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Abstract 

This dissertation was written as a part of the MSc in ICT Systems at the International 

Hellenic University. 

Software companies and software engineers have always tried to find ways to improve 

the quality of their projects. However, assessing the quality of a piece of software is not 

something trivial. There are many parameters that can affect that, and most of the time it 

is very hard to find objective ways to measure the quality of software. 

In this dissertation, I will provide a methodology that aims to assess software using auto-

matically extracted software metrics and community based metrics, which will be GitHub 

Stars and Forks. This way we can use both static metrics and dynamic ones, in order to 

try and predict the reusability of a new piece of software. 

I would like to thank my supervisor, Christos Tjortjis, for guiding me through this Dis-

sertation. 
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1 Introduction 

Software applications are an increasingly important part in our everyday lives. We use 

many applications throughout our day, even if we do not notice it. However, designing a 

piece of software is still a very complex and lengthy process. Software engineers are al-

ways looking for ways to simplify and reduce the required time of designing and imple-

menting an application. One of the most important aspects of software, is their reusability. 

Designing a software with focus towards its reusability, is definitely more difficult and 

adds an extra overhead, but pays off in the long run. We can see this from the evolution 

of programming through the years, with the heavy shift toward object-oriented program-

ming which tends to be more reusable when designed properly. 

Most of the research throughout the years has focused on trying to assess software quality 

through static metrics. Using these metrics, software engineers can monitor the quality of 

their projects throughout their development and try to keep within some specific thresh-

olds. However, these thresholds are usually set in a somewhat arbitrary fashion, that usu-

ally comes from previous knowledge from other projects. 

With the addition of open source software, we suddenly have a new and highly diverse 

pool of software projects. These can vary in size and quality. It also gives us an invaluable 

tool in assessing these, which is community perception. Instead of focusing on static met-

rics we can try to measure the quality in terms of how it is perceived by the users of the 

online community and how often it is actually reused by them. 

1.1 Dissertation Structure 

This Dissertation is split in the following sections: 

1.1.1 Background 

This chapter will contain a review of the relative literature of the recent years. This will 

give an overview of the current state of the art in order to allow the reader to reflect how 

the work of this Dissertation compares to similar work by other researchers. 
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1.1.2 Software Metrics 

This chapter will give all the details about the various metrics used. This will contain both 

static metrics, which contain various of the commonly used metrics like cyclomatic com-

plexity and lines of code. It will also describe the dynamic metrics that we used, which 

are the start and forks of a project that were extracted from GitHub. 

1.1.3 Methodology 

This chapter will describe the methodology that was used for gathering the data and per-

forming the tests. It will also describe the tools that were used for this process. Finally, it 

will include the process that was selected to create the dataset and separate the samples 

into different classes. 

1.1.4 Results 

This chapter will contain all the experiments with the different algorithms that were per-

formed along with their results. 

1.1.5 Evaluation 

This chapter contains an evaluation of the results presented in the previous chapter. It will 

provide a comparison between the different algorithms used and an interpretation of the 

overall results and present their high and low points. 

1.1.6 Conclusion and Future Work 

This concluding chapter contains a final assessment of the methodology and the produced 

results. It also contains the next steps that can be taken in order to further research this 

idea and the possible outcomes that can come out of this. 

2 Background 

Data mining on source code has seen a lot of research over the years. A large number of 

software metrics have been proposed and used in order to try to predict quality character-

istics in software. Also, various methods have also been proposed in order to try to quan-

tify quality in various ways. 
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Along with the extensive research, a number of software quality assurance tools have also 

been created. ComPARE is one such tool and was proposed by Cai et al. [1]. ComPARE 

collects various metrics from software components, and also incorporates various differ-

ent models that predict software quality and reliability. The collected metrics are both 

static metrics extracted from the source code, but also dynamic metrics that are extracted 

during the programs execution. Besides assessment tools there are also many tools that 

can be used just for extracting the software metrics. Rudiger et al. [2] did an extensive 

comparison of many such tools and compared the possible different values returned per 

metric for each tool. 

Besides assessment tools a lot of research has also been focused in finding new software 

metrics or evaluating the existing ones. Singla and Singh [3] created a classification of 

various software metrics for the different development phases of software. They separated 

various software metrics according to the project phase they were more relevant. The 

metrics we separated to Requirement Metrics, Design Metrics and Testing Metrics. For 

these three metric classes, they even further clustered the various metrics into sub-cate-

gories. Rosenberg and Hyatt [4] proposed and analyzed a list of 9 software metrics for 

object-oriented environments. They investigated if the traditional software metrics are 

also useful for object-oriented programs, and whether they behave differently there and 

also checked specific object-oriented metrics. The metrics they used were 3 traditional 

metrics: Cyclomatic Complexity, Size and Comment Percentage and 6 object-oriented 

metrics: Weighted Methods per Class, Response for a Class, Lack of Cohesion of Meth-

ods, Coupling Between Object Classes, Depth of Inheritance Tree and Number of Chil-

dren. A similar work was also done by Harisson et al. [5] where they evaluated a list of 

object-oriented metrics called the MOOD metrics. These metrics are the: Method Hiding 

Factor, Attribute Hiding Factor, Method Inheritance Factor, Attribute Inheritance Factor, 

Coupling Factor and Polymorphism Factor. Through their work they verified the validity 

of the information contained in these metrics. Fenton and Neil [6] did an analysis of the 

existing software metrics and their success in relation to industry adoption. Through their 

research they show that there is a lot of academic work related to software metrics, but 

there is a big gap to the industry adoption, and much of the academic work is not relevant 

to the industry. More recently Arvanitou et al. [7] introduced the Software Metric Fluc-

tuation (SMF). This is a property that can be used to quantify the changes of a software 

metric between different software versions. With this they proved that different metrics 

can have very different SMF values even if they describe the same software property and 
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that source code metrics are much more sensitive to changes that design level metrics. 

Demyanova et al. [8] proposed an empirical list of software metrics. These make use of 

variable usage patterns, loop patterns and indicators of control flow complexity that they 

extract from the source code and proved that their metrics can be used for software veri-

fication. 

Using software metrics to estimate reusability has always been a very popular and im-

portant research area as well. Sharma [9] used Support Vector Machines to predict the 

reusability for Function based Software systems. They used a few software metrics in 

great effect in order to predict the reusability of a pre-labeled dataset. The metrics they 

used are: Cyclometric Complexity, Halstead Software Science Indicator, Regularity Met-

ric, Reuse-Frequency Metric and Coupling metric. Sethi and Tandon [10] explored the 

differences in the reusability and extracted metrics of having the same application but 

developed with two different ways, one with inheritance and one with interfaces. Their 

work concluded that interfaces show greater reusability than inheritance. Bhambri and 

Chhabra [11] used a slightly less common approach, since they used clustering on soft-

ware metrics in order to estimate reusability. Using K-Means they clustered their dataset 

into 8 different reusability classes, and to evaluate their method, they used a test dataset 

that matched their expected results. 

In most mentioned cases so far, the reusability of software was apriori knowledge, veri-

fied by experts that had manually checked the code. However there have been proposed 

ways to try to quantify it and create a reusability metric. Huda et al. [12] created such a 

metric that quantifies the reusability of object-oriented design. This metric takes into ac-

count the coupling, inheritance and encapsulation of the program. They evaluated their 

metric against popular windows application frameworks. A similar work was also per-

formed by Sadana et al. [13], where they used object-oriented metrics for cohesion and 

coupling, in order to calculate their proposed reusability metric. Through their work they 

found a correlation between high cohesion and high reusability, and also correlation be-

tween low coupling and high reusability. 

So far, we have mainly seen research that tries to quantify the reusability through metrics 

or expert opinion. There is also another approach that has been emerging the last few 

years where this evaluation is done through the community's opinion. Papamichail et al. 

[14] proposed a methodology for computing a quality score for software components, 

based of software metrics and the popularity of software to other developers. For this they 
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used the most popular projects found in GitHub and generated a formula that assigns a 

score to each software component based on the number of GitHub Stars, the number files 

in the GitHub repository and the dependents of each file. Their proposed system employs 

a Support Vector Machine one-class classifier that filters out low quality files and then 

an artificial neural network to perform the reusability predictions. 

3 Software Metrics 

The aim of this dissertation is to use the Stars and Forks of GitHub as a metric for software 

reusability. In order to do this, we will gather these data from GitHub. We will also use 

various other software metrics in order to train classifiers and try to predict software re-

usability. In this chapter we will review the metrics that will be used for this process. 

3.1 GitHub 

GitHub [15] is a collaborative code hosting site that has been built on top of one of the 

most popular version control systems, git. It allows developers to host their own public 

and private repositories, and also includes various social features that allow the develop-

ers to collaborate with each other. It is currently the largest and most popular code hosting 

site [16]. This means that its users range from all levels of experience, starting from nov-

ice users and going all the way up to professional developers with many years of experi-

ence. Similarly, the projects there highly vary in quality. Due to the social and collabora-

tion features of GitHub though, it allows the popular and better project to stand out above 

the rest. This is done via the Stars and Forks features. 

3.1.1 Stars 

Stars in GitHub are a way for users to keep track of projects they find interesting and want 

to follow. It also allows them to find similar projects to the ones they have already starred 

through recommendations. Stars are generally used as a means of showing the popularity 

and importance of a project. GitHub allows users to search projects sorted by their number 

of Stars in order to find the most popular projects depending on the search criteria. 
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3.1.2 Forks 

Forks allow users to get a copy of another user’s repository, so that they can manage it 

themselves. They can still get the updates of the original repository, but they can also 

freely commit their own changes on their own forked repository without affecting the 

original. From that point on, they can continue developing the project on their own by 

adding new features or fixing possible defects, but they can also issue a pull request to 

the original repository, which is a proposal to merge their changes with the original re-

pository. In Image 1 we can see how forking a repository works. 

Image 1: Forking A Repository 

 

3.2 Static Analysis Metrics 

3.2.1 Cyclomatic Complexity 

Cyclomatic Complexity, or sometimes McCabe Complexity, is a metric that was pro-

posed by McCabe [17] in order to try to quantify program complexity. This metric as-

sumes that each control statement increases the complexity of a program. 

Cyclomatic Complexity is calculated using the control flow graph [18] of a program. The 

metric can be calculated in two different but equivalent ways: 

1. The number of control statements in a program +1 

2. For a given graph G when n vertices, e edges and p connected components the 

Cyclomatic Complexity is: 

𝑉 (𝐺) = 𝑒 − 𝑛 + 2𝑝 
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Cyclomatic Complexity is very popular since it is easy to be calculated and is very intui-

tive to understand, since the idea that adding extra conditions and loops to programs 

makes them more complex is fairly common. 

3.2.2 Lines of Code 

This is the total number of lines of code in a program. It is used as a metric of counting 

the size of the program. It contains all the lines in a program including the comments. 

3.2.3 Logical Lines of Code 

This metric counts all the executable statements in a program. This means that it counts 

all the lines in a program, excluding the comments. But it also expands the lines that 

contain multiple statements, into one statement per line. For example, the following state-

ment contains 2 Logical Lines of Code (one for the “for” statement, and one for the “print” 

statement) instead of just 1: 

for (i = 0; i < 10; i++) print(“Hello World”) 

3.2.4 Source Lines of Code 

This metric contains all the source code lines of a program. This means all the lines, 

excluding the comment lines. 

3.2.5 Comment Lines 

This metric contains the number of comment lines in the program. 

3.2.6 Multi-line Strings 

This metric contains the number of lines that are part of multi-line strings. 

3.2.7 Blank Lines 

This metric contains the number of blank lines. 

3.2.8 Halstead Metrics 

Halstead Metrics are complexity metrics that were proposed by Halstead in 1977 [19].  

They allow for estimations on the testing time, vocabulary, mistakes and effort. For their 

calculations they rely on the numbers of operators and operands that are used by the 

source code. As Halstead said, “A PC program is an execution of a calculation thought to 

be an accumulation of tokens which can be named either operators or operands” [20]. 
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In order to calculate these, we first have to define the following: 

n1 = number of unique or distinct operators 

n2 = number of unique or distinct operands 

N1 = total number of occurrences of operators 

N2 = total number of occurrences of operands 

The Halstead measures that were used can be calculated as follows [20]: 

Program Vocabulary 

This is the sum of the number of unique operators and operands throughout the program. 

n = n1 + n2 

Calculated Program Length 

This is the sum of the total operators and operands throughout the program. 

N = N1 + N2 

Volume 

This is the size of the implementation of an algorithm. 

𝑉 = (𝑁1 + 𝑁2) log2(𝑛1 + 𝑛2) 

OR 

V = N log2 n 

Difficulty 

This is proportional to the number of unique operators and the total usage of operands. 

This difficulty estimates how difficult the code is to write, or to understand when review-

ing it. 

D = 
2

n1
 

n2

N2
 

Effort 

This measures the effort required for implementing or understanding the program. This 

is proportional to the difficulty and volume. 

E = D V 

Time 

This is the estimated time to write the program in seconds, and is based on the effort. 

T = 
E

S
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S=18 

Bugs 

This is the expected number of bugs or errors for the program. 

B = 
E0.667

3000
 

4 Methodology 

This chapter will describe the methodology that was used for gathering the data used to 

perform the experiments. 

4.1 Data Collection 

As mentioned GitHub Projects were used to extract the source code from. A list of Python 

3 projects were selected in order to build a dataset. These projects range from some of the 

most popular projects on GitHub (based on their Stars), and some projects with upcoming 

popularity that were trending in the weeks and days of November 2017. 

The projects that were selected are 66 and amount to 3023108 total lines of code. In Table 

1: GitHub Projects you can find the list of the 66 selected projects, along with a brief 

description. The descriptions were taken from each project’s main page. 

Table 1: GitHub Projects 

Project Name Description 

Algorithms Minimal examples of data structures and algorithms in 

Python. 

AngelSword CMS3 prepared by the Python vulnerability detection 

framework. 

 

Ansible Ansible is a radically simple IT automation platform that 

makes your applications and systems easier to deploy. 

https://github.com/keon/algorithms
https://github.com/Lucifer1993/AngelSword
https://github.com/ansible/ansible
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Awesome-python A curated list of awesome Python frameworks, libraries, 

software and resources. 

Big-list-of-naughty-strings The Big List of Naughty Strings is a list of strings which 

have a high probability of causing issues when used as 

user-input data. 

Bitcoinbook Mastering Bitcoin 2nd Edition - Programming the Open 

Blockchain. 

CapsNet-Keras A Keras implementation of CapsNet in NIPS2017 paper 

"Dynamic Routing Between Capsules". 

CapsNet-Tensorflow A Tensorflow implementation of CapsNet(Capsules Net) 

in Hinton's paper Dynamic Routing Between Capsules. 

Capsule-networks A PyTorch implementation of the NIPS 2017 paper "Dy-

namic Routing Between Capsules". 

Certbot Certbot is EFF's tool to obtain certs from Let's Encrypt 

and (optionally) auto-enable HTTPS on your server. It 

can also act as a client for any other CA that uses the 

ACME protocol. 

Chinese-Text-Classification Chinese-Text-Classification, Tensorflow CNN (Convo-

lutional Neural Network) to achieve the Chinese text 

classification. 

Compose Define and run multi-container applications with Docker. 

CppCoreGuidelines The C++ Core Guidelines are a set of tried-and-true 

guidelines, rules, and best practices about coding in C++. 

Cr3dOv3r Know the dangers of credential reuse attacks. 

Data-science-ipython-note-

books 

Data science Python notebooks: Deep learning (Tensor-

Flow, Theano, Caffe, Keras), scikit-learn, Kaggle, big 

data (Spark, Hadoop MapReduce, HDFS), matplotlib, 

pandas, NumPy, SciPy, Python essentials, AWS, and 

various command lines. 

DeepAA Make Ascii Art by Deep Learning. 

https://github.com/vinta/awesome-python
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/bitcoinbook/bitcoinbook
https://github.com/XifengGuo/CapsNet-Keras
https://github.com/naturomics/CapsNet-Tensorflow
https://github.com/gram-ai/capsule-networks
https://github.com/certbot/certbot
https://github.com/fendouai/Chinese-Text-Classification
https://github.com/docker/compose
https://github.com/isocpp/CppCoreGuidelines
https://github.com/D4Vinci/Cr3dOv3r
https://github.com/donnemartin/data-science-ipython-notebooks
https://github.com/donnemartin/data-science-ipython-notebooks
https://github.com/OsciiArt/DeepAA
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Deep-Learning-Papers-

Reading-Roadmap 

Deep Learning papers reading roadmap for anyone who 

are eager to learn this amazing tech. 

Diracnets Training Very Deep Neural Networks Without Skip-

Connections. 

Django-rest-framework Web APIs for Django. 

Django The Web framework for perfectionists with deadlines. 

Dramatiq Simple distributed task processing for Python 3. 

Fabric Simple, Pythonic remote execution and deployment. 

face_recognition The world's simplest facial recognition api for Python 

and the command line. 

Flashtext Extract Keywords from sentence or Replace keywords in 

sentences. 

Flask A microframework based on Werkzeug, Jinja2 and good 

intentions. 

Glances Glances an Eye on your system. A top/htop alternative. 

Home-assistant Open-source home automation platform running on Py-

thon 3. 

Httpie Modern command line HTTP client – user-friendly curl 

alternative with intuitive UI, JSON support, syntax high-

lighting, wget-like downloads, extensions, etc. 

Incubator-mxnet Lightweight, Portable, Flexible Distributed/Mobile Deep 

Learning with Dynamic, Mutation-aware Dataflow Dep 

Scheduler; for Python, R, Julia, Scala, Go, Javascript and 

more. 

Incubator-superset Apache Superset (incubating) is a modern, enterprise-

ready business intelligence web application. 

Interactive-coding-chal-

lenges 

Interactive Python coding interview challenges (algo-

rithms and data structures). Includes Anki flashcards. 

Keras Deep Learning library for Python. Runs on TensorFlow, 

Theano, or CNTK. 

https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap
https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap
https://github.com/szagoruyko/diracnets
https://github.com/encode/django-rest-framework
https://github.com/django/django
https://github.com/Bogdanp/dramatiq
https://github.com/fabric/fabric
https://github.com/ageitgey/face_recognition
https://github.com/vi3k6i5/flashtext
https://github.com/pallets/flask
https://github.com/nicolargo/glances
https://github.com/home-assistant/home-assistant
https://github.com/jakubroztocil/httpie
https://github.com/apache/incubator-mxnet
https://github.com/apache/incubator-superset
https://github.com/donnemartin/interactive-coding-challenges
https://github.com/donnemartin/interactive-coding-challenges
https://github.com/fchollet/keras
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Localstack A fully functional local AWS cloud stack. Develop and 

test your cloud apps offline. 

Material-theme Material Theme, the most epic theme for Sublime Text 3 

by Mattia Astorino. 

Mentalist Mentalist is a graphical tool for custom wordlist genera-

tion. It utilizes common human paradigms for construct-

ing passwords and can output the full wordlist as well as 

rules compatible with Hashcat and John the Ripper. 

Mitmproxy An interactive TLS-capable intercepting HTTP proxy for 

penetration testers and software developers. 

Models Models and examples built with TensorFlow. 

Pandas Flexible and powerful data analysis / manipulation li-

brary for Python, providing labeled data structures simi-

lar to R data.frame objects, statistical functions, and 

much more. 

phishing_catcher Phishing catcher using Certstream. 

pretrained-models.pytorch Pretrained ConvNets for pytorch: NASNet, Res-

NeXt101, ResNet152, InceptionV4, InceptionResnetV2, 

etc. 

Pyro Deep universal probabilistic programming with Python 

and PyTorch. 

Pyschemes PySchemes is a library for validating data structures in 

python. 

Pyspider A Powerful Spider(Web Crawler) System in Python. 

Python-patterns A collection of design patterns/idioms in Python. 

Pytorch Tensors and Dynamic neural networks in Python with 

strong GPU acceleration. 

Reddit Historical code from reddit.com. 

Reinforcement-learning-an-

introduction 

Python implementation of Reinforcement Learning: An 

Introduction 

Requests Python HTTP Requests for Humans 

https://github.com/localstack/localstack
https://github.com/equinusocio/material-theme
https://github.com/sc0tfree/mentalist
https://github.com/mitmproxy/mitmproxy
https://github.com/tensorflow/models
https://github.com/pandas-dev/pandas
https://github.com/x0rz/phishing_catcher
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/uber/pyro
https://github.com/shivylp/pyschemes
https://github.com/binux/pyspider
https://github.com/faif/python-patterns
https://github.com/pytorch/pytorch
https://github.com/reddit/reddit
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction
https://github.com/ShangtongZhang/reinforcement-learning-an-introduction
https://github.com/requests/requests
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Scikit-learn Scikit-learn: machine learning in Python 

Scrapy Scrapy, a fast high-level web crawling & scraping frame-

work for Python. 

Source-code-pro Monospaced font family for user interface and coding en-

vironments. 

Sqlmap Automatic SQL injection and database takeover tool. 

Sshuttle Transparent proxy server that works as a poor man's 

VPN. Forwards over ssh. Doesn't require admin. Works 

with Linux and MacOS. Supports DNS tunneling. 

SSRF-Testing SSRF (Server Side Request Forgery) testing resources. 

System-design-primer Learn how to design large-scale systems. Prep for the 

system design interview. Includes Anki flashcards. 

Tangent Source-to-Source Debuggable Derivatives in Pure Py-

thon. 

Tensorforce TensorForce: A TensorFlow library for applied rein-

forcement learning. 

Thefuck Magnificent app which corrects your previous console 

command. 

Tornado Tornado is a Python web framework and asynchronous 

networking library, originally developed at FriendFeed. 

TuSimple-DUC Understanding Convolution for Semantic Segmentation. 

Micropython-upyphone A gsm phone using pyboard and sim800l. 

Utensor AI inference library based on mbed and TensorFlo. 

YouCompleteMe A code-completion engine for Vim. 

You-get Dumb downloader that scrapes the web. 

Youtube-dl Command-line program to download videos from 

YouTube.com and other video sites. 

ZeroNet ZeroNet - Decentralized websites using Bitcoin crypto 

and BitTorrent network 

 

https://github.com/scikit-learn/scikit-learn
https://github.com/scrapy/scrapy
https://github.com/adobe-fonts/source-code-pro
https://github.com/sqlmapproject/sqlmap
https://github.com/apenwarr/sshuttle
https://github.com/cujanovic/SSRF-Testing
https://github.com/donnemartin/system-design-primer
https://github.com/google/tangent
https://github.com/reinforceio/tensorforce
https://github.com/nvbn/thefuck
https://github.com/tornadoweb/tornado
https://github.com/TuSimple/TuSimple-DUC
https://github.com/jeffmer/micropython-upyphone
https://github.com/neil-tan/uTensor
https://github.com/Valloric/YouCompleteMe
https://github.com/soimort/you-get
https://github.com/rg3/youtube-dl
https://github.com/HelloZeroNet/ZeroNet
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All these projects were selected, in order to extract the software metrics mentioned in the 

previous section. They were first cloned from their GitHub repositories and then the soft-

ware metrics were calculated for each project. This process was done via Python scripting 

and the software metrics were calculated using Radon [21]. Radon is an open source Py-

thon tool that compute various metrics from source code. Radon operates under the MIT 

License [22]. 

4.2 Predicting Reusability 

As mentioned before the aim of the dissertation is to try and predict reusability based on 

the software metrics. And as a metric for reusability we are going to use the Stars and 

Forks of the project in GitHub. 

As we discussed before Forks can be used as a metric for reusability. However, Forks by 

themselves are not very useful, since larger and more popular projects are bound to have 

a very high number of Forks regardless of how reusable they actually are. This is why 

both Stars and Forks were used as a metric. The metric that was used is the number of 

Forks over the number of Stars. 

𝑅𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑜𝑟𝑘𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑎𝑟𝑠
 

Using this approach, we take into account both the reusability of the project and the pop-

ularity of it, so that popular projects don’t appear more reusable than they should. 

After calculating the number Forks/Stars for each project the dataset had to be split into 

classes. It was then separated dataset into two reusability classes, ‘high’ and ‘medium’. 

And in order to set the class for each project the median number of the Forks/Stars of 

each project was set as a boundary. The median was 0.170198560205573, so every pro-

ject above that is classified as high, and the rest as medium. This essentially splits the 

dataset into two equally numbered classes, so we have 33 samples of the ‘medium’ class 

and 33 of the ‘high’ class. In Table 2: Dataset Classes we can see the selected classes for 

each project, along with the numbers of Forks, Stars and their Forks/Stars score. 

Table 2: Dataset Classes 

Name Forks Stars Forks/Stars Class 

algorithms 9621 1373 0.1427086581 medium 
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AngelSword 402 217 0.539800995 high 

ansible 26762 9551 0.3568866303 high 

awesome-python 41302 7890 0.1910319113 high 

big-list-of-naughty-strings 22210 883 0.0397568663 medium 

bitcoinbook 5359 1406 0.262362381 high 

CapsNet-Keras 800 155 0.19375 high 

CapsNet-Tensorflow 1405 345 0.2455516014 high 

capsule-networks 421 56 0.1330166271 medium 

certbot 20124 1846 0.0917312661 medium 

Chinese-Text-Classification 101 19 0.1881188119 high 

compose 11029 1769 0.1603953214 medium 

CppCoreGuidelines 15669 1938 0.1236837067 medium 

Cr3dOv3r 470 66 0.1404255319 medium 

data-science-ipython-notebooks 10784 2878 0.2668768546 high 

DeepAA 768 48 0.0625 medium 

Deep-Learning-Papers-Reading-

Roadmap 

14629 2936 0.2006972452 high 

diracnets 397 48 0.120906801 medium 

django-rest-framework 9100 3011 0.3308791209 high 

django 29708 12541 0.4221421839 high 

dramatiq 327 12 0.0366972477 medium 

fabric 9269 1512 0.1631243931 medium 

face_recognition 7481 1400 0.1871407566 high 

flashtext 621 70 0.1127214171 medium 

flask 31106 9824 0.3158233138 high 

glances 8670 632 0.0728950404 medium 

home-assistant 10338 2944 0.2847746179 high 

httpie 32633 2208 0.0676615696 medium 

incubator-mxnet 12078 4450 0.3684384832 high 
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incubator-superset 16808 2624 0.1561161352 medium 

interactive-coding-challenges 11376 1441 0.1266701828 medium 

keras 21869 7969 0.3643970918 high 

localstack 9380 460 0.0490405117 medium 

material-theme 10031 703 0.0700827435 medium 

mentalist 309 32 0.1035598706 medium 

mitmproxy 8682 1255 0.1445519466 medium 

models 23867 11516 0.4825072276 high 

pandas 11749 4598 0.3913524555 high 

phishing_catcher 420 90 0.2142857143 high 

pretrained-models.pytorch 521 50 0.0959692898 medium 

pyro 1993 180 0.0903161064 medium 

pyschemes 346 11 0.0317919075 medium 

pyspider 10145 2638 0.2600295712 high 

python-patterns 13212 3084 0.2334241599 high 

pytorch 9288 1966 0.2116709733 high 

reddit 14163 2592 0.1830120737 high 

reinforcement-learning-an-

introduction 

2146 859 0.4002795899 high 

requests 28678 5266 0.1836250785 high 

scikit-learn 23048 12144 0.5269003818 high 

scrapy 23905 6123 0.2561388831 high 

source-code-pro 11795 1038 0.0880033913 medium 

sqlmap 9947 2314 0.2326329547 high 

sshuttle 8740 733 0.0838672769 medium 

SSRF-Testing 389 77 0.1979434447 high 

system-design-primer 20997 2469 0.1175882269 medium 

tangent 1206 63 0.052238806 medium 

tensorforce 964 142 0.1473029046 medium 
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thefuck 32188 1578 0.0490244812 medium 

tornado 14626 4321 0.2954327909 high 

TuSimple-DUC 220 39 0.1772727273 high 

Micropython-upyphone 334 19 0.0568862275 medium 

uTensor 405 35 0.0864197531 medium 

YouCompleteMe 15094 1726 0.1143500729 medium 

you-get 31145 3191 0.201363034 high 

youtube-dl 31145 5824 0.1869963076 high 

ZeroNet 10290 1300 0.1263362488 medium 

 

After having set the classes for each project Weka [23] was used in order to try to predict 

and evaluate those classes. For all the experiments that will follow in the next chapter, 

10-fold cross validation was used. The classifiers that were used are some of the most 

popular that perform well in a wide range of problems. The different classifiers will be 

compared with each other in regards to Accuracy, Precision, Recall and F-Measure and 

the results will be interpreted in each case. Each classifier was also tested with various 

parameters in order to try and achieve the best and most balanced results. 

5 Results 

For the actual testing, a range of different classifier was used, in order to see how the 

dataset behaves under each different classifier. The classifiers that were tested are: 

• Naive Bayes 

• J48 

• Random Forest 

• Multilayer Perceptron 

• Support Vector Machines 
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5.1 Naive Bayes 

Naive Bayes Classifier [24] is one of the simplest yet highly efficient existing classifier. 

It is very easily understood and also has great performance. Despite these Naive Bayes 

has proven to be able to complete with much more complex classifiers in terms of results. 

In Table 3: Naïve Bayes we can see the results from Naive Bayes Classifier on our dataset. 

Table 3: Naïve Bayes 

Class Accuracy Precision Recall F-Measure 

medium - 0.600 0.909 0.723 

high - 0.813 0.394 0.531 

 65.15115 0.706 0.652 0.627 

 

5.2 J48 

J48 is the open source implementation of the C4.5 algorithm for decision tree generation 

developed by Quinlam [25]. In Table 4: J48 we can see the results for the J48 algorithm. 

Table 4: J48 

Class Accuracy Precision Recall F-Measure 

medium - 0.585 0.939 0.721 

high - 0.846 0.333 0.475 

 63.6364 0.716 0.636 0.600 

 

5.3 Random Forest 

Random Forests [26] are an ensemble learning method of many decision tree classifiers. 

The max depth for the decision trees was set to 1, since the results greatly decreased for 

higher values. The results can be seen in Table 5: Random Forest. 

Table 5: Random Forest 

Class Accuracy Precision Recall F-Measure 
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medium - 0.600 0.909 0.723 

high - 0.813 0.394 0.531 

 65.1515 0.706 0.652 0.627 

 

5.4 Multilayer Perceptron 

MLP or multilayer perceptron is a feedforward artificial neural network that is trained 

with the backpropagation algorithm [27]. MLPs consist of at least three layers, an input 

and output layer, and one or more hidden layers. During the tests the best results were 

found when using a single hidden layer of 30 nodes. The learning rate was 0.3, the mo-

mentum 0.2 and the network was trained for 50 epochs. The results can be found in Table 

6: Multilayer Perceptron. 

Table 6: Multilayer Perceptron 

Class Accuracy Precision Recall F-Measure 

medium - 0.627 0.970 0.762 

high - 0.933 0.424 0.583 

 69.697 0.780 0.697 0.673 

 

5.5 Support Vector Machines 

SVMs or Support Vector Machines [28] are a supervised learning model that tries to dis-

tinguish two classes mapped in an N-dimensional space with as clear and wide gap as 

possible. For the tests that were performed the SVMs were trained with the Stochastic 

Gradient Descent (SGD) [29] algorithm. The best results were found when training for 

15 epochs with a learning rate of 0.25, and they can be found in Table 7: Support Vector 

Machines. 

Table 7: Support Vector Machines 

Class Accuracy Precision Recall F-Measure 

medium - 0.652 0.909 0.759 

high - 0.850 0.515 0.642 
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 71.2121 0.751 0.712 0.701 

 

 

6 Evaluation 

This chapter will briefly review the results from Chapter 5 and compare the different 

classifiers. 

We can see that he accuracy from the different classifiers ranges from about 63% up to 

about 71%. The difference is not huge, but we can see that some models behave better 

than others. When looking more closely to the models we can see that MLPs and SVMs 

have the better results. These two are the more complex models, from those that were 

tested, and also those that cannot be easily interpreted by humans. 

However, what is even more interesting is when we take a look at the precision and recall 

scores of each class. We can see that in all classifiers the two classes had a big difference 

in their precision and recall scores. In the ‘medium’ class the precision was as low as 

0.585 for some classifiers, while the recall as high as 0.97. This means that there were too 

many samples classified as ‘medium’ even though they were not, leading to the low pre-

cision. Also, due to the high recall we can conclude that most samples of the ‘medium’ 

class were correctly classified as ‘medium’. In retrospect, for the ‘high’ class we can see 

that the precision was as high as 0.933 but the recall as low as 0.333. This means that 

many ‘high’ samples weren’t correctly classified as ‘high’, leading to the low recall, but 

when a sample was classified as ‘high’ it was correctly classified most of the time. 

Taking into consideration what we have seen so far from the precision and recall of the 

two classes, we can conclude that many samples of the ‘high’ class are classified as ‘me-

dium’, but not the other way around. The cause of this is most likely due to the way the 

ground truth of the classes was established. The classes were separated by their 

Forks/Stars score based on the median value. However, it seems that this split is not the 

best and there are some clear issues with it. This is a very clear area that need to be im-

proved, and the next chapter will present some next steps that can be taken to improve 

this. 
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7 Conclusion and Future Work 

In this Dissertation I have proposed a methodology for trying to assess software reusability. This 

methodology tries to move away from some more common approaches of manual code assess-

ment or setting metrics thresholds, but aims to provide a way to assess the reusability based on 

community opinion. It tries to use the Stars and Forks of GitHub in order to assess this. The idea 

behind this is fairly straight forward: “If something is actually being reused by other people, then 

it can be considered as having good reusability”. 

I used various different classifiers in order to try to predict the reusability of a list of GitHub 

projects that I separated into two different classes: ‘medium’ and ‘high’ reusability. From the 

results we can see that to some extent we can predict the classes of the dataset. The accuracy isn’t 

extremely high, but it shows some promising results, and that there is some merit to the whole 

process. 

Of course, through the process we can see that there are also some areas that require further re-

search and improvement. The separation of the classes is not optimal and wasn’t performed in a 

very efficient way. This became obvious when looking at the high different between the precision 

and recall of the two different classes. 

Taking these into account, they allow us to see potential paths for future work on improving and 

researching new things. Improving the way, the classes are separated is a very clear thing that 

should be explored more. They should be separated in a more automatic way. This could be either 

through a statistical analysis of the dataset, or even better through clustering of the data in order 

to try to find the potential reusability classes. 

Besides the class separation, there are many other areas that contain potential for future work. 

More projects could be utilized in order to create a larger dataset, containing more diverse projects 

in term of both reusability and popularity. Also, even more software metrics could be extracted 

from the said projects. Currently in this Dissertation a very important group of software metrics 

is missing, which is object-oriented metrics. This was because some of the python projects that 

were selected were not object-oriented projects, and thus those metrics could not be used. How-

ever, with different project selection, or even by selecting a different programming language like 

Java, those metrics can also be utilized in order to see how they affect the results. 

In conclusion, I think this dissertation shows the importance of software reusability and the need 

to try to find new ways to assess it. In the current era, that we have so much data available, we 

should find new ways to utilize them. And even more importantly since we have so much infor-

mation about the actual users and how they react, this should be the area to focus, because after 

all, how the users behave is the best evaluation we could possibly have. 
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Appendix 

In this appendix you can find the dataset that was created and used for this Dissertation. 

You will notice that the dataset contains some extra attributes that were not used during 

the testing, but were added to the dataset for completeness purposes. These are the name 

of the GitHub Project, the Stars, the Forks and the Forks/Stars score. They were excluded 

from the testing because the name cannot really be used at all, and the numbers of Stars, 

Forks and Forks/Stars score were used to create the class attribute, and thus shouldn’t be 

used at all for the testing. However, they can be useful for other tests, like clustering the 

dataset. 

 

@RELATION github 

 

@ATTRIBUTE name STRING 

@ATTRIBUTE cc NUMERIC 

@ATTRIBUTE loc NUMERIC 

@ATTRIBUTE lloc NUMERIC 

@ATTRIBUTE sloc NUMERIC 

@ATTRIBUTE comments NUMERIC 

@ATTRIBUTE single NUMERIC 

@ATTRIBUTE multi NUMERIC 

@ATTRIBUTE blank NUMERIC 

@ATTRIBUTE vocabulary NUMERIC 

@ATTRIBUTE length NUMERIC 

@ATTRIBUTE calculated_length NUMERIC 

@ATTRIBUTE volume NUMERIC 

@ATTRIBUTE difficulty NUMERIC 

@ATTRIBUTE effort NUMERIC 
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@ATTRIBUTE time NUMERIC 

@ATTRIBUTE bugs NUMERIC 

@ATTRIBUTE stars NUMERIC 

@ATTRIBUTE forks NUMERIC 

@ATTRIBUTE stars_forks NUMERIC 

@ATTRIBUTE class {medium,high} 

 

@DATA 

algo-

rithms,3.4282560706401766,7423,3908,3921,806,743,1579,1180,2979,4939,1

1179.001446928209,22842.228602745636,561.2721951809662,121388.14428153

76,6743.785793418764,7.6140762009152185,9621,1373,0.1427086581,medium 

An-

gelSword,2.986344537815126,13942,8544,9668,800,800,1950,1524,6437,8596

,25237.311981696865,39983.70954557437,582.9249711168869,105597.5529983

1102,5866.530722128393,13.32790318185815,402,217,0.539800995,high 

ansi-

ble,5.789847484634646,711063,291005,541514,47384,48913,16424,104212,11

4903,187379,711127.5988636708,1292045.9413218452,7830.294244028591,916

3274.86014063,509070.82556336746,430.6819804406146,26762,9551,0.356886

6303,high 

awesome-py-

thon,7.5,80,43,42,13,13,11,14,28,35,115.65156546374811,168.25742227201

613,2.5,420.6435556800403,23.369086426668908,0.056085807424005374,4130

2,7890,0.1910319113,high 

big-list-of-naughty-

strings,6.0,63,18,19,14,15,6,23,10,10,13.509775004326938,23.2192809488

7362,2.0,23.21928094887362,1.289960052715201,0.007739760316291207,2221

0,883,0.0397568663,medium 

bitcoin-

book,3.0,103,56,56,18,18,0,29,14,21,30.75488750216347,61.8289214233104

4,1.9166666666666665,70.28615177913805,3.904786209952114,0.02060964047

4436815,5359,1406,0.262362381,high 

CapsNet-

Keras,2.3,472,221,236,56,40,113,83,147,228,722.1461238084346,1285.3801

970067645,19.087071718931476,8246.860920439078,458.15894002439325,0.42

84600656689216,800,155,0.19375,high 
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CapsNet-Tensor-

flow,5.391304347826087,813,413,449,101,98,90,176,268,427,1311.38182213

08604,2347.430502177923,25.520277688528708,9902.076842897837,550.11538

01609909,0.7824768340593076,1405,345,0.2455516014,high 

capsule-net-

works,1.894736842105263,263,169,177,7,7,5,74,90,171,536.0524269110014,

1110.1068794723744,7.5886075949367084,8424.16549675555,468.00919426419

72,0.37003562649079147,421,56,0.1330166271,medium 

certbot,2.3913934426229506,56049,25981,33261,4902,5020,6023,11745,5344

,7790,27352.76072229173,45996.12453772269,496.4066112075863,276383.094

5690647,15354.616364948037,15.33204151257423,20124,1846,0.0917312661,m

edium 

Chinese-Text-Classifica-

tion,3.9166666666666665,532,306,340,72,72,42,78,66,94,216.892628700004

65,389.80379526207435,11.382417582417583,1200.2835195287334,66.6824177

515963,0.12993459842069144,101,19,0.1881188119,high 

com-

pose,3.5673239436619717,24855,12799,19556,278,278,698,4323,4040,6216,2

6664.845083475368,44243.50155169116,206.8809235719723,273017.421688156

8,15167.63453823094,14.747833850563724,11029,1769,0.1603953214,medium 

CppCoreGuide-

lines,6.769633507853404,6719,2516,3446,1345,1329,978,966,1696,3333,173

32.693928589713,34804.936052636396,23.965218793678098,471947.234899542

47,26219.290827752357,11.6016453508788,15669,1938,0.1236837067,medium 

Cr3dOv3r,2.8333333333333335,310,158,217,45,39,21,33,107,183,631.033341

37421,1123.0905797411885,2.381818181818182,1329.295439634382,73.849746

64635456,0.3743635265803961,470,66,0.1404255319,medium 

data-science-ipython-note-

books,2.4121951219512194,6687,3117,3398,242,275,1458,1556,1445,2386,89

02.973652495555,16090.69684662866,105.30646285479915,132187.7850211759

2,7343.765834509771,5.363565615542886,10784,2878,0.2668768546,high 

DeepAA,2.1,347,251,268,25,23,0,56,164,312,949.879998509391,1985.007926

1178062,15.866228070175438,15766.5226756918,875.9179264273223,0.661669

3087059354,768,48,0.0625,medium 

Deep-Learning-Papers-Reading-

Roadmap,2.6666666666666665,132,112,110,1,1,0,21,47,68,230.130686535627

7,377.71204191407935,4.512820512820513,1704.5466506891785,94.697036149

3988,0.12590401397135978,14629,2936,0.2006972452,high 
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dirac-

nets,2.327272727272727,763,476,535,6,8,68,152,208,394,1033.04023998152

96,2253.8555478402986,24.596288998357966,15725.691711163223,873.649539

5090678,0.7512851826134328,397,48,0.120906801,medium 

django-rest-frame-

work,3.2466414054426456,33332,18098,22587,1186,1130,3464,6151,5156,832

4,30234.620225937764,53664.91707286757,313.71507786109845,299787.32326

90032,16654.851292722404,17.88830569095585,9100,3011,0.3308791209,high 

django,2.4837589605734767,318455,172348,222212,20489,20823,24814,50606

,31385,48895,175838.98531993537,308318.80917913246,2544.1612358875254,

2040194.939875996,113344.16332644377,102.77293639304324,29708,12541,0.

4221421839,high 

drama-

tiq,2.5481481481481483,5883,3009,3289,566,489,784,1321,753,1004,2779.2

030389826928,4582.219370478585,112.19739373633,18612.86880578363,1034.

048266987979,1.5274064568261951,327,12,0.0366972477,medium 

fab-

ric,2.7633711507293355,8765,4344,5023,659,646,1658,1438,1156,1726,6109

.813843252351,10245.815452333063,89.46221480620058,55984.012134556906,

3110.222896364272,3.415271817444354,9269,1512,0.1631243931,medium 

face_recogni-

tion,1.9166666666666667,1638,649,830,346,340,85,383,242,355,1040.79317

61683576,1802.4373419998574,25.925595238095237,5540.131020551554,307.7

850566973085,0.6008124473332858,7481,1400,0.1871407566,high 

flashtext,5.0,949,440,503,120,108,179,159,107,257,498.5305460230142,15

00.2185492925153,14.161764705882353,13768.070328097627,764.89279600542

36,0.5000728497641717,621,70,0.1127214171,medium 

flask,3.591187270501836,15706,7820,8891,951,999,2373,3443,2732,4348,17

249.356167331083,29834.387527457588,150.62898664359838,158860.64519009

54,8825.591399449746,9.944795842485863,31106,9824,0.3158233138,high 

glances,4.801418439716312,19138,9109,10122,4150,4842,1127,3047,3853,58

58,21291.849087373004,37104.70450645701,346.5619815079076,291429.61104

821897,16190.533947123276,12.368234835485675,8670,632,0.0728950404,me-

dium 

home-assis-

tant,2.8410857572718156,250812,132911,173556,5530,21294,7738,48224,317

20,47787,150643.84651282776,261233.85789792633,3049.589943813649,12120

89.1575952151,67338.28653306731,87.0779526326419,10338,2944,0.28477461

79,high 
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httpie,3.7818574514038876,6497,3155,4416,382,378,396,1307,1753,2685,97

43.641080772755,16436.40095729674,111.05220639986848,73471.39140759644

,4081.743967088692,5.478800319098911,32633,2208,0.0676615696,medium 

incubator-

mxnet,3.8516816377689578,114497,57649,66400,13520,13615,19134,15348,26

609,48221,163970.01366514707,331363.0041014389,2161.506196044087,30574

88.2376696137,169860.45764831212,110.45433470047955,12078,4450,0.36843

84832,high 

incubator-super-

set,3.501605136436597,24981,11586,19581,971,1069,927,3404,2690,4484,17

205.67155578989,31419.58072079948,164.93497515538468,268399.9439629197

6,14911.10799793999,10.473193573599826,16808,2624,0.1561161352,medium 

interactive-coding-chal-

lenges,1.6223628691983123,4446,3197,3291,46,42,0,1113,738,961,1708.629

1137599258,3247.884165940303,111.33660989548083,7926.2240958386465,440

.3457831021451,1.0826280553134342,11376,1441,0.1266701828,medium 

keras,4.427700348432055,58260,28891,35683,2522,2385,10838,9354,12666,2

3063,91753.39690120035,177341.24942191428,691.9652587670097,1668314.16

78594071,92684.12043663376,59.11374980730481,21869,7969,0.3643970918,h

igh 

lo-

calstack,3.6402535657686212,10038,6446,7525,638,634,209,1670,2577,3947

,14899.220916655968,25160.449778018665,177.28194851131593,153806.65748

97356,8544.814304985313,8.386816592672886,9380,460,0.0490405117,medium 

material-

theme,2.7142857142857144,872,369,647,8,20,12,193,119,163,462.214166885

2933,776.6925931930143,15.220454545454547,3190.472260881502,177.248458

93786122,0.2588975310643381,10031,703,0.0700827435,medium 

mental-

ist,4.041284403669724,3315,2263,2356,126,84,308,567,588,1047,3494.4819

550419966,7004.470711533335,52.46746835909434,64055.01083864263,3558.6

117132579243,2.3348235705111113,309,32,0.1035598706,medium 

mitmproxy,3.92435987784825,53891,32237,39999,1968,1460,3221,9211,10736

,16811,55527.39896960162,98321.74859488639,906.3571874791853,469329.40

749024093,26073.85597168007,32.773916198295495,8682,1255,0.1445519466,

medium 

mod-

els,3.6103177436629776,156203,66898,92558,16327,16929,22379,24337,2352

7,41692,126785.7018723069,258160.2090285164,2444.5329605924576,2050200
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.9389762299,113900.05216534589,86.05340300950535,23867,11516,0.4825072

276,high 

pan-

das,4.823361988847584,328833,183394,218644,20910,20344,26426,63419,545

92,107927,411160.21470631,857614.5952806079,2699.6779460834055,9673668

.689728705,537426.0383182615,285.8715317602024,11749,4598,0.3913524555

,high 

phish-

ing_catcher,15.0,300,67,235,33,23,7,35,48,84,239.31111664374467,469.13

685006057716,4.780487804878049,2242.7029905334907,124.59461058519393,0

.1563789500201924,420,90,0.2142857143,high 

pretrained-mod-

els.pytorch,1.559782608695652,4391,1954,3660,492,69,114,548,276,643,11

74.84145525732,2531.0715483043496,68.95337967998066,15947.458576002893

,885.9699208890496,0.8436905161014497,521,50,0.0959692898,medium 

pyro,3.2286012526096033,15503,8382,9489,1063,942,2284,2788,3814,6319,2

0919.71980741966,39510.6701977952,362.422007056042,276199.8675498222,1

5344.437086101236,13.17022339926507,1993,180,0.0903161064,medium 

pyschemes,2.7142857142857144,425,283,319,3,14,0,92,51,74,208.307370823

92017,356.0507275842214,5.974137931034483,1301.0174732459996,72.278748

51366664,0.11868357586140715,346,11,0.0317919075,medium 

pyspi-

der,3.490353697749196,16500,10556,12511,879,916,524,2549,2976,4885,159

75.983991906243,29671.057889394688,276.2011334747333,213053.2946046672

6,11836.294144703734,9.89035262979823,10145,2638,0.2600295712,high 

python-pat-

terns,1.3380726698262244,4758,2409,2493,549,579,546,1140,441,571,1438.

9076473306388,2328.284480952383,50.3906185300207,5056.986520173977,280

.94369556522076,0.7760948269841277,13212,3084,0.2334241599,high 

pytorch,3.0329995448338645,73299,38113,50257,2734,2587,6777,13678,1540

1,26566,93862.23925732012,180473.26784822086,1254.9954367340922,157352

1.7219445019,87417.8734413611,60.157755949406955,9288,1966,0.211670973

3,high 

red-

dit,3.8410268487988697,64155,33080,42855,7155,7432,3022,10846,10353,17

718,70534.58305672788,134036.02304023068,674.0370422630574,1382428.715

0407312,76801.59528004064,44.67867434674358,14163,2592,0.1830120737,hi

gh 
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reinforcement-learning-an-introduc-

tion,3.34375,5222,3320,3320,1101,1108,44,750,1941,3543,11873.444136788

254,23376.124395410952,155.02777624156252,174517.16725220322,9695.3981

8067796,7.792041465136986,2146,859,0.4002795899,high 

re-

quests,4.211221122112211,9368,4580,5632,859,843,1013,1880,1708,2720,12

071.357579016258,20672.670617282343,85.09237917280956,170393.320285093

74,9466.295571394096,6.890890205760781,28678,5266,0.1836250785,high 

scikit-

learn,3.153128950695322,202941,85559,101747,14925,14813,46711,39670,34

497,63020,209260.01789946939,423145.4072274017,3062.0333731235282,4046

074.810818118,224781.93393434008,141.04846907580028,23048,12144,0.5269

003818,high 

scrapy,2.4809437386569875,35659,21953,25772,1304,1217,1894,6776,4505,6

127,18841.938550256546,30585.464439161795,523.1045825128801,138076.648

2194148,7670.924901078605,10.195154813053934,23905,6123,0.2561388831,h

igh 

source-code-

pro,3.25,216,124,149,19,16,8,43,20,26,70.2129994085646,112.37013046707

143,2.6666666666666665,299.6536812455238,16.64742673586243,0.037456710

15569048,11795,1038,0.0880033913,medium 

sqlmap,5.509081196581197,42451,21669,28402,5891,3284,3180,7585,11506,2

0285,75362.15390836878,146796.63869434022,789.9725050660625,1327234.68

4346324,73735.26024146244,48.932212898113434,9947,2314,0.2326329547,hi

gh 

sshut-

tle,4.974545454545455,5433,3457,4257,379,339,18,819,1673,2805,10460.06

9967064308,18828.69820996047,96.93241751988239,125436.4809840749,6968.

693388004162,6.2762327366534905,8740,733,0.0838672769,medium 

SSRF-Test-

ing,3.21875,1049,898,935,21,20,0,94,409,624,2762.256384747253,4471.854

910466374,18.630689545109348,23737.23919705749,1318.7355109476382,1.49

06183034887914,389,77,0.1979434447,high 

system-design-pri-

mer,1.6285714285714286,213,112,122,4,12,20,59,24,33,36.36452797660028,

78.30628370550306,3.7666666666666666,78.21022682391191,4.3450126013284

4,0.026102094568501027,20997,2469,0.1175882269,medium 

tan-

gent,2.6321974148061105,10544,5212,5826,1121,1198,1212,2308,1718,3032,
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9304.505705195772,18358.8220624155,188.60273665519014,130578.759093403

29,7254.375505189071,6.1196073541385,1206,63,0.052238806,medium 

tensor-

force,3.6666666666666665,17286,6734,9606,2357,2282,2494,2904,2993,4664

,15497.015915336342,27729.344650201165,317.8203228071778,188945.049627

14488,10496.947201508048,9.243114883400388,964,142,0.1473029046,medium 

thefuck,2.3383838383838382,13038,6350,9698,213,227,209,2904,2799,3370,

7725.605389248328,12423.424877039552,401.29894562102004,27343.51640666

321,1519.0842448146227,4.141141625679865,32188,1578,0.0490244812,me-

dium 

tor-

nado,2.5879167854089484,43586,23490,26420,4128,3976,5946,7244,5862,903

7,36452.00129403817,62211.35482116145,432.3917015513697,540659.1408079

123,30036.618933772912,20.73711827372049,14626,4321,0.2954327909,high 

TuSimple-

DUC,3.8533333333333335,1367,827,979,149,121,63,204,391,693,1939.218742

9952594,3864.6398008580204,40.011549529282085,19679.086030049653,1093.

2825572249808,1.2882132669526736,220,39,0.1772727273,high 

Micropython-upy-

phone,2.467948717948718,1164,949,944,32,16,3,201,306,588,1943.83233450

38,4056.4341292905615,22.256864803747376,35016.411777749345,1945.35620

98749635,1.3521447097635204,334,19,0.0568862275,medium 

uTen-

sor,1.778061224489796,24864,2247,13609,237,232,7808,3215,605,1079,4293

.549718376219,8305.488702661878,38.998112891183574,101950.25616769199,

5663.903120427332,2.7684962342206263,405,35,0.0864197531,medium 

YouCompleteMe,2.4240506329113924,12876,5824,8473,1511,1481,471,2451,10

30,1593,5085.001811549347,9144.745113226545,107.12266791667105,55615.7

26912340615,3089.7626062411455,3.0482483710755144,15094,1726,0.1143500

729,medium 

you-

get,4.775919732441472,12598,8780,9459,810,684,444,2011,3824,6022,21620

.970753675763,38920.69415330699,329.80070118349073,297956.261972012,16

553.125665111784,12.973564717768992,15847,3191,0.201363034,high 

youtube-

dl,5.2743609212857505,128906,51521,109997,4310,2638,1042,15229,20673,3

1427,113151.45329712417,200612.8121954109,1832.6888599489837,1645742.6

509081253,91430.14727267333,66.8709373984704,31145,5824,0.1869963076,h

igh 
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ZeroNet,4.238142785821268,27869,16204,17564,2633,2174,2563,5568,8981,1

5722,57519.940602795694,111204.47313801305,676.1681589682894,1209874.4

481182613,67215.2471176812,37.06815771267102,10290,1300,0.1263362488,m

edium 

 


