 
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measures (with a focus on engendering community trust and awareness) and 

strengthening the social security measures so that strict policies (such as mandatory 

quarantining just in case) can be enforced without negatively affecting an adult’s quality 

of life, mental and social wellbeing, or livelihood. Furthermore, control measures would 

imply the need for resource transparency, open data and investing in ICT for developing 

applications that offer real-time notifications about automated contact tracing, zoning 

policies and infection alerts by location. In such cities, it is inevitable that, due to the need 

for stricter control measures, there will be a negative effect on businesses, management 

and processes within the city. Thus, a smart healthcare framework that works on reducing 

the total time in crisis by early detection and treatment of the illness, as well as strict 

control measures, would be recommended. 

In contrast, for cities which don’t have to worry about limited resources, a healthcare 

system which prioritizes data sensing and collection, as well as research on the disease 

would yield a better outcome; with recovery-hours, interaction-followup? and decision-

making-lag generally ranking as relatively more important than the quarantine just-in-

case strategy. This implies that such cities would prioritize an ICT architecture which 

makes use of real-time data from sensors and hospitals. In such cities, it would be 

important that policies (zoning and otherwise) reflect the latest research on the disease, 

as this way it would be possible to reduce the scale of impact on the everyday processes, 

management and businesses within the cities. In the worst-case scenario in such cities, 

the cyclically linked % infected and % treated plots would vary often and by a significant 

degree. Thus, a healthcare system which first focuses on analyzing the disease and 

finetuning policies to best reduce the impact on everyday adults, while flattening the 

infection curve would be optimal. 

Thus, even when abstracted, it can be seen that even for such simple simulations of cities, 

the suggested smart healthcare strategy changes. 

7.1.3 Should There Be A One-Size-Fits-All Smart City Solution? 

As we have seen above, even for the simplified model, the initial conditions (with respect 

to the analysis process, problem and city contexts) influence the crisis trajectory in an 

unpredictable way. Even after fixing the analysis’s initial conditions: not at all initial 

condition variables (AKA features) are created equal, with a select number of features 

being more important than others in influencing the crisis’s completion time. But, even 
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these so-called “analyzable” important features lists change, based on the scope of the 

analysis (any two selected case comparison scenarios have feature lists with non-

overlapping rankings). Furthermore, as seen in best- and worst-case study, even with the 

problem’s initial conditions fixed, a city’s hyperlocal parameters can disproportionately 

affect not only the crisis duration but also the crisis’s impact in an unpredictable manner. 

To further add to the analysis anarchy, the effective intervention strategies may be 

different based on the unique city and problem context, and may not be intuitive.  

Due to the complex nature of the city and its agents, the inherent feedback loops and 

emergence born from the actions of the actors interacting with their environment, it is 

nigh impossible to predict a general solution to a complex dynamical systems equation 

without considering the specifics involved, for the city and problem under question - 

something which was explained by the literature review and validated by the designed 

model. If a simple model with understandable behavioral rules is so difficult to analyze, 

predict and generalize, despite having an omniscient bird’s eye view with the ability to 

see the effects of every action (pulled from a finite set of possible actions) on the future 

city (with ticks), then what about the scaled-up actuality that is a real-life city with its 

three areas of unknowability? 

This instinct is validated by the previous section on designing the priorities of a smart 

healthcare system for the four simulated cities. The previous section shows that even 

though the four cities have more features in common than not, due to their few differing 

initial conditions, their healthcare plans are different. If such minimal diversity in so few 

dimensions gives rise to so much variance within the plan for smart healthcare, which is 

a subcomponent of smart city [60], [78], then what about the breadth of diversity found 

within real cities along multiple dimensions? It wouldn’t be incorrect to then hypothesize  

that smart city planning would not benefit from a generalized, one-size-fits-all approach, 

based on the facts that (smart) cities have subcomponents which co-evolve competitively 

and interact nonlinearly (as seen in section 3.1.1) and diversity within cities will only 

increase in the future [15]. 

So, where do we go from here? 

7.1.4 Smart City Planning, Reimagined 

Firstly, taking a cue from existing literature, while many authors agree that smart cities 

should adapt their implementation plan to their city’s vision and goals, and that the 
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motivation, design, and execution would look different in different smart cities [3], it is 

important to note that the priorities and the core understanding of how a smart city works 

also varies with the specific city in question [2]. Often strategies or interventions that 

work in a specific city might not work in another city’s context due to the inherent 

multilevel nature of cities, as they are systems of systems of systems and therefore have 

hard-to-predict behavior. However, a possible method to test an intervention’s probable 

success in a new context is via simulation and agent-based modeling tools [8]. This thesis 

recommends the use of non-traditional tools which don’t only depend on gaussian 

statistics as power laws within cities muddy the veracity, and results of, the analysis 

process. 

Komninos et al. reiterate these sentiments in their 2019 paper, defining smart city 

planning as “a process that highlights the uniqueness of each city trajectory, is based on 

rapidly changing digital technologies, and is ready to value opportunities offered over 

time rather than copycat planning, locked-in optimal models and one-size-fits-all 

solutions.” and confirms that “transferring growth models from one region to another is 

questionable as there is no “optimal” development model, and new successful trajectories 

and developmental paths emerge spontaneously and unexpectedly in space” (Komninos 

et al., 2019). Thus, it is important to lean on non-traditional tools of analysis (such as 

agent-based modeling and fractals) when dealing with such systems. 

Secondly, it is also recommended to leverage a hyperlocal and hybrid approach for 

analysis, which leverages both bottom-up and top-down strategies at different levels. To 

begin with, using a bottom-up strategy, Johnson’s 2012 paper leverages the dynamic 

nature of the methodology for building formal vocabulary proposed by Gould et al. which 

argues that such a process should be guided by ‘The Principle of Usefulness’ [79] wherein 

only terms which are useful for a particular city and its strategic policies should be 

included, with the adding of new terms allowed as the city and its goals evolve. Such a 

formal vocabulary could, theoretically, grow forever [8]. Once important hyperlocal 

features have been identified by this principle, a top-down strategy can be used to further 

qualify key dimensions for later online analysis - much like the analysis methodology 

followed in this thesis, wherein data was collected via simulation along multiple and 

varying dimensions, and then important features were ranked and selected by a machine 

learning model. 
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Thirdly, while the smart city planning should be customized to the specific goals of the 

city and its residents, it’s important to recognize that, based on the trends within the 

literature, all city planning must be directed towards facilitating sustainability. 

7.2 Threats to Validity 

Despite the knowledge that models such as these are sensitive to initial conditions (for 

both analysis methodology and possible end results), due to resource constraints, it was 

necessary to limit the scope of the analysis in a few dimensions, such as setting the 

number of maximum ticks to 10,000, repeating each unique simulation only three times, 

only dealing with a closed population and having a finite set of initial conditions. Thus, 

it could be argued that, due to the feedback loops, emergence and inherent nonlinear 

dynamics within the model, the results may drastically change were the scope to expand. 

However, considering that this simple model was not meant to be a one-to-one accurate 

simulation of outbreak dynamics, and was instead meant to be a barometer for proving 

that if such simple model - with so much of its complexity smoothened, could demonstrate 

sensitivity to initial conditions, unpredictable crisis trajectories, and show that a one-size-

fits-all intervention strategy would not apply within even the model’s (comparatively) 

simplistic constraints - then how could these properties not be true for a city, which is 

much more complex system, with scaled-up drivers of growth and innovation, and 

heterogenous in terms of types of agents as well as decision-making priorities? In this 

sense, the simplicity of the model acts as a tool for putting into perspective the magnitude 

of the difference. 

Additionally, as seen from the literature review section, it is nigh impossible to predict 

which initial conditions should be chosen and/or would prove interesting in terms of 

dynamics and end states. Thus, while theoretically, studying tipping points could prove 

more insightful than the initializations chosen above, such tipping points are hard to 

forecast without simulating every single combination possible and analyzing phase plots 

and creating bifurcation diagrams. Thus, creating a chicken-or-an-egg paradox. 

The designed model does not include the impact of external sources and drivers of 

innovation, such as outside funding, international opportunities and programs for 

enrichment and development, etc. However, while this exclusion makes the model 

context more isolated and sandboxed, and could greatly reduce the ticks to completion 

data, it is important to note that such drivers of innovation (and complexity) can never be 
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taken for granted and depends on an individual city’s ability to apply and positively 

leverage such opportunities. But, this exclusion is even more important when comparing 

across different cities which have different socioeconomic and political climates (and 

thus, different access levels to such opportunities) and could also influence the results of 

a cross-sectional analysis. 

8 Conclusion 

The thesis began by exploring the foundational elements of the smart city concept 

according to the existing literature. Following this attempt at overviewing the state of the 

art within the field, this report took a step back to fully examine the city from three 

interlinked perspectives, the: ecological, complexity science and organizational. This 

effort to shed light on the backend engines of city science was done in order to then 

identify hints for novel methodologies to rethink, re-contextualize and reframe the smart 

city concept. The succeeding section then explained the design and rationale for an agent-

based-model which simulated a disease outbreak in a closed population parameterized by 

user-defined problem and city context initial conditions, with sections on an analysis 

methodology and results following it. The penultimate part then discussed the potential 

implications and consequences of this model’s results. 

This thesis contains four key contributions, which are: 1) a theoretical review of the state 

of the art in smart city planning, 2) an agent-based model which highlighted that initial 

conditions affect optimal intervention strategies and the crisis trajectory (and that the 

three are in fact linked), 3) a case-study led hypothesis, validated by a qualitative literature 

review, which posits that a one-size-fits-all generalized framework is not optimal when 

planning for smart cities and provides some recommendations for a new style of planning, 

and lastly, 4) a key meta-result, this thesis also explains and uses an analysis methodology 

for holistic and quantitative identification of important features in (smart) city planning 

models. 
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8.1 Future Work 

The current model does not fully study the impact of the outbreak on the non-essential 

businesses, this economic analysis could also help shed light on the consequences of 

zoning. 

Future research could range from focusing on expanding the dimensions in the model, 

such as changing the population from closed to semi-closed to open, to implementing 

new outbreak control measures, such as mask mandates.  

If the population is not closed, in order to control fatalities and add realism to the model, 

a vaccine distribution strategy should also be implemented.  

Research should also be conducted on the impact of citizen decision-making on the 

results, for example, by using a stochastic distribution for psychological tendencies to go 

to the hospital or voluntary mask wearing, and analyzing how the end results then change. 

In terms of control measures, it would be interesting to understand the impact on the 

results post-integration of a participatory governance scheme for automated decision-

making in the urban operating system. 

While it is known that such models and analysis methods are not an exact science, and 

some complexity is lost, it is important to consider a city in a holistic way that respects 

its complexity. For, while such an analysis might not be the most accurate or 

comprehensive answer, it is a starting point of analysis where previously there had been 

none. By also leveraging external opportunities for growth and development, and 

including sustainability as a planning goal, evolutionary planning strategies and citizen 

participation into the process, analysis like this will move from the sandbox to the real 

world. 

“What is at stake here is more than just keeping the show on the road. When we achieve 

the fragile common good called community, when the real economy of a city begins to 

approximate, however imperfectly, the moral economy, we achieve an important victory 

in relationship to globalization itself. We cease to feel that we are the prisoner of forces 

stronger than ourselves. We cease to feel like pawns in someone else's game. To have a 

moral community in a city is to recover sovereignty and mastery. It is to have the sense 

that we can work together to shape our common life to humane, not inhuman ends.” 

- The Moral Operating System of a Global City [15]  
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10 Appendix 

10.1 Combinations for Simulated Initializations 

● Case 1.1: Best Case - Resources 
● Fixed: city and individual specific initialization 

○ total-doctors = 10 

○ total-essential-workers = 30 

○ total-non-essential-workers = 70 

○ num-hospitals = 4 

○ num-essential-buildings = 10 

○ num-non-essential-buildings = 15 

○ num-houses = 5 

○ interaction-rate = 8 

○ infection-chance = 8 

○ treatment-recovery-chance = 6 

○ natural-recovery-chance = 3 

● Fixed - High: city resource specific variables 

○ available-tests-per-tick = 100 

○ beds-per-hospital = 100 

● Variable: problem-specific variables 

○ incubation-hours-options = {48, 50} 

○ recovery-hours-options = {50, 100} 

○ immunity-after-recovery? =  {true, false} 

○ asymptomatic-chance-options = {0, 3} 

● Variable: intervention-specific variables 

○ decision-making-lag-options = {50, 100, 150, 200} 

○ interaction-followup? = {true, false} 

○ quarantine-just-in-case? = {true, false} 

● Case 1.2: Worst Case - Resources 
● Fixed: city and individual specific initialization 

○ total-doctors = 10 

○ total-essential-workers = 30 

○ total-non-essential-workers = 70 

○ num-hospitals = 4 

○ num-essential-buildings = 10 

○ num-non-essential-buildings = 15 

○ num-houses = 5 

○ interaction-rate = 8 

○ infection-chance = 8 

○ treatment-recovery-chance = 6 

○ natural-recovery-chance = 3 

● Fixed - Low: city resource specific variables 

○ available-tests-per-tick = 1 

○ beds-per-hospital = 10 

● Variable: problem-specific variables 
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○ incubation-hours-options = {48, 50} 

○ recovery-hours-options = {50, 100} 

○ immunity-after-recovery? =  {true, false} 

○ asymptomatic-chance-options = {0, 3} 

● Variable: intervention-specific variables 

○ decision-making-lag-options = {50, 100, 150, 200} 

○ interaction-followup? = {true, false} 

○ quarantine-just-in-case? = {true, false} 

● Case 2.2: Best Case - Resources 
● Fixed: city and individual specific initialization 

a. total-doctors = 12 

b. total-essential-workers = 36 

c. total-non-essential-workers = 84 

d. num-hospitals = 6 

e. num-essential-buildings = 12 

f. num-non-essential-buildings = 18 

g. num-houses = 5 

h. interaction-rate = 10 

i. infection-chance = 10 

j. treatment-recovery-chance = 6 

k. natural-recovery-chance = 3 

● Fixed - High: city resource specific variables 

a. available-tests-per-tick = 124 

b. beds-per-hospital = 120 

● Variable: problem-specific variables 

a. incubation-hours-options = {48, 50} 

b. recovery-hours-options = {50, 100} 

c. immunity-after-recovery? =  {true, false} 

d. asymptomatic-chance-options = {0, 3} 

● Variable: intervention-specific variables 

a. decision-making-lag-options = {50, 100, 150, 200} 

b. interaction-followup? = {true, false} 

c. quarantine-just-in-case? = {true, false} 

● Case 2.2: Worst Case - Resources 
● Fixed: city and individual specific initialization 

a. total-doctors = 12 

b. total-essential-workers = 36 

c. total-non-essential-workers = 84 

d. num-hospitals = 6 

e. num-essential-buildings = 12 

f. num-non-essential-buildings = 18 

g. num-houses = 5 

h. interaction-rate = 10 

i. infection-chance = 10 

j. treatment-recovery-chance = 6 

k. natural-recovery-chance = 3 

● Fixed - Low: city resource specific variables 

a. available-tests-per-tick = 2 

b. beds-per-hospital = 12 
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● Variable: problem-specific variables 

a. incubation-hours-options = {48, 50} 

b. recovery-hours-options = {50, 100} 

c. immunity-after-recovery? =  {true, false} 

d. asymptomatic-chance-options = {0, 3} 

● Variable: intervention-specific variables 

a. decision-making-lag-options = {50, 100, 150, 200} 

b. interaction-followup? = {true, false} 

c. quarantine-just-in-case? = {true, false}  
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10.2 Macro-Analysis Scaling 

Category 
Scaling 

Exponent Notes 

Macro-Analysis Cases 

Best Case: Resources Worst Case: Resources 

1.1. At 
Population A 

2.1. At 
Population B 

1.2. At 
Population A 

2.2. At 
Population B 

total population 1.2 Linear scale 110 132 110 132 

num-doctors 1.2 

Linear scale. In 
reality, this value 
should be 1.15 on a 
log-log scale [53] but 
since doctors don't 
affect the end ticks 
dynamics in a 
medical-function 
sense, this is 
assumed linear 10 12 10 12 

num-essential-
workers 1.2 Linear scale 30 36 30 36 

num-non-essential-
workers 1.2 Linear scale 70 84 70 84 

num-houses β  = 1 Log-log scale [54] 5 6 5 6 

num-essential-
buildings β = 0.85 Log-log scale [53] 10 12 10 12 

num-non-essential-
buildings β  = 1 Log-log scale [53] 15 18 15 18 

num-hospitals β  = 1 Log-log scale [53] 4 5 4 5 

interaction-rate β = 1.15 Log-log scale [80] 8 10 8 10 

infection-chance β = 1.15 Log-log scale [54] 8 10 8 10 

beds-per-hospital β  = 1 Log-log scale [53] 100 120 10 12 

available-tests-per-
tick β = 1.15 

Log-log scale. 
Assumed so because 
GDP and innovation 
scale superlinearly on 
a log-log scale [54], 
which would 
theoretically also 
scale this value 
superlinearly 100 124 1 2 
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10.3 Feature Importance  

10.3.1  Importance Scores per Case Comparison 

Feature\Case 
Type 

cases1 cases2 case1_1 case1_2 case2_1 case2_2 all_cases 

immunity-
after-

recovery? 

0.346 0.399 0.362 0.344 0.364 0.382 0.373 

interaction-
followup? 

0.141 0.120 0.168 0.109 0.128 0.131 0.139 

quarantine-
just-in-case? 

0.092 0.075 0.049 0.139 0.025 0.135 0.086 

recovery-
hours 

0.074 0.091 0.115 0.031 0.141 0.039 0.083 

decision-
making-lag 

0.061 0.052 0.071 0.049 0.045 0.054 0.059 

available-
tests 

0.089 0.087 0.000 0.000 0.000 0.000 0.094 

asymptomatic
-chance 

0.043 0.043 0.039 0.036 0.027 0.029 0.040 

incubation-
hours 

0.039 0.032 0.045 0.034 0.024 0.028 0.041 

total-doctors 0.000 0.000 0.000 0.000 0.000 0.000 0.017 

10.3.2  Rankings per Case Comparison 

Feature\Case Type cases1 cases2 case1_1 case1_2 case2_1 case2_2 all_cases 

immunity-after-
recovery? 

1 1 1 1 1 1 1 

interaction-followup? 2 2 2 3 3 3 2 

quarantine-just-in-case? 3 5 5 2 6 2 4 

available-tests 4 4 8 8 8 8 3 

recovery-hours 5 3 3 7 2 5 5 

decision-making-lag 6 6 4 4 4 4 6 

asymptomatic-chance 7 7 7 5 5 6 8 
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incubation-hours 8 8 6 6 7 7 7 

total-doctors 9 9 9 9 9 9 9 

10.4 Number of Features per Case vs Accuracy 
(max-ticks, k=3) 

# 

Features 

Avg. Accuracy 

all cases cases1 cases2 case1_1 case1_2 case2_1 case2_2 

1 83.9 82.4 85.5 80.9 84.0 84.8 85.2 

2 85.3 86.3 85.5 87.5 87.5 87.1 85.5 

3 85.8 89.8 90.6 93.0 96.1 97.3 96.1 

4 91.2 91.8 90.6 93.8 96.1 97.3 96.1 

5 95.1 94.5 95.1 94.9 96.5 97.3 96.1 
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10.5 Pseudo-Code - ask-adults-go 

procedure ask-adults-go: 

for every adult, a: 

{ 

    if !("quarantined" in a.state): 

    { 

        if ("infected" in a.state): 

        {             

            #  a is infected and not assigned to a hospital and not 

under treatment with a hospital (Which is a given as if they were 

infected and assigned to a hospital => the adult would be in 

quarantine) 

         

            if (a.time-sick > incubation-hours) 

            { 

                if !(a.asymptomatic?): 

                { 

                # infected, symptoms are showing as a has been sick 

for longer than incubation-hours => go to hospital 

 

                let res (go-to-hospital self) 

                 

                } 

                else: 

                { 

                    # infected, symptoms should show but adult is 

asymptomatic, so they don't notice they are infected 

 

                    if((a.time-sick > recovery-hours) and (is-

recovered? self)) 

                    { 

                        assign-recovered self 

                    } 

 

                    to-work-or-wander self 

                 

                } 

          } 

          else: 

          { 

            # infected but symptoms are not apparent yet 
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            to-work-or-wander self 

          } 

        } 

        else: 

        { 

          to-work-or-wander self 

        } 

 

        interact self 

    } 

    else: 

    { 

 

        # adult is in quarantine 

 

        if ("treatment" in a.state)): 

        { 

            # quarantined and under treatment (both under a hospital)  

=> assumption: member? "infected" state = true (a is/was infected) 

            ongoing-treatment self 

        } 

        { 

            # quarantined adult (who may or may not be infected) is 

not under treatment nor assigned to a hospital 

 

            if (a.time-quarantined < incubation-hours): 

            { 

                # remain in quarantine since testing cannot be done 

until time-quarantined > incubation-hours 

                go-home self 

            } 

            else: 

            { 

                # check if adult can exit quarantine 

                if(exit-quarantine? self): 

                { 

                    unassign-quarantine self 

                    starting-positions self 

 

                }    

            } 
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        } 

    } 

      assign-color self 

} 
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10.6 Worst-Case Scenario Plots 

 

Figure 15: Worst case scenario for Case 1_1 group 

 

Figure 16: Worst case scenario for Case 1_2 group 
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Figure 17: Worst case scenario for Case 2_1 group 

 

Figure 18: Worst case scenario for Case 2_2 group 
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