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Abstract 

One major factor that can influence sustainable living of people is the understanding of 

energy data consumption to achieve behavioral change which in further will lead to min-

imization of energy expenses as well as decreasing the waste footprint to the climate. 

Energy disaggregation tries to enhance the process of leaning the energy behavior of the 

user by categorizing the total consumption of a household into appliance level consump-

tion. This study aims to develop an energy disaggregation system that will produce rec-

ommendations on which actions could be taken to minimize the energy consumption of 

the household based on the final output of the disaggregation process. 
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1 Introduction 

Unconscious energy consumption contributes to the rise of greenhouse gas emissions 

forcing to be in the focus of attention of a great number of scientific papers and organi-

zations activities, that are pointing out the consequences that we will face in the near 

future with the climate as the central recipient. These consequences will create irreversi-

ble damage resulting in the formation of unsustainable environments. 

Climate change is an international problem that all countries must address by developing 

and implementing national legislations that specifically will tackle the vital problem of 

global warming. 

European Union (EU) has funded numerous research initiatives in order to investigate 

possible causes, discovering that building sector is accountable for approximately 40% 

for energy consumption and 36% for carbon dioxide emissions within EU [1] territory 

making buildings the largest energy consumer sector which result in high potential of 

energy saving capabilities reducing the overall energy consumption. The outcome has 

triggered the creation of legislations and standards in national but also in international 

level with respect to energy consumption minimization. Specific measures introduced as 

a means to enhance the performance of the buildings from the perspective of the envelope 

and technological systems in new constructions and existing building stock. Such 

measures are the Energy Performance of Building Directive [2] and Energy Efficiency 

Directive [3] which has been presented by EU between 2010 and 2012.  

Furthermore, EU to reinforce the process of energy consumption reduction published 

the Energy End-Use Efficiency and Energy Services Directive [4] denoting that all mem-

ber states should make mandatory to all energy providers to incorporate within the elec-

tricity bill different types of feedback, as an example detailed analyses of overall energy 

consumption together with appliance level consumption, frequent billing, current and his-

toric data comparisons and further information that will be used to extract new knowledge 

and rase the awareness of end user with respect opportunities that might exist to reduce 

their energy consumption, educate them by making energy consumption data available 

and understandable through the application of user friendly visualization tools. 
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The effectiveness of feedback has been under investigation [5], specifically the en-

ergy savings that can be made by providing end-users recommendations based upon their 

energy consumption data. In boarder terms the effectiveness of the feedback does not 

really only in the contents of the information but also on the frequency, communication 

medium, the method used to present information, detailed and understandable breakdown 

in order to give the end-user a deep understanding of their energy consumption and which 

appliances influence their household expenses. Additionally, the feed-back can be en-

hanced through the usage of different comparison measures. On the whole, every type of 

feedback will have a positive impact nevertheless the more detailed is the information the 

higher the impact will be. The adoption of feedback on a great period of time will not 

only help end-users to extract new knowledge but also help them to assimilate it with 

their habits [6] forming a revolutionary culture that will be sensitized on environmental 

issues equipped with the appropriate supplies in order to contribute to the minimization 

of energy consumption and from the economical perspective to reduce the expenses of 

their households.  

Instant feedback is the most suitable method to interact and share information with the 

end-users, the most appropriate ecosystem that can support it is the employment of smart 

cities. Smart City concept [7] can be described as a digital platform which consists of 

smart electronic devices that are spread to different locations in a city exploiting different 

resources with purpose to provide improved living conditions, more desirable manage-

ment of existing resources and services. Smart city concepts can be facilitated by copious 

resources that can be found within an urban environment (Figure 1). 
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Figure 1: Smart city applications [1] 

The widespread employment of smart city technology has increased the inflow of 

data, creating enormous amount of data in very small period of time. To take advantage 

of the incoming information different data mining techniques has been implemented in 

order to extract knowledge that will add value to the data.  

To take advantage of data mining capabilities, numerous industries have incorporated 

them into their business processes, some of the industries are:  

 Financial Industry 

 Retail Industry 

 Telecommunication Industry 

 Research Industry 

 Security Industry 

 Marketing Industry 

 Sales Industry 
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Energy industry has developed various smart devices and systems that empower end-

users to monitor their energy consumption dynamically meaning that they can oversee at 

any time the total consumption of their household. Smart meters are electronic devices 

that are installed into the main electrical panel of a household and record the total energy 

consumption. 

 

Figure 2: Installation example of a typical smart meter [2] 

Because, as described previously the presentation of total consumption is not considered 

as an energy minimization measure due to the fact that it does not provide detailed break-

down of information in order to assist end-user to understand how their energy consump-

tion is consumed by their actions, meaning detailed feedback containing the consumption 

of each individual appliance that is used within the household. To overcome this problem, 

devices have been developed that can be attached into the electrical plugs (sockets) and 

then electrical devices can be connected directly upon these devices. 

 

Figure 3: Example of a typical smart plug [3] 
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They are called smart plug and except from energy consumption monitoring, can pro-

vide automation capabilities by turning on and off remotely the appliance that is con-

nected on it. The method of installing devices scattered within a household for the purpose 

of monitoring total energy consumption alongside the appliances consumption is called 

Intrusive Load Monitoring (ILM). This methos is high accurately because all the appli-

ances are monitored leading to a detailed breakdown of the energy consumed in a house-

hold. A huge disadvantage of the method is the high capital investment that an end-user 

must do for all the devices, stable and high-speed wireless internet connection is required 

since all the devices will be connected into a single access point increasing the network 

traffic and as of their nature wireless connections are not considered as stable as wired 

connections. Another problem is the formation of tremendous amount of data within a 

small period of time and by considering that the method can be widely applied to every 

household common database system cannot support the scale of this kind of projects. 

Technology providers must invest into their infrastructure to upgrade their database sys-

tems if they want to accommodate successfully Intrusive Load Monitoring.  

Taking into account the obstacles of Intrusive Load Monitoring the scientific com-

munity has turned their attention in more feasible solutions that will not require huge 

investment from both sides of technology providers and customers. In 1992 George W. 

Hart has published a method called Nonintrusive Appliance Load Monitoring (NALM) 

[11] which calculated the appliances energy consumption by using the readings of single 

energy meter that has been installed into the main circuit panel of a house. His approach 

uses statistical model and data mining methods in order to categorize the data and then 

identifies which group of data belongs to the corresponding appliances. NALM is also 

known as Nonintrusive Load Monitoring (NILM) and as Energy Disaggregation.  

With passing of time several papers have been published introducing new methods or 

introducing improvements to existing methods correcting issues that they haven’t been 

addressed. The final output of an energy disaggregation process must be user friendly in 

order to be easily understandable by the end-user thus the total energy consumption side 

by side with the portion of energy consumed by the appliances exist with-in the house-

hold. Fig. 4 illustrates an example that a typical energy disaggregation method might 

contain. 
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Figure 4: Example of an energy disaggregation output [4] 

The enhancement of energy reduction process is not only depended on energy dis-

aggregation considering that the final output of such a model is not sufficient for an end-

user to conceive how to act in order to achieve lower energy consumption. The user must 

dedicate time to search and learn practices on how to lower their household energy con-

sumption and then side by side with the disaggregation output to reduce the electricity 

expenses. It is very difficult for the end-user to handle it on its own this procedure, for 

that reason recommendation systems have been developed in order to foster the decision 

process of the end-user. Recommendation systems are not a new topic, they have been 

used for quite some time in diverse sectors, Amazon [13] and Netflix [14] use them to 

suggest products that the user may want to buy or for suggesting movies for the user to 

see based on their historical data and other users’ preferences. In energy sector, recom-

mendation systems can by implemented in combination with the disaggregation output to 

suggest end-user solutions on how to minimize the energy consumption. 

This paper focus to construct an energy disaggregation model that will be based on 

past papers that have been published for the same topic and on top of that will accompa-

nied by a simple recommendation system that will take into account the number and type 

of appliances used for energy disaggregation and create consultations on how to achieve 

energy savings helping the end-user to better understand their consumption and imple-
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ment the proposed  actions of  recommendation system to reduce their expenses benefit-

ing them economically but also the environment since lower consumption means lower 

carbon dioxide emissions. 

The result of the disaggregation method developed in this paper can be considered 

highly accurate for different type of appliances that does not share the same electrical 

characteristics, with respect to recommendation system it also performed as expected 

providing suggestions with the highest score on specific appliances. 
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2 Literature Review 

This chapter contains the presentation of existing knowledge for non-intrusive load mon-

itoring methods that have been tested and the basic technologies used to construct a rec-

ommendation system. 

 

2.1 Data Mining Methods 

Data mining is a processing method that can take advantage of the large quantities of 

data by investigating them to extract any meaningful pattern that might exits or discover 

previously unknown information that potentially may appear valuable converting it into 

new knowledge. In more details, data mining is divided into two main methods prediction 

and description. As their names indicate prediction methods are used to predict unknown 

or missing values and description methods detect patterns that describe the dataset. Based 

on these two methods there have been developed 6 main data mining functions that have 

different capabilities, implementation procedures and output, Tables 1 and 2 contains sort 

description of them. 

Table 1: Descriptive methods 

Descriptive methods 

Clustering 

Is the task of dividing data into separate group. Each data 

within the group is considered to be similar and data that belong 

to different groups are considered to be dissimilar. 

Association Rule 

Discovery 

Is a rule-based method that discovers relations between the 

data of a database or a dataset using some measures of inter-

estingness. 

Sequential Pattern 

Discovery 
Discovers statistically relevant patterns in sequential data. 
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Table 2: Predictive methods 

Predictive methods 

Classification 
Is a function that allocates items in a collection of classes. The goal is to 

accurately predict the target class for each case in the data. 

Regression 
Is used to predict a range of unknown numeric values given historical 

data. 

Deviation Detec-

tion 
Is a technique that detects significant deviations from normal behavior. 

 

Varius disaggregation models have been developed based on the principles of data 

mining methods leading to different performances.   

2.2 Event Detection 

Non-intrusive load monitoring procedures are composed by four main stages as the 

authors of the study [15] state. These stages are the power measurement where electrical 

characteristics (volts, ambers, active power, reactive power, etc.) of the main control 

panel from a household are collected. In some cases, the measurements of individual ap-

pliances might be recorded in order to enhance the overall procedure of a NILM algo-

rithm. Event detection is translated as the spikes that are formed by the electric appliances 

when they are powered on and off. Different types of appliances form dissimilar events 

which then are extracted in order to be used during classification. During classifications 

step the model is trained to be able to distinguish/identify the type of appliance based on 

the events. The final step is the disaggregation of energy based on aggregated consump-

tion data (identify the portion of energy that each of the appliances has consumed from 

the total consumption). 

 

Figure 5: Diagram of NILM main components [5]  

They presented four metrics so that event detection algorithms to be evaluated, namely 

the 1) True Positive Rate, 2) True Positive Percentage, 3) Total Power Change and 4) 

Average Power Change. Through investigation of literature, they concluded that event 
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detection approaches can be categorized to three categories the Expert Heuristics, Proba-

bilistic Models and Matched-Filters. To evaluate their proposed metrics, they imple-

mented a modification of Generalized Likelihood Ratio (GLR) event detector which be-

longs to Probabilistic Model category. The GLR uses a log likelihood ratio test and vot-

ing. From the five detection parameters that the method uses, four of them was altered to 

create different combinations of parameters. They concluded that the most efficient eval-

uation metric is the total power change since it encompasses power characteristic to com-

pute the evaluation. 

A hybrid method consisting of a single base algorithm accompanied by two auxiliary 

algorithms was developed [6] in order to detect the events from aggregated data utilizing 

one of the electric parameters that can be measured by a smart meter. The base algorithm 

incorporates the detection of events by calculating the moving average values of the 

points within a specified time interval, then the subtraction of the absolute values of the 

points is compared to a threshold and if exceeds it then these points are listed as events. 

Α disadvantage which must be addressed very carefully is the selection of the proper time 

interval due to the fact that a large time interval may miss the power on or off of an 

appliance when it occurs in small time interval. After implementing the base algorithm, 

they have found that alongside of true events detection there was identified many false 

alarms (events that the algorithms detected but in reality, they are not events but only 

fluctuations in the power measurement). To overcome it they used the time difference 

between two events and then they compare it to a specified time threshold, if the differ-

ence is below, the two events are considered as one event minimizing the number of false 

events. Even after the introduction of the time threshold their base algorithm detects false 

events, this is attributed in appliances that create high fluctuations (heavy consumption 

appliances) and in the duration change of their state (the duration of power on or off is 

greater from the time interval specified during the first stage of the algorithm). To elimi-

nate the existence of false events they defined two auxiliary algorithms. The first one uses 

the calculation of first derivative, then a smoothing algorithm known as LOESS is imple-

mented to reduce the noise created by the first derivative. Then, peaks are identified by 

comparing a point with their beside points, if the value is not smaller then it is considered 

as a positive peak, otherwise if the value is not larger then is considered as a negative 

peak. The last part of the first auxiliary algorithm is the reduction of false events by using 

derivative threshold and a time limit. By implementing the first auxiliary algorithm they 

have managed to tackle the false events that are produced by appliances that have long 
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transitions when they change their state. The last part is appliances with high fluctuations, 

to address this problem the second auxiliary algorithm was introduced. 

 

 

Figure 6: Overall hybrid event detection procedure [6] 

It's first par is the use of Savitzky-Golay filtering to remove unwanted fluctuations and 

retain the useful portion of the data. Then the base algorithm is reused for the total re-

move of false events. Since the process of filtering may remove and true events, a com-

parison between the events and their derivatives is made in order to capture the true events 

that may have wrongfully removed. 

Event detection is one of the main components that must be addressed with great care 

as it impacts the final output of a non-intrusive load monitoring model, that’s the reason 

most research develop event detection algorithms consisting of highly complex statistical 

methods. To overcome the burden of complexity two models based on simple statis-tical 

features was developed [7], namely the variance and mean absolute deviation. Both algo-

rithms developed have as foundation the concept of Sliding Window which is illustrated 

in Fig. 7. 
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Figure 7: Sliding Window representation [7] 

Their algorithms were tested by using a public dataset known as Dataport which com-

prises by household data consumption and appliances consumption data. The first step is 

the extraction of noise that might exists in the dataset due to extreme fluctuations that the 

appliances produce. So, median filtering was used as a preprocessing technique. Then the 

variance and mean absolute deviation is computed. A threshold ‘δ’ then, was specified in 

order to reduce the number of errors that are produced because of the dense fluctuations 

that exist in the dataset. Also, the width of sliding window must be initialized during the 

initial state of the algorithms. In order to specify the accuracy of the algorithms output 

they computed the absolute difference of the time the actual evet occurred (this infor-

mation was provided by the public dataset Dataport) and the time detected evet occurred 

and compare it with a specified delay tolerance threshold ‘Δt’. If the value is below of the 

delay tolerance threshold, then the event is considered as true positive. The final output 

of the algorithms is the start and end time indicators of detected events. The algorithms 

have been applied to the dataset with the same parameters in order to compare them, as 

evaluation metric Precision and Recall was computed. The variance algorithm achieved 

a precision of 80.556% and a Recall of 79.573%. The mean absolute deviation algorithm 

achieved 87.464% and 91.185% respectively for Precision and Recall. Those numbers 

indicate that the mean absolute deviation algorithm has better performance. To investigate 

the parameter that has major impact in the performance of the algorithms, a sensitivity 

analyses was conducted by altering the width of the sliding window and set constant the 

remainder of the parameters. Their analyses showed that by increasing the width of the 
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sliding window, above a specific limit, the performance of both algorithms diminish dra-

matically. Therefore, must be treated with care meaning that the best possible value must 

be selected in order for the algorithms to achieve a desirable performance. 

 The encumbrance of complexity during the stage of event detection has started to at-

tract the interest of the scientific society in order to engineer a method that will give high 

score of accuracy with minimal computation and complexity effort. A method that satis-

fied the aforementioned criteria has been introduced, it is called High Accuracy NILM 

Detector [8] or for abbreviation HAND. The model uses sliding window technique and 

calculated the variation of standard deviation for each time interval (window) and then 

compares it with a specified threshold to distinguish the high amplitude varia-tion events 

(transient state event) from the low amplitude variation events (steady state events). Their 

method accepts as input the HSF current signal to detect the events of the appliances. For 

evaluation purposes they used simulated and real data, computing precision and recall. 

During the simulations they introduced a delay tolerance threshold to identify the true 

positive events and the false positive. For the simulated data they used an SNR of 50 dB 

and two thresholds of 200 ms and 500 ms of delay tolerance. Their model performed 

poorly for the delay of 200 ms, but for the 500 ms the model achieved 98.19% and 86.20% 

for precision and recall respectively. To investigate the impact of SNR to their model they 

computed a sensitivity analysis having stable the delay and al-ternate the SNR. The final 

verdict of the sensitivity analysis was that their model is vulnerable to noise (SNR) fluc-

tuations and by the authors this was expected since their model is based on standard de-

viation. 

 

Table 3: True Positive (TP), False Negative (FN), False Positive (FP), Precision and Recall for 

different SNR values [8] 

SNR TP FN FP Precision (%) Recall (%) 

50 dB 7399 219 0 100.00 97.13 

40 dB 7432 202 15 99.80 97.35 

30 dB 7490 186 399 94.94 97.58 

 

Regarding real dataset simulations revealed that the model has detected all events, de-

noting a high-performance event detection model. 
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2.3 Energy Disaggregation Model 

A generic energy disaggregation method has been tested [9] lacking any prior 

knowledge concerning appliances specification, usage time, number of devices in use and 

how long they have been used. The model will be able to identify the number of devices 

that are used, the consumption power of each device and the amount of time that they 

have been in usage. To implement the developed model a public dataset has been used 

which encompass both the aggregated consumption of a household as well as the con-

sumptions of each electric appliance. Sort circuit data has been used mainly to validate 

the accuracy of the model. The first step was to analyze the raw data in order to detect 

any anomalies that may lead to inaccurate results. After the preprocessing phase the next 

step was to discover the starting point and the stopping point of each appliance in order 

to form the usage period of each appliance. 

 

Figure 8: Power data for different electric devices [9] 

Fig. 8 illustrates the starting and stopping edges that are formed when a device will start 

to operate up until it stops. Then, either of the edges can be used to get the appliance level 

power information. Gaussian Model (GM) was used into the stopping or decreasing edges 

to model them as each aggregated power value can be modeled after Gaussian Mixture 

Model (GMM). Expectation-Maximization (EM) algorithms were used to cluster the de-

creasing edges and get the number of appliances, the number of clusters is denoting the 
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number of appliances. After the estimation of the clusters, the EM algorithm was imple-

mented once again to calculate the model vector. Following the effect of EM algorithm, 

they proposed a model to optimize the output of the cluster based on the steady operation 

of the electric devices during the interval of the staring and the stopping edges (the steady 

operation can be seen from Fig. 8). The final step was to cluster the edges that belong to 

the same cluster and then to pair the edges that belong to the same appliance in order to 

discover the duration that each device operate. After following the aforementioned pro-

cedure, they evaluated the model based on the measures of the public dataset. They cal-

culated a fluctuation parameter δ which was used to cast out invalid clusters and each 

unmatching pair (starting and stopping points) was also eliminated. Finally, to determine 

the performance of their method actual and detected appliance energy signals was com-

pared and found that they are almost identical with a very small portion of fluctuation. 

 

Figure 9: Comparison of actual and detected energy consumption of four appliances [9] 

The usage time of each appliance has been modeled and evaluated through the use of 

false positive and false negative. False positive is the time period that has not identified 

by their model but actually is a useful time period where some devices was on, and false 

negative is the time period that the model has identified as a useful period but actually 

was not. The model has efficiently detected the usage time period with the only exception 

to be the microwave which has a 13% of misleading accuracy. Similarly, the portion of 

energy consumed for each appliance was conducted and the real and the detected values 

was compared showing that the model is highly accurate. 
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Figure 10: Detected and real energy consumption per appliance [9] 

Besides the exceptional results of the model they, expressed that their model has three 

major limitations that can affect drastically the accuracy of the model. The first one is the 

frequency of the measures in the dataset. They noticed that as the frequency of the energy 

consumption data increase the accuracy of the model and generally the performance is 

depreciated leading to wrong results. The second has to do with the state of the appliance, 

their model only can identify when an appliance is on and off but in general there are 

some devices that have more states. The last limitation concerns the fact that the model 

can perfectly detect the usage period, energy consumption and the number of appliances 

used but cannot correlate these characteristics with the type of the device which is the 

major drawback of the model. 

A disaggregation technique was introduced [10] using PyCharm, a well-known inte-

grated development environment for python programming language alongside with all 

the necessary extensions and libraries. Their model was based on events and more spe-

cifically in energy consumption changes that are formed when appliances change their 

state. 

 

Figure 11: Changes in consumption per appliance [10] 
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Any statistically significant variation in consumption data that was exceeding a specified 

threshold was considered as a change. Those changes can be positive (when the consump-

tion of a device is increasing) and negative (when the consumption is decreasing). After 

the establishment of the cluster pairs the threshold was redefined and the whole process 

was repeated up until all data was pared. Subsequently, to peer the positive and the neg-

ative changes with the records from the database their algorithm creates two graphs one 

for the measured values and the other for the database and therefore matches are created 

based on the distance of the two graph nodes. A dataset containing the consumption of 

six appliances of one day was used to assess the algorithm. 

 

Figure 12: Disaggregation output [10] 

Except from real data records, artificial data was used during the evaluation procedure. 

The output of the algorithm was considered poor for the artificial dataset otherwise in real 

data the performance was characterized as good with the possibility of improvements.  

A cloud-based system was developed [4] called ‘Smart Saver’, which is capable to 

compute the energy consumption per appliance alongside the aggregated energy con-

sumption in two modes. The first one is the online mode where smart meters can be con-

nected to the system and dynamically or online to calculate the energy disaggregation and 

the second one is in offline mode where the user can upload energy consumption data and 

receive back the disaggregated information. Their system is based on three parameters 

the stand-by power, rated power and power deviation that can be easily found in manuals 

or through a search on the web for an average electric appliance. Appliance’s state 

(on/off) was considered as separate variables and thus they created a state matrix and 

associated it with the pre-defined power parameters. Through the association a sparse 

switching event recovery (SSER) optimization model was constructed to recover the state 

matrix for each appliance alongside with the timeline. Based on the rated power and the 

power deviation the energy consumption with the upper and lower edges for all appliances 

was established. To implement their SSER model they used a parallel local optimization 
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algorithm (PLOA) that will return to the final user the disaggregation of energy consump-

tion per appliance. The system performed efficiently in online and offline mode and the 

final output of the system is depicted in Fig. 13. 

 

Figure 13: Smart Saver output [4] 

A non-complex model has been tested to conduct energy disaggregation [11]. To 

gather consumption data, they have constructed a smart system that encompasses three 

sockets that their aggregated consumption is monitored by a smart meter that sends power 

(Watt) and timestamp into a central server (computer) that stores and computes appliance 

classification. Two bulbs of 15W and 40W and a soldering iron was used as a load in the 

sockets. The grid of the system is not staple from the perspective of voltage varying from 

220 to 250V leading to unstable consumption. To address this problem efficiently they 

used machine learning algorithm known as C4.5 Decision Tree. To train the model con-

sumption data of appliances and their aggregated consumption was used, furthermore, to 

overcome the problem of fluctuations the normal deviation of specific appliances was 

considered in order for the model to able to perform under these conditions sufficiently. 

The C4.5 algorithm creates a tree based on the attributes of the dataset and their corre-

sponding values. Information gain is calculated for all attributed and then the highest 

value is selected as a node. This process is repeated until there is any attribute left on the 

dataset. WEKA software tool was used and more specifically the J48 algorithm (is the 

implementation of C4.5 algorithm in WEKA). The model was implemented using a 10-

fold cross validation where the dataset is apportionment in 10 parts, 9 of them are used to 

produce the model and the remaining 1 is used to test the model. 
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Figure 14: Pseudo code of appliance classification [11] 

Fig. 14 illustrates the pseudo code that was produced by the model, it is based on threshold 

on which the appliances are classified. The accuracy of the model reached 74% leading 

to low performance, the authors justified that the result of the model is due to three pa-

rameters. The first one is that the chosen algorithm was inappropriate to handle the com-

plexity of appliance classification. The second parameter has to do with the frequency 

that energy consumption data was recorded. During the 4 second interval some appliances 

might be turned on and off resulting in low resolution of the data and finally the creation 

of sparks due to small damages in the electrical circuit of the building, unstable voltage 

of the grid and during the initiation of appliances cause noise in the dataset. 

Two-layer classification based on k-nearest neighbors’ algorithm (k-NN) was pro-

posed [12]. For the requirements of their study, energy consumption data has been col-

lected from 50 households with a sampling frequency of 800Hz with a duration of 30 

days. From the collected data only the active, reactive power and the third and fifth cur-

rent harmonics where extracted. During the first layer the active and reactive power will 

be used to classify the appliances, for appliances that share same characteristics it is very 

difficult to classify them leading to overlaps (two deferent devices are clustered together). 

To address this problem, they propose the use of a second layer which will use the third 
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and fifth current harmonics of the devices. They explain that despite the similarities of 

active and reactive power of several appliances the currents harmonics are not similar and 

thus they selected to utilize the third and the fifth since the odd harmonics fulfil the re-

quirement as can be seen from Fig. 15. 

 

Figure 15: Current harmonics [12] 

K-NN calculates the distance of each data point and classifies them based on the nearest 

point thus for a sample data point x, the nearest point of x in the dataset is denotes as x΄, 

meaning that the x΄ belongs to the category of x. To determine the value of k they used 

an exhaustive method for all possible k values. The highest accuracy was found when k 

was equal to 20 and they have set a threshold to 15 in order to be used to classify the data. 

The algorithm generates two clustering graphs, one is for active power and reactive power 

and the second one is for the third and the fifth harmonics. Each appliance belongs to a 

single cluster which further belong to one of the quadrants. In the first quadrant takes 

place the clustering for the devices that operate and in the third quadrant is taking place 

the clustering for the devices that do not operate. The points of the first and the third 

quadrant that are part of the same category they are pared and the portion of consumption 

for each appliance is defined by the power and the period of time that is on and off. In 

more details they explain that in first layer they extracted the rising of active and reactive 

power and compare it with a limit point of 50-Watt, if the rising values overcome the 50-

Watt limit then the devices are considered to operate, and the timestamp is recorded while 

if the rising value does not exceed the limit it is considered to operate at a steady-state. 

After extracting the rising values of active and reactive power the values are searched in 

the corresponding graph for k neighbors. 
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Figure 16: Cluster of active and reactive power (left), cluster of third and fifth current harmon-

ics (right) [12] 

If the maximum number of members of the same class is greater of 15 then the datapoint 

belongs to the same category otherwise if the maximum number of members of the same 

class is less than 15, then the second layer takes place. The second layer is the same as 

the first but with the only difference that now the third and the fifth current harmonics are 

used. For the members that their value is greater than 15 means that the datapoint belongs 

in the same category and for the members that their values don’t exceed the limit of 15 

are assigned to the category with the highest sum of neighbors for both layers.  

To evaluate the effectiveness of the model they implemented recall, precision, accuracy 

and F1 into two steps, the first step considers the first forty households in order to assess 

model accuracy and the second step which considers the last 10 households in order to 

test the generalization of the model. Their model reaches acceptable accuracy levels lead-

ing to generally pleasant performance. 

 

Table 4: Accuracy of the first 40 household [12] 
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In [13], investigated an alteration of a supervised non-intrusive load monitoring 

(NILM) model that it is based on dynamic fuzzy c-mean event clustering and k-NN label 

matching. Over a period of eight months data has been collected from 10 most popular 

appliances that a household is equipped. Then they have constructed a signature database 

which is composed from the real power and reactive power events for each of the appli-

ances and their timestamp. To exclude undesired values that may lead to noise, they have 

conducted several filtering methods and they have concluded that the most appropriate is 

the total variation denoising. 

 

Figure 17: Original data consumption (left), total variation denoising (right) [13] 

To identify the edges, they set a threshold, if the real power exceeds it then it is considered 

that the appliance change state. The reactive power for each appliance event was then 

calculated and presented into (dQ, dP) space where dQ is the reactive power and dP is the 

real power. 
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Figure 18: Appliance events in (dQ, dP) space [13] 

The completion of the signature database was done by performing a fuzzy c-means clus-

tering method in order to identify and cluster the events that best represent each appliance 

operation. The only drawback of the method is that the number of clusters must be ini-

tialized before algorithm implementation. To get through the problem they implemented 

Akaike Information Criterion and the Bayesian Information Criterion to specify the num-

ber of clusters. After the completion of the signature database, they applied k-NN algo-

rithm in order to assign all the events with the most probable appliance signature. Their 

model performed effectively mainly for heavy consumption appliances reaching a score 

between 92% and 97% for recall and precision. On the contrary for low consumption 

appliances their model recorded low values of accuracy leading to values between 20% 

and 57%, resulting to incorrectly classification of this type of appliances.  

K-nearest neighbors (KNN) classification was implemented [14] in order to examine 

the effectiveness of the algorithm upon the field of energy disaggregation. KNN is a non-

parametric supervised classification method that stores the available classes (training set) 

and then uses them to classify new test points based on a majority vote of its neighbors, 

the test point is assigned to the class most common amongst its k nearest neighbors meas-

ured by a distance function. There are several distance functions such as Euclidian, Man-

hattan etc., the authors of the study choose to use the Euclidian distance which is the 

length of line segment between two points. 
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To test the algorithm, they used a well-known dataset which is called REDD and has been 

constructed in order to be used for energy disaggregation models. From the dataset they 

have extracted and preprocessed the consumption of seven appliances (furnace, bathroom 

ground fault interrupters outlets (plugs), oven, electronics (laptop, TV, speakers etc.), 

kitchen plugs, washing machine, dryer, microwave-oven), the aggregation of these appli-

ances data constitute the final dataset which they used. F-measure and G-mean was com-

puted to evaluate the accuracy of the KNN algorithm. 

Table 5: F-measure and G-mean for KNN classifier [14] 

 

For heavy consumption appliances the model achieved outstanding results reaching a re-

markable accuracy of 100% which indicated that the model classifies correctly heavy 

appliance, contrary for appliances with low consumption such as TV, speakers, PC that 

constitute electronics appliance in a typical household the model performed poorly reach-

ing an accuracy of 50%, meaning that half of the electronics devices are misclassified. 

 The creation of a benchmark model for implementing energy disaggregation was de-

veloped, namely the Non-intrusive Load Monitoring Tool Kit (NILMTK) [15]. The tool 

kit is publicly available and accommodated by documentation to help researchers to study 

it and use it as benchmark. In more details the NILMTK was created in python since it is 

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =    𝑥𝑖 − 𝑦𝑖 2

𝑘

𝑖=1
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already providing tools and modules that supports data mining and machine learning top-

ics. The tool kit was tested by the use of several publicly available datasets. Since these 

datasets have different characteristics (e.g., sampling rate, power features) the tool kit 

provides a universal data format which can be diagnosed and applied to diverse statistic 

model in order for the user to be able to evaluate the characteristics of the dataset and 

explore the appliance usage. Diving more deeply in tool kit capabilities, the next feature 

is the preprocessing which provides normalization to clean the dataset. The tool kit has 

the option to perform two disaggregation algorithms, the Combinatorial Optimization 

(CO) and the Factorial Hidden Markov Model (FHMM), the choice of the algorithms was 

made by the authors considering the fact that their popularity and extensive research upon 

energy disaggregation had a fruitful background. Considering that the tool kit can be ma-

nipulated as a benchmark evaluation tool, they integrated several evaluation metrics to 

give the user the ability to perform their load classification but also to assess the perfor-

mance in order to be able to investigate the features that impact their model. 

Table 6: Comparison between Combinatorial Optimization (CO) and Factorial Hidden Markov 

Model (FHMM) for different public datasets [15] 

 

Authors of [16] pointed out that Non-Intrusive Load Monitoring Toolkit (NILMTK) 

is the only software tool that can be utilized as a starting point or rather as a reference 

point to evaluate the accuracy of different NILM models. They state that the NILMTK 

needs a lot of time and effort to be understood meaning that the implementation of the 

toolkit is demanding but at the same time it offers a vast majority of capabilities. To tackle 

the complexity of NILMTK they produced a Simple Load Disaggregation (SLD) library 

which is based on NILMTK however they have removed all unnecessary tools and func-

tionalities and retain only the part of energy disaggregation segment. SLD uses Factorial 

Hidden Markov Model (FHMM) and Combinatorial Optimization (CO) model which are 

inherited from the NILMTK with an exception that their implementation in the SLD was 

modified in order the model to use python dataframe and not Hierarchical Data Format 

(HDF5) that it is used by the NILMTK. The preprocessing process was kept simple and 
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as a supervised model it contains the training and the test sets. The procedure of the train-

ing part requires a dataframe that contains the total consumption of a household, some 

appliances consumption, and timestamp. Accordingly, the test set contains the timestamp 

and the total consumption of a household. The model has the functionality to be trained 

for a variable number of appliances leading to an equivalent number of disaggregated 

appliances. The overall employment of the model is straightforward with a few lines of 

code and with not as much libraries as the NILMTK requires, with respect to the accuracy 

of the model, authors point out that both of the models share the same level of accuracy 

making the SLD library a user-friendly version of NILMTK for energy disaggregation. 

Table 7: Comparison between the software requirements of NILMTK and SLD [16] 

 

An alteration of non-intrusive load monitoring model was tested [17] based on event 

detection and random forest optimized by particle swarm optimization. The identification 

of events was done by comparing the power difference of two points between a threshold, 
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if the power difference is above or below the specified threshold value, then an event is 

spotted. The event detection algorithm consists of two parameters, the number of sam-

pling points per cycle and the threshold. The most interesting part is that in order to ac-

complish the energy disaggregation / classification they used Random Forest algorithm, 

this algorithm constructs multiple decision trees that are produced from subsets and fea-

tures of the main dataset. Multiple classifiers of low week accuracy are produced with the 

ultimate goal to form a universal highly accurate classification. The main problem of 

Random Forest is the fact that a number of parameters have great impact in the final 

output and there are only initialized by experience and background knowledge. To ad-

dress the issue Particle Swarm optimization algorithm was used. All parameters that have 

high magnitude formed a space vector which in further was fed into the Particle Swarm 

algorithm as a particle. Through a repetitive process the Particle Swarm algorithm will 

select the best solution of parameters to fed back in the Random Forest algorithm improv-

ing the final accuracy of the model. A dataset that includes the power consumption of 

thirteen appliances was used to implement the overall model. From the whole dataset the 

80% was manipulated for training the model and the remaining 20% used from testing 

the model. The final output of the model is to classify the state of the appliance and its 

type, for appliances that their state is on the model achieved an accuracy of 98.9%, on 

appliance that their state is off the accuracy was slightly decreased reaching 97.5%. 

 

Figure 19: Train (left) and test (right) result for power-on appliances [17] 
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Figure 20: Train (left) and test (right) result for power-off appliances [17] 

Another non-intrusive load monitoring model made [18] to identify the type of appli-

ances and the number that exist in an office. They installed a smart meter in the central 

panel of the office and extracted the current, voltage and power with a resolution of one 

minute. To construct the load feature for all the appliances and consequently for the whole 

office the characteristics measured from the smart meter used to calculate the active 

power and the inactive current which form the load feature.  

After the construction of load future vectors, they proceeded with the normalization of 

the data based in time domain then the implementation of the fuzzy c-means clustering 

took place in order to cluster the appliances based on similarities on load feature charac-

teristics creating a specified number of clusters which was initialized taking into account 

the inter-cluster entropy. To achieve the best possible value for the number of clusters 

they computed the inter-cluster entropy for a diverse number of appliance categories. Af-

ter plotting their findings, they concluded that the optimal value is to use 5 clusters since 

was gave them the highest score for the inter-cluster entropy. 
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Figure 21: Plot of inter-cluster entropy for different number of categories (appliance type) [18] 

To evaluate their model performance with respect to appliance categorization accuracy 

they investigated the number of appliances that exist in the office and found that there are 

6 appliances, resulting in five out of six estimations for their model.  

The efficiency of Decision Tree classification [19] when it is implemented in energy 

disaggregation was investigated. This study does not use a publicly available dataset not 

either, data from smart meters. They have used a software tool to simulate the circuits of 

four electric devices and extracted the voltage and current and afterward they used the 

data to calculate the active, reactive and apparent power, then they applied Discrete Fou-

rier Transform to obtain the fundamental frequency component. The resulted parameters 

form the power component that was employed as features in the disaggregation proce-

dure. They choose to utilize Decision Tree classification based on two scenarios, in the 

first one the parameters used are the power components they calculated and in the second 

one, they used the change in power components in more details these changes are varia-

tions applied in voltage, frequency and harmonic. In order to identify the best split for 

each of the attributes in the nodes they calculated the Gini index, the attribute with the 

lowest value was used to split the node. They pointed out that because the Decision Tree 

is utilized mainly for binary classification that means that their method can classify data 

into two classes which raised a problem since energy disaggregation has multiple appli-

ances to be identified. To overcome this barrier, they implemented a solution which they 

call it the ‘one against rest’, they set a class as positive and the rest as negative this gave 
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them the ability to execute binary Decision Tree. The dataset was split in two parts, half 

was used to train the model and the other half to test it. To extract the accuracy for both 

scenarios, index μ was utilized. 

Table 8: Classification accuracy of two scenarios [19] 

 

 

Table 9 illustrates the impact that the change in power has in the accuracy, for all appli-

ances a difference of 26.27% was recorded compared to the actual power data. 

Active power readings [20] harnessed to construct a model to classify the appliances 

based on Fuzzy Cluster analysis. In order to categorize the appliances correctly they uti-

lized the nonlinear curve graphics of loads due to the fact that appliances sharing the same 

type have identical values, on the contrary appliances with different type present major 

dissimilar nonlinear curve graphics. Then they brought the data to the same unit and build 

the similarity matrix, the similarity matrix presents the statistical similarity measure be-

tween the data to by classified. Then the cluster was constructed via the transformation 

of the matrix into an equivalent fuzzy matrix. The transformation was made using transi-

tive closure method. For different values of λ the output of the cluster analysis is different, 

in order to evaluate the output of the cluster analysis they computed the F-examination 

method. If the F-examination is greater to some extent, denotes that the value of dissimi-

larity is wide among the clusters. 
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Table 9: Cluster output based on different λ values [20] 

 

 

Table 10 illustrates the impact that the number of memberships λ has on the number 

of clusters. As value of λ increases the number of clusters differs for example for λ = 0.90 

the number of clusters is 7 while for λ = 1.00 the number of clusters is 8. To classify the 

data based on the clusters that they have constructed they used fuzzy pattern recognition 

based on maximum membership degree principle and used Euclidian distance to compare 

the membership degree. Their model was highly accurately for appliances of different 

type even if their consumption was the same. For appliance of the same type with the 

same consumption their model was poorly performed, but this behavior was expected by 

the authors of the study since they used only the active power to build the model. 

Factorial Hidden Markov Model (FHMM) was used [21] to classify the appliances 

based on single point measurements from a smart meter. FHMM is an alteration of Hid-

den Markov Model (HMM) where each appliance is expressed by a single HMM model 

and the aggregation of multiple HMM models at specific time constitute the FHMM 

model. For that reason, they pointed out that in order for their model to be effective they 

need prior knowledge of appliances type, number, and consumption. Since most of energy 

disaggregation research deal with binary data, they constructed two models based on bi-

nary and transient state data and compared the efficiency of the model between the two 

state approaches. To construct the dataset, they installed smart plugs in their research 

offices in all appliances that was installed and aggregated this data into a central server. 

To demonstrate the online capabilities of their model they have built a smartphone appli-

cation which reports the energy disaggregation for each appliance of the offices. They 
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computed 10 cases of diverse appliance combination alongside with a case where all ap-

pliances are considered for evaluation purpose. For the binary state they also modeled 

different state combinations for each of the cases. With respect to load characteristics, 

from the consumption readings they calculated 5 features and used them to construct 5 

FHMM models of different features. 

Table 10: Different FHMM models and their features [21] 

Number 

of models 
Features 

F1 Average of real power consumption 

F2 Average of reactive power alongside with real power 

F3 Average of reactive power, real power, and power factor 

F4 
Average of reactive power, real power, power factor and standard deviation of 

real power 

F5 
Average of reactive power, real power, power factor, standard deviation of real 

power and standard deviation of reactive power 

 

The evaluation of their model was done by computing the F-measure and comparing their 

approach with a well-known event detection approach that uses the Generalized Likeli-

hood Ratio (GLR). With respect of the binary state their model illustrated that by increas-

ing the number of features their model achieved higher values of F-measure except from 

the F5 model which the standard deviation of reactive power had a negative impact. Gen-

erally, the greater the number of features used the greater the accuracy of the model was. 

 

Figure 22: F-measure comparison of five models for binary start (left) and transient state (right) 

[21] 
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Their proposed approach with respect to GLR showed that their model is greatly efficient 

in both scenarios of binary and transient state. For transient state the output of the model 

was inverse compared to binary state. As the number of features was increased the accu-

racy of the model was getting decreased. Overall, the authors reach an F-measure of 0.906 

for the binary state and 0.804 for transient state appliance operations. 

2.4 Recommendation System 

Recommendation systems can by implemented to suggest the end-user solutions or to 

provide suggestions based on user or diverse user’s preference. Two well-known tech-

niques are implemented to construct recommendation systems content based filtering and 

collaborative filtering. Content based filtering takes into consideration only the prefer-

ence / feedback of a single user that has been extracted during previous transactions. Then 

products that have highly similar features with the user preference are recommended by 

the system.  

Collaborative filtering is not restricted only on single user data, it accumulates user’s 

preferences and searches for similarities between the preferences and the items to pro-

vide recommendations. Furthermore, collaborative filtering is divided into three catego-

ries neighborhood-based, model-based and hybrid method. 

 

Figure 23: Recommender Systems Techniques [22] 

Neighborhood-based collaborative filtering exploits the behavior of multiple users in or-

der to predict what a candidate buyer (user) might want, by finding similar users with the 

candidate user based on previous preferences and recommend items that similar users 
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have already expressed their preferences. Model-based collaborative filtering models a 

system that is established on the ratings that have been created from past user item trans-

actions and utilizes them for predicting new ratings. The hybrid method incorporates the 

use of both neighborhood-based and model-based methods.  

Based on collaborative filtering an electricity plan recommendation system [23] was 

built to suggest their user with the most suitable energy plan (plan having the lower charge 

price) based on weekly appliance data. First, they extracted training rating set and training 

feature set, rating set is considered as the normalized price charged by a plan on a user 

and the feature set is composed of the usage pattern of several appliances. Any missing 

feature from the sets will automatically make the implementation of similarity metrics 

inappropriate. To re-solve this problem a hybrid similarity metric composed of Jaccard, 

and weighted Euclidean similarity was implemented. 

 

 

Users with highest similarity are selected and their ratings are used to estimate potential 

ratings (recommendation). During last part, they present recommendations to the final 

user with the plans having the highest scores presented first. 

An additional recommendation system that utilized the capabilities of collaboration 

filtering is the Personalized Residential Energy Usage Recommendation System 

(REURS) [24]. The aim of REURS is to group residential users based on two categories, 

those that are highly responsive and those that are not. Then the system will search to find 

similarities between the two groups based on the number of appliances that they operate 

and the usage pattern, if those conditions are met then the consumption of a high respon-

sive user is compared with the consumption of the non-highly responsive user and the 

analogues recommendation is provided to the non-highly responsive user. 

  

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦: 𝑆𝑚𝑛
𝐽 =  𝐴𝑚 ∩ 𝐴𝑛  /|𝐴𝑚 ∪ 𝐴𝑛 | 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛: 𝑆𝑚𝑛
𝜔𝐸 = 1 −  (   𝐴 𝜔𝑎 𝑓𝑚𝑎 − 𝑓𝑛𝑎  

2)/|𝐴𝑚 ∩ 𝐴𝑛

𝑎∈𝐴𝑚∩𝐴𝑛
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Figure 24: Overview of REURS system [24] 

In details, the system uses accumulated daily appliance usage profiles and time-of-use 

tariff. To categorize the data into groups of highly responsive and non-highly responsive 

users they need first to identify the feature that will be used to group the data. First, they 

split the data into multiple groups on similar type of appliances and time-of-use tar-iff 

and clusters the data using fuzzy C-means clustering method based on mean monthly 

energy consumption and cost of electricity. Highly responsive are considered those with 

low energy expenditures and conversely non-highly responsive those with high energy 

expenditures. The connection link of the two main groups is the lifestyle of each user 

which is translated to the operation patterns of their appliances. They consider non-shift-

able (appliances that the user operates at specific time of a day without the ability to 

change operation time) and shiftable (appliances that the user can schedule and specify 

the time of use within a day) appliances to build common profiles within users that be-

long to different group. To identify common profiles, they implemented the Cosine sim-

ilarity metric. 

 

Following, their system aggregates the usage pattern of shiftable appliances of high re-

sponsive users and implements implicit collaborative filtering (calculates ratings based 

on users’ behavior). Lastly, after the identification of common usage pattern between the 

high shiftable and the non-high shiftable users the system calculates the ratings (the pref-

erence degree of the user on a shiftable appliance usage pattern) and recommends the 

corresponding plans with the highest rating value. 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐴, 𝐵 =  
𝐴 × 𝐵

  𝐴  × | 𝐵 |
=  

 𝐴𝑖 × 𝐵𝑖
𝑛
𝑖=1

  𝐴𝑖
2𝑛

𝑖=1  ×    𝐵𝑖
2𝑛

𝑖=1  
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A system tailored to reduce the expenditures of electricity in a residential building by 

providing recommendations to the users was developed [25], by using an agent-based 

architecture. They implemented a central system composed of multiple agents that each 

one of them had to perform a different task and by aggregating their results the system 

can recommend actions that have as a result the reduction of electrical expenses. Con-

sumption data of appliances are recorded every 6 seconds, moreover the system receives 

information from external recourses. External information is the hourly price of electricity 

and more specifically cost of kilowatt hour (kWh). Following the acquisition of in-for-

mation’s, the next part of the system was to preprocess the data in order to reduce the 

noise that might exist since originate from diverse resources. Appliances then are classi-

fied based on their ability to shift their use. Thus, two categories are formed shift-able 

and non-shiftable. Usage pattern of the appliances is extracted for weekly and hourly base 

to understand how each user operates their appliances, to gain that knowledge they im-

plemented knowledge-based technique. Also, two types of recommendation are per-

formed, long-term and sort-term. Long-term take place based on the appliance use for a 

period of a week and compared with the cost of electricity the ap-propriate recommenda-

tions are proposed. Short-term are made within the period of a single day and considered 

more active. The recommendations are performed by using utility-based technique. 

A system was developed following the framework of content-based filtering [26], 

particularly they firstly collected samples of representative electrical appliances Ads and 

separated them into groups of expensive and inexpensive appliances. The difference be-

tween the groups in not only the price, but also appliances which categorized as expensive 

have numerous functionalities and greater energy performance compared with inexpen-

sive appliances. The appliances Ads was used to represent the users’ interests on appli-

ances and generate the user profiles. To acquire energy consumption data for each appli-

ance they implemented non-intrusive load monitoring based on Hidden Markov Model 

method. NILM gave them which appliance is operating the most and the usage pattern. 

Then users’ interest and needs are calculated by using a rule-based method, taking into 

account NILM output, and considering additionally two fac-tors, the number of members 

that live in each household and average income. After the construction of user's interests 

and needs the user’s profile and items profile are developed. For all Ads they calculated 

the weighted keyword vector by implementing the term frequency/inverse document fre-

quency technique and for user’s profile three randomly weighted keyword vector was 

extracted by the Ads of the corresponding category and Rocchio algorithm used to shape 
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an average weighted keyword vector from the three Ads. The recommendation of the 

appropriate appliance to the user was accomplished by estimating the similarity of the 

appliance (item) with the user, cosine similarity method was adopted to achieve this task. 

 

Figure 25: Appliance recommendation for a given user [26]  
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3 Dataset 

Non-Intrusive Load Monitoring (NILM) model performance is dependent on the 

quality of dataset used. One of difficulties to implement a NILM model is to find a dataset 

that will have the appropriate records of electrical parameters and detailed information 

not only of the total household consumption but also of individual appliances and from 

specific heavy electrical devices. Moreover, records of a satisfactory period of time 

should be considered since historical data are manipulated for the construction of training 

and test set, dependent on the chosen algorithm. A candidate researcher, except of the 

burden to develop the disaggregation algorithm needs to consider plan of actions to ac-

quire the appropriate dataset. One solution is the installation of suitable sensors in the 

central electrical panel of a household to record total consumption and in individual ap-

pliances. Another solution is to contact electrical suppliers in order to ask for the electrical 

records they store which is very difficult because of the privacy issues that might arise. 

To tackle the problem of available datasets, several institutes and researchers have con-

structed datasets with the aim to extract the burden of data acquisition and open the field 

of NILM into candidate stakeholders of diverse sectors. 

Reference Energy Disaggregation Dataset (REDD) [27] is a publicly available dataset 

that contains AC waveform and voltage records for 6 households. Except from the total 

consumption of each household they have collected data for several appliances and sub-

meter circuit-level data such as (oven, refrigerator, dishwasher, kitchen outlets, lighting, 

washer dryer, microwave, bathroom ground fault interrupters, electric heat, stove). Data 

are logged at a frequency of about one second for the total consumption of the households 

and once every three seconds for the sub-meter circuits and individual appliances. Also, 

data are accompanied by their logged time stamp in the format of Universal Time Coor-

dinated (UTC). 
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Figure 26: Architecture of REDD recording system [27] 

Smart* [28] dataset comprises of two types of datasets, the first one consists of several 

parameters that are recorded with the use of sensors, and it is called UMass Smart* Home 

Data Set. In more details the UMass Smart* Home Data Set extracts data from three 

households where two of them are identical in size. On the first house they have installed 

a central meter into the main electrical panel and record the electricity data of the house, 

sub-meters have been installed for each of the circuits that the main panel has in order to 

record electricity data for each of them separately. The logged frequency of the main and 

the sub-circuits is once every second. Additionally, they have installed smart switches 

that record the state on/off or dimed for each circuit, smart plugs have been installed into 

the sockets of the house to record appliances that are not connected directly in the main 

electrical circuit of the house. Except from the electric energy, they installed sensors to 

record the internal temperature and humidity of the house. Motion sensors along with 

door sensors was installed to monitor the movement of the occupants in order to corelate 

that data with the time of use for each appliance. Apart from data that are produced by 

the house they have built a small weather station that record outside temperature, humid-

ity, luminance etc. For the second house they have installed only meters to record the 

main electrical data of the house and the sub-circuits in the electrical panel. Internal and 

external weather data are also recorded. In third house the electrical equipment that was 

installed was the same as the second with the only difference that they also record power 
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generation due to the fact that in third house it is installed two micro wind turbines and a 

solar panel system. The second dataset is UMass Smart* Microgrid Data Set and contains 

electric data from 400 houses with a log frequency of one minute. 

Electric, natural gas, water, weather, and utility bills data have been collected over 

the period of one year in Canada and formed the AMPds [29] dataset. Electrical data have 

been recorded from a single household, data was collected for the whole household and 

for each circuit of the electrical panel and recorded every sixty seconds. After lifetime 

duration of the project data have been processed to drop missing values and records that 

have minimal consumption or infinitesimal activity.  

Similarly with the above-mentioned datasets, UK Domestic Appliance-Level Elec-

tricity (UK-DALE) dataset [30] was constructed by recording electric data of total house-

hold and each sub-circuit of it. For the requirements of the project five households was 

used for a period ranging from 36 up to 655 days. The total records were logged at a 

sample rate of 16 kHz and for individual sub-circuits 1/6 Hz. 

In 2013 electricity, water, and ambient parameters was recorded in a three-story build-

ing in India for a period of 73 days from May to August of 2013 creating the iAWE [31] 

dataset. Sensors has been used to record total consumption of the building using the main 

meter. For devices that are connected directly with the electric circuit installation and 

have their own circuit they recorded data from the main electric panel of the house. Ap-

pliances that are not connected directly with the electric installation and use plugs to 

power up have been monitored through the installation of smart plugs.  

Table 11: Household energy datasets 

Dataset Name 
Dataset Dura-

tion 

Number of 

Houses 

Appliances 

Sample Fre-

quency 

Total Sample 

Frequency 

REDD 3 to 19 days 6 3 sec. 1 sec. 

Smart* 3 months 3 1 sec. 1 sec. 

AMPds 1 year 1 1 min. 1 min. 

UK-DALE 36 to 655 days 5 1/6 Hz 16 kHz 

iAWE 73 days 1 1 sec. 1 sec. 
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4 Methodology 

This chapter describes the model used for disaggregation based on public available 

dataset. Then a simplified recommendation system is described which incorporates the 

appliances used for disaggregation and different characteristics of building type and cli-

mate. 

4.1 Energy Disaggregation 

Based on literature review Factorial Hidden Markov Models FHMM algorithm has 

been widely tested and marked as an efficient method for its implementation in disaggre-

gation models. To implement FHMM it is necessary to have consumption data of appli-

ances and not only the total consumption of a household since FHMM is an extension of 

HMM and each appliance is treated as single hidden Markov model. The hidden compo-

nent of these HMMs are the states of the appliances. Energy disaggregation involves 

jointly decoding the power draw of n appliances and hence a factorial HMM is well suited 

[15]. A FHMM can be represented by an equivalent HMM in which each state corre-

sponds to a different combination of states of each appliance. A FHMM model has three 

parameters: 

i. prior probability (π) containing KN entries 

ii. transition matrix (A) containing KN x KN or K2N entries 

iii. emission matrix (B) containing 2KN entries 

The combination of each HMM constitutes the final FHMM model. 

FHMM can be implemented for disaggregation through the use of non-intrusive load 

monitoring toolkit, a publicly available python library that has been developed [15] with 

the concept to be used as a benchmark algorithm. Except from disaggregation part the 

toolkit provides basic statistics functionalities on the dataset. The only drawback of the 

toolkit is the ease of use since the end user must devote considerable time to learn it and 

start taking results. For that reason, in this work we used the library developed in [16] 

which has been developed based on NILMTK  [15], but only incorporates the disaggre-

gation part excluding all other functionalities making it very user friendly. 
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 For our disaggregation we used iAWE [31] dataset because it contains a wealth of 

data from the appliances of the building. The dataset contains consumption of 10 appli-

ances namely two air conditioners, refrigerator, washing machine, kitchen outlets, televi-

sion, iron, laptop, water filter, water motor. For each device and also for the total con-

sumption has been recorded different electrical parameters such us Watts (W), Reactive 

Power (VAR), Apparent Power (VA), Frequency (F), Phase Voltage (VLN), Power Fac-

tor (PF) and Amber (A). From the electric parameters we choose to work with Watts since 

this parameter can be easily recorded from diverse electric meters and smart plugs. From 

these appliances only the fridge, iron, air conditioner and washing machine were used for 

the disaggregation because they have the heaviest consumption for the specific house-

hold.  

Table 12: Consumption of the 4 heaviest appliances [31] 

 Fridge AC 
Washing 

Machine 
Iron 

Consumption 

in Watt 
270113625 689668541 4850056 2606377 

 

 

 

Figure 27: Fridge consumption [31] 
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Figure 18: AC consumption [31] 

 

 

 

Figure 29: Washing Machine consumption [31] 
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Figure 30: Iron consumption [31] 

The frequency of data collection is one second for the appliances and the main building 

consumption. The datasets have been split into two parts, the first one has been used to 

train the model and the second one used to test it. 

The implementation was made through jupyter notebook under anaconda package 

since it contains all the required software tools for the library [16].  

4.2 Recommendation System 

Recommendation systems generally rely on similarity between target user and similar 

other users or the similarity between the preferences of a specific user. To construct a 

recommendation system, ratings of appliances are of high importance since the recom-

mendation that will be provided to the end user will take into account the appliances used 

during the disaggregation. To identify a dataset that will have ratings based on the appli-

ance’s consumption was very challenging and for that reason the characteristics that was 

used to construct recommendations are the type of the building and the climate since they 

influence the operation pattern of the appliances. The dataset used [32] contains infor-

mation’s for 20 buildings such as their location, type, and climate. For each building rat-

ings for 7 appliances are included, these appliances are refrigerator, lights, microwave, 

stove, air conditioner, washing machine and water heater.  
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Table 13: Buildings data [32] 

 

The building used to construct the iAWE dataset is a residential building located in India 

and more specifically in Delhi. The climate of India is characterized as Sub tropical. 

Those two characteristics was used to identify the most relevant buildings between the 

disaggregated building and the buildings data (Table 14). After the identification of the 

most similar buildings their ratings was extracted based on the building number field.  

Table 14: Fridge ratings [32] 
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Table 15: Light ratings [32] 

 

 

Table 16: Microwave ratings [32] 
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Table 17: Stove ratings [32] 

 

 

Table 18: Washing Machine ratings [32] 

 

  



-50- 

 

Table 19: Water Heater ratings [32] 

 

 

Table 20: Air Conditioner ratings [32] 

 

The next step is to compare the appliances that was used for the disaggregation with the 

appliances that we have the ratings and take out the appliances that does not pair. Final 

part was to calculate the average rating for each recommendation category and extract 

only the recommendation with the highest value for each appliance. 
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5 Results 

In this section will be illustrated the output of the disaggregation method alongside 

with the output of the recommendation system.  

5.1 Energy Disaggregation 

After the iAWE dataset has been fed into the NILM algorithm the prediction of the 

appliance’s consumption has been calculated. In Fig. 31 is illustrated the consumption of 

the four appliances before the disaggregation. The biggest share of consumption is made 

by air conditioner, and it is very logical considering that the period the data extracted is 

between May and August, which is summer period.  

 

Figure 31: Ground truth of appliances 
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In figure 32 is illustrated the appliances predictions, as can be seen the model is very 

accurate for the fridge and washing machine having a deviation from the ground truth 

outmost to 3,5 percent. The major difference can be seen for air conditioner and iron. For 

the case of the air conditioner there is an increase while for the iron can be seen a decrease.  

Observing the predictions can be seen that the algorithm has misclassified the air condi-

tioner with the iron. This large gap can be explained if we assume on average a medium 

air conditioner has between 1100 to 1300 watts and an average iron has 900 to 1200 watts. 

Since both appliances share compatible characteristics with respect to watts the algorithm 

could not classify them accurately. 

 

Figure 32: Prediction of appliances 

For appliances that does not share same electrical characteristics the algorithm is per-

forming at satisfactory levels considering that the difference of the ground truth with the 

predicted values of fridge and washing machine does not exceed 2%. Since a typical 
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household is constituted by diverse appliances that does not share the same electrical 

characteristics the algorithm will correctly classify most of the appliances.  The drawback 

is only for appliances that have same electrical characteristics and can be seen from the 

predictions of air-condition and iron were the algorithm has misclassified their consump-

tion leading to poor performance.  

5.2 Recommendation System 

Next, after the completion of disaggregation, the building characteristics were used 

alongside with the appliances fed into the NILM algorithm. More specifically to extract 

identical buildings was use the type which is residential and the general climate of India 

which is subtropical. Then the appliances that have ratings have been filtered with the 

appliances used during disaggregation and remove those that does not match. 

Table 21: Appliances used to extract recommendations 

Appliances 

Ratings 
Fridge Microwave Lights Stove AC 

Washing 

Machine 

Water 

heater 
- 

Disaggrega-

tion Appli-

ances 

Fridge - - - AC 
Washing 

Machine 
- Iron 

 

As can be seen from table 22 recommendations was provided only for fridge, air condi-

tioner and washing machine. The recommendations for all the appliances are 18, table 23 

illustrates the recommendations for each appliance. 

Table 22: Recommendations [32] 

Appliances Recommendations 

Fridge 

Place the refrigerator away from heat sources. 

Avoid putting hot food directly in the refrigerator. 

Try to keep the refrigerator filled in to save en-

ergy. 

Microwave 

Cover the dishes before putting them in the mi-

crowave to cut down the cooking time. 

Cut the food into small pieces to reduce the cook-

ing time. 
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Lights 

Place movement detectors to turn off the lights 

when the room is empty. 

Install task lightings in places like on the study 

desk etc. to reduce the electricity consumption 

from using the general lighting. 

Consider light colored paint. 

Stove 

Shift the usage of electrical stove to late hours. 

Take into account the heating area of your stove 

to choose pans with proper diameters. 

Air conditioner 

Keep the curtains and blinds closed to reduce the 

space from heating up. 

Use a programmable thermostat that turns off the 

AC when the space is empty. 

Washing Machine 

Use the washing machine of the right size since 

the bigger the machine is, the power more it con-

sumes. 

Use front load washing machines which consume 

less electricity than the top load. 

Do not leave the machine in standby mode. 

Water Heater 

Insulate the pipes connected to the heater. 

Prefer taking a sort shower instead of a bath. 

Consider installing heat traps on the water heater 

 

Last part of the simplified recommendation system was to calculate the average rating 

for each recommendation and extract only the recommendation with the highest value. 

After the calculations our method identifies the row based on index where the average 

ratings have been stored and extracts the recommendation with the maximum value, if in 

a row exist recommendations with the same score then we choose the first of the maxi-

mum scores, thus the expected output must be three recommendations one for each ap-

pliance for fridge, air conditioner and washing machine. 

In table 24 can be seen the out of the algorithm for the three appliances with their 

corresponding score. 
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Table 23: Output recommendations of the model 

Appliance Recommendation Score 

Fridge 
Avoid putting hot food directly 

in the refrigerator. 
3 

AC 

Keep the curtains and blinds 

closed to reduce the space 

from heating up. 

3 

Washing Machine 
Do not leave the machine in 

standby mode. 
3 

 

 The recommendation system performed as was expected since recommendation have 

been provided only for the appliances that was used in the disaggregation. Except from 

accurate appliance filtering only the methods with the highest score were provided.  

6 Conclusions 

The disaggregated method presented in this dissertation can be considered highly ac-

curate for appliances that do not share the same characteristics, like fridge, electric stove, 

dishwasher, and electric boiler which have different power consumption (250 Watts, 2000 

Watts, 1350 Watts, and 5000 watts respectively). As they have totally different power 

consumption, the algorithm will efficiently classify them, even if they operate at the same 

time. In the model we used the fridge and washing machine were classified accurately as 

they have different power consumption.  

Contrariwise for the iron and the air conditioner disaggregation did not perform well. 

Evaluating predictions against the ground truth we see 20% for these appliances. This can 

be explained by the compatibility in power consumption (ranging from 900 to 1200 watts 

and from 1100 to 1300 watts, respectively). Furthermore, if usage times for the two ap-

pliances coincide, an extra burden is added on the algorithm to classify them with a small 

deviation from ground truth values.  
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A solution to this weakness could be the use of multiple or different type of electrical 

parameters. In the literature the usage of current harmonics has been examined [12]. Cur-

rent harmonics could be different for appliances that have the same electric parameters 

leading to better classification predictions. 

A final drawback of the algorithm proposed can be considered that it requires the 

recordings of each appliance that the user wants to disaggregate. From one point this 

could be considered as beneficial, since the algorithm does not have to identify the num-

ber of the appliances used, but it is difficult to acquire consumption data for each appli-

ance. 

Regarding the recommendation system, it performed efficiently, providing only the 

recommendations with the highest score for each appliance that was used in the disaggre-

gation. More specifically the disaggregation is performed by using the Factorial Hidden 

Markov model, then based on the building type and climatic condition of the disaggre-

gated building a filtering is applied in order to extract buildings with the same character-

istics. A second layer filtering then take place to extract from the appliances used for the 

disaggregation only those for which recommendation are available based on the recom-

mendation dataset. Then for each recommendation the average score is calculated and 

extracted only the recommendations with the highest score for each appliance.   

A potential drawback is its simplicity, stemming from the difficulty to find datasets 

based on individual appliance consumption. Moreover, if it was possible to use a well-

constructed dataset with appliance ratings based on their consumption, then a more so-

phisticated recommendation filtering could be implemented to predict and extract ratings 

for appliances, such as model and item based collaborative filtering [23] [33] [34]. 

 The result of this study is pointing out that the collaboration of energy disaggregation 

and recommendation systems can have a strong impact in our economy by minimizing 

energy expenses of a household decreasing the impact of energy crisis that all households 

are facing due to the high electricity prices and at the same time minimizing the emissions 

of carbon dioxide reducing the footprint of each house in the environment. 
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Appendix 1 

Appendix 1 provides the python code that was used to implement the disaggregation 

model. The disaggregation algorithm has been taken completely without any change from 

[16] which is publicly available on GitHub, the programming language of the algorithm 

is Python.  

 

import itertools 

from copy import deepcopy 

from collections import OrderedDict 

from warnings import warn 

import pickle 

 

import pandas as pd 

import numpy as np 

from hmmlearn import hmm 

 

from six import iteritems 

from builtins import range 

 

SEED = 42 

 

np.random.seed(SEED) 

 

def sort_startprob(mapping, startprob): 

    num_elements = len(startprob) 

    new_startprob = np.zeros(num_elements) 

    for i in range(len(startprob)): 

        new_startprob[i] = startprob[mapping[i]] 

    return new_startprob 

 

 



-64- 

def sort_covars(mapping, covars): 

    new_covars = np.zeros_like(covars) 

    for i in range(len(covars)): 

        new_covars[i] = covars[mapping[i]] 

    return new_covars 

 

 

 
def sort_transition_matrix(mapping, A): 
    num_elements = len(A) 
    A_new = np.zeros((num_elements, num_elements)) 
    for i in range(num_elements): 
        for j in range(num_elements): 
            A_new[i, j] = A[mapping[i], mapping[j]] 
    return A_new 
 

 
def sort_learnt_parameters(startprob, means, covars, transmat): 
    mapping = return_sorting_mapping(means) 
    means_new = np.sort(means, axis=0) 
    startprob_new = sort_startprob(mapping, startprob) 
    covars_new = sort_covars(mapping, covars) 
    transmat_new = sort_transition_matrix(mapping, transmat) 
    assert np.shape(means_new) == np.shape(means) 
    assert np.shape(startprob_new) == np.shape(startprob) 
    assert np.shape(transmat_new) == np.shape(transmat) 
 
    return [startprob_new, means_new, covars_new, transmat_new] 
 
 

 
def compute_A_fhmm(list_A): 
    result = list_A[0] 
    for i in range(len(list_A) - 1): 
        result = np.kron(result, list_A[i + 1]) 
    return result 
 

 
def compute_means_fhmm(list_means): 
    states_combination = list(itertools.product(*list_means)) 
    num_combinations = len(states_combination) 
    means_stacked = np.array([sum(x) for x in states_combination]) 
    means = np.reshape(means_stacked, (num_combinations, 1)) 
    cov = np.tile(5 * np.identity(1), (num_combinations, 1, 1)) 
    return [means, cov] 
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def compute_pi_fhmm(list_pi): 
    result = list_pi[0] 
    for i in range(len(list_pi) - 1): 
        result = np.kron(result, list_pi[i + 1]) 
    return result 
 

 
 
def create_combined_hmm(model): 
    list_pi = [model[appliance].startprob_ for appliance in model] 
    list_A = [model[appliance].transmat_ for appliance in model] 
    list_means = [model[appliance].means_.flatten().tolist() 
                  for appliance in model] 
 
    pi_combined = compute_pi_fhmm(list_pi) 
    A_combined = compute_A_fhmm(list_A) 
    [mean_combined, cov_combined] = compute_means_fhmm(list_means) 
 
    combined_model = hmm.GaussianHMM(n_components=len(pi_combined), co
variance_type='full') 
    combined_model.startprob_ = pi_combined 
    combined_model.transmat_ = A_combined 
    combined_model.covars_ = cov_combined 
    combined_model.means_ = mean_combined 
     
    return combined_model 
 
 

 
def return_sorting_mapping(means): 
    means_copy = deepcopy(means) 
    means_copy = np.sort(means_copy, axis=0) 
 
    mapping = {} 
    for i, val in enumerate(means_copy): 
        mapping[i] = np.where(val == means)[0][0] 
    return mapping 
 
 

 
def decode_hmm(length_sequence, centroids, appliance_list, states): 
    hmm_states = {} 
    hmm_power = {} 
    total_num_combinations = 1 
 
    for appliance in appliance_list: 
        total_num_combinations *= len(centroids[appliance]) 
 
    for appliance in appliance_list: 
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        hmm_states[appliance] = np.zeros(length_sequence, dtype=np.int
) 
        hmm_power[appliance] = np.zeros(length_sequence) 
 
    for i in range(length_sequence): 
 
        factor = total_num_combinations 
        for appliance in appliance_list: 
            factor = factor // len(centroids[appliance]) 
 
            temp = int(states[i]) / factor 
            hmm_states[appliance][i] = temp % len(centroids[appliance]
) 
            hmm_power[appliance][i] = centroids[ 
                appliance][hmm_states[appliance][i]] 
    return [hmm_states, hmm_power] 
 

 
def cluster(X, max_num_clusters=3, exact_num_clusters=None): 
    data = _transform_data(X) 
 
    centroids = _apply_clustering(data, max_num_clusters, exact_num_cl
usters) 
    centroids = np.append(centroids, 0) 
    centroids = np.round(centroids).astype(np.int32) 
    centroids = np.unique(centroids) 
    return centroids 
 

 
def _transform_data(data): 
    MAX_NUMBER_OF_SAMPLES = 2000 
    MIN_NUMBER_OF_SAMPLES = 20 
    DATA_THRESHOLD = 10 
 
    data_above_thresh = data[data > DATA_THRESHOLD].dropna().values 
    n_samples = len(data_above_thresh) 
    if n_samples < MIN_NUMBER_OF_SAMPLES: 
        return np.zeros((MAX_NUMBER_OF_SAMPLES, 1)) 
    elif n_samples > MAX_NUMBER_OF_SAMPLES: 
        random_indices = np.random.randint(0, n_samples, MAX_NUMBER_OF
_SAMPLES) 
        resampled = data_above_thresh[random_indices] 
        return resampled.reshape(MAX_NUMBER_OF_SAMPLES, 1) 
    else: 
        return data_above_thresh.reshape(n_samples, 1) 
 
 
def _apply_clustering_n_clusters(X, n_clusters): 
    from sklearn.cluster import KMeans 
    k_means = KMeans(init='k-means++', n_clusters=n_clusters) 
    k_means.fit(X) 



  -67- 

    return k_means.labels_, k_means.cluster_centers_ 
 
 

 
def _apply_clustering(X, max_num_clusters, exact_num_clusters=None): 
    from sklearn import metrics 
 
    import warnings 
    warnings.filterwarnings("ignore", category=DeprecationWarning) 
    num_clus = -1 
    sh = -1 
    k_means_labels = {} 
    k_means_cluster_centers = {} 
    k_means_labels_unique = {} 
 
    if exact_num_clusters is not None: 
        labels, centers = _apply_clustering_n_clusters(X, exact_num_cl
usters) 
        return centers.flatten() 
 
    for n_clusters in range(1, max_num_clusters): 
 
        try: 
            labels, centers = _apply_clustering_n_clusters(X, n_cluste
rs) 
            k_means_labels[n_clusters] = labels 
            k_means_cluster_centers[n_clusters] = centers 
            k_means_labels_unique[n_clusters] = np.unique(labels) 
            try: 
                sh_n = metrics.silhouette_score( 
                    X, k_means_labels[n_clusters], metric='euclidean') 
 
                if sh_n > sh: 
                    sh = sh_n 
                    num_clus = n_clusters 
            except Exception: 
                num_clus = n_clusters 
        except Exception: 
            if num_clus > -1: 
                return k_means_cluster_centers[num_clus] 
            else: 
                return np.array([0]) 
 
    return k_means_cluster_centers[num_clus].flatten() 
 

 

 
def timeStamptoIndex(df): 
    df.index = df['timestamp'] 
    return df 
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class FHMM: 
    def __init__(self, debug=False): 
        self.model = {} 
        self.predictions = pd.DataFrame() 
        self.MIN_CHUNK_LENGTH = 100 
        self.MODEL_NAME = 'FHMM' 
        self.debug = debug 
        if self.debug : print("[FHMM Initialised]") 

 
 
    def train(self, df, appliance_list): 
        import warnings 
        warnings.filterwarnings("ignore", category=Warning) 
        learnt_model = OrderedDict() 
 
        max_num_clusters = 2 
 
        for i, meter in enumerate(appliance_list): 
            meter_data = df[meter].dropna() 
            X = meter_data.values.reshape((-1, 1)) 
             
            if not len(X): 
                print(" [train] ERROR Submeter '{}' has no samples, sk
ipping...".format(meter)) 
                continue 
                 
            assert X.ndim == 2 
            self.X = X 
 
            states = cluster(meter_data, max_num_clusters) 
            num_total_states = len(states) 
 
            if self.debug : print(" [train] Training model for submete
r", meter) 
            learnt_model[meter] = hmm.GaussianHMM(num_total_states, "f
ull") 
 
            learnt_model[meter].fit(X) 
 
        self.meters = [] 
        new_learnt_models = OrderedDict() 
        for meter in learnt_model: 
            startprob, means, covars, transmat = sort_learnt_parameter
s( 
                learnt_model[meter].startprob_, learnt_model[meter].me
ans_, 
                learnt_model[meter].covars_, learnt_model[meter].trans
mat_) 
                 
            new_learnt_models[meter] = hmm.GaussianHMM(startprob.size, 
"full") 
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            new_learnt_models[meter].startprob_ = startprob 
            new_learnt_models[meter].transmat_ = transmat 
            new_learnt_models[meter].means_ = means 
            new_learnt_models[meter].covars_ = covars 
            self.meters.append(meter) 
 
        learnt_model_combined = create_combined_hmm(new_learnt_models) 
        self.individual = new_learnt_models 
        self.model = learnt_model_combined 

 
 
    def disaggregate(self, df): 
        if not 'timestamp' in df: 
            print("[FHMM_model][disaggregate] Could not detect column 
\"timestamp\" in the given dataframe") 
            return 
         
        if not 'power' in df: 
            print("[FHMM_model][disaggregate] Could not detect column 
\"timestamp\" in the given dataframe") 
            return  
         
        test_mains = df['power'] 
 
        learnt_states_array = [] 
        test_mains = test_mains.dropna() 
        length = len(test_mains.index) 
        temp = test_mains.values.reshape(length, 1) 
        learnt_states_array.append(self.model.predict(temp)) 
 
        means = OrderedDict() 
        for elec_meter, model in iteritems(self.individual): 
            means[elec_meter] = ( 
                model.means_.round().astype(int).flatten().tolist()) 
            means[elec_meter].sort() 
 
        decoded_power_array = [] 
        decoded_states_array = [] 
 
        for learnt_states in learnt_states_array: 
            [decoded_states, decoded_power] = decode_hmm( 
                len(learnt_states), means, means.keys(), learnt_states
) 
            decoded_states_array.append(decoded_states) 
            decoded_power_array.append(decoded_power) 
 
        prediction = pd.DataFrame( 
            decoded_power_array[0], index=test_mains.index) 
 
        prediction.index = pd.to_datetime(df['timestamp'], unit='s') 
 
        return prediction 
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    def save(self, filename): 
        with open(filename+'.pkl', 'wb') as output: 
            pickle.dump(self.model, output, pickle.HIGHEST_PROTOCOL) 
            pickle.dump(self.individual, output, pickle.HIGHEST_PROTOC
OL) 
          

    
    def load(self, filename): 
        with open(filename+'.pkl', 'rb') as input: 
            self.model = pickle.load(input) 
            self.individual = pickle.load(input) 
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Appendix 2 

Appendix 2 includes the overall implementation of the disaggregation model and the 

recommendation system.  The programming language that was used is Python and more 

specifically, the code has been developed in Jyputer Notebooks under Anaconda package. 

This package was used because it provides a large number of libraries that has been used 

in only one installation. 

 

import pandas as pd 
import matplotlib.pyplot as plt 

%matplotlib inline 
 
plt.style.use("ggplot") 

 

mains_1_path = r'C:\Users\Jordan\Documents\NILMTK\electricity\1.csv' 
mains_2_path = r'C:\Users\Jordan\Documents\NILMTK\electricity\2.csv' 
fridge_path = r'C:\Users\Jordan\Documents\NILMTK\electricity\3.csv' 
ac_path_1 = r'C:\Users\Jordan\Documents\NILMTK\electricity\4.csv' 
ac_path_2 = r'C:\Users\Jordan\Documents\NILMTK\electricity\5.csv' 
washing_machine_path = r'C:\Users\Jordan\Documents\NILMTK\electricity\
6.csv' 
iron_path = r'C:\Users\Jordan\Documents\NILMTK\electricity\8.csv' 

 

columns_mains = ['timestamp', 'W'] 
columns_appliances = ['W'] 
df_mains_1 = pd.read_csv(mains_1_path, sep = ',', error_bad_lines=Fals
e, index_col=False, dtype='unicode', usecols=columns_mains) 
df_mains_2 = pd.read_csv(mains_2_path, sep = ',', error_bad_lines=Fals
e, index_col=False, dtype='unicode', usecols=columns_mains) 
df_fridge = pd.read_csv(fridge_path, sep = ',', error_bad_lines=False, 
index_col=False, dtype='unicode', usecols=columns_appliances) 
df_ac = pd.read_csv(ac_path_1, sep = ',', error_bad_lines=False, index
_col=False, dtype='unicode', usecols=columns_appliances) 
df_washing_machine = pd.read_csv(washing_machine_path, sep = ',', erro
r_bad_lines=False, index_col=False, dtype='unicode', usecols=columns_a
ppliances) 
df_iron = pd.read_csv(iron_path, sep = ',', error_bad_lines=False, ind
ex_col=False, dtype='unicode', usecols=columns_appliances) 
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df_mains_1 = df_mains_1.rename({'W': 'power'}, axis=1) 

df_mains_1 = df_mains_1.astype({"timestamp": int}) 

df_mains_1['power'] = pd.to_numeric(df_mains_1['power'],errors='co-

erce') 

 

df_mains_1['power'] = df_mains_1['power'].fillna(0) 
df_mains_1['power'].isnull().values.any() 

False 

 

df_mains_2 = df_mains_2.rename({'W': 'power'}, axis=1) 

df_mains_2 = df_mains_2.astype({"timestamp": int}) 

df_mains_2['power'] = pd.to_numeric(df_mains_2['power'],errors='co-

erce') 

 

df_mains_2['power'] = df_mains_2['power'].fillna(0) 
df_mains_2['power'].isnull().values.any() 

False 

 

df_fridge = df_fridge.rename({'W': 'app1'}, axis=1) 
df_fridge['app1'] = pd.to_numeric(df_fridge['app1'],errors='coerce') 
df_fridge['app1'].isnull().values.any() 

False 

 

fridge = df_fridge['app1'].sum() 
round(fridge) 

270113625 

 

df_ac = df_ac.rename({'W': 'app2'}, axis=1) 
df_ac['app2'] = pd.to_numeric(df_ac['app2'],errors='coerce') 
df_ac['app2'].isnull().values.any() 

False 

 

ac = df_ac['app2'].sum() 
round(ac) 

689668541 
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df_washing_machine = df_washing_machine.rename({'W': 'app4'}, axis=1) 

df_washing_machine['app4'] = pd.to_numeric(df_washing_ma-

chine['app4'],errors='coerce') 

 

df_washing_machine['app4'].isnull().values.any() 

False 

washing_machine = df_washing_machine['app4'].sum() 
round(washing_machine) 

4850056 

 

df_iron = df_iron.rename({'W': 'app6'}, axis=1) 

df_iron['app6'] = pd.to_numeric(df_iron['app6'],errors='coerce') 

df_iron['app6'].isnull().values.any() 

False 

iron = df_iron['app6'].sum() 
round(iron) 

2606377 

 

df_train = pd.concat([df_mains_1, df_fridge, df_ac, df_washing_machine
, df_iron,], axis=1, join="inner") 

 

list_of_appliance = ['app1', 'app2', 'app4', 'app6'] 
fhmm = FHMM() 
fhmm.train(df_train, list_of_appliance) 

df_test=df_mains_2 

prediction = fhmm.disaggregate(df_test) 

 

df_prediction = prediction.rename(columns={'app1': 'Fridge', 'app2': 

'AC','app4':'Washing_Machine','app6':'Iron'}) 

 

df_gt = df_train.rename(columns={'app1': 'Fridge', 'app2': 'AC', 

'app4':'Washing_Machine','app6':'Iron'}) 

df_gt = df_gt.set_index('timestamp') 

df_gt = df_gt[['Fridge','AC', 'Washing_Machine', 'Iron']] 
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building_appliances = pd.DataFrame(df_prediction.columns.values, col-

umns=['Appliances']) 

appliances_list=building_appliances.values.tolist() 

appliances_list = [ item for elem in appliances_list for item in elem] 

 

appliances_data = ['Fridge', 'Light', 'Microwave', 'Stove', 'AC', 

'Washing_Machine','Water_Heater'] 

appliances_list_com = list(set(appliances_list).intersection(appli-

ances_data)) 

 

buildings_path = r'C:\Users\Jordan\Documents\NILMTK\Buildings.csv' 
fridge_path = r'C:\Users\Jordan\Documents\NILMTK\Fridge.csv' 
light_path = r'C:\Users\Jordan\Documents\NILMTK\Light.csv' 
microwave_path = r'C:\Users\Jordan\Documents\NILMTK\Microwave.csv' 
stove_path = r'C:\Users\Jordan\Documents\NILMTK\Stove.csv' 
washing_machine_path = r'C:\Users\Jordan\Documents\NILMTK\Washing_mach
ine.csv' 
water_heater_path = r'C:\Users\Jordan\Documents\NILMTK\Water_heater.cs
v' 
ac_path = r'C:\Users\Jordan\Documents\NILMTK\AC.csv' 

 

df_buildings_data = pd.read_csv(buildings_path, delimiter = ';') 

df_buildings_data.index+=1 

 

df_fridge_ratings = pd.read_csv(fridge_path, delimiter = ';') 

df_fridge_ratings.index+=1 

 

df_light_ratings = pd.read_csv(light_path, delimiter = ';') 

df_light_ratings.index+=1 

 

df_microwave_ratings = pd.read_csv(microwave_path, delimiter = ';') 

df_microwave_ratings.index+=1 

 

df_stove_ratings = pd.read_csv(stove_path, delimiter = ';') 

df_stove_ratings.index+=1 
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df_washing_machine_ratings = pd.read_csv(washing_machine_path, delim-

iter=';') 

df_washing_machine_ratings.index+=1 

 

df_water_heater_ratings = pd.read_csv(water_heater_path, delimiter = 

';') 

df_water_heater_ratings.index+=1 

 

df_ac_ratings = pd.read_csv(ac_path, delimiter = ';') 

df_ac_ratings.index+=1 

 

df_equal = df_buildings_data.loc[(df_buildings_data['Type'] == 'Resi-

dential') & (df_buildings_data['Climate'] == 'Sub tropical')]  

 

df_light_equal=df_light_ratings[df_equal.eq(df_light_rat-

ings).any(axis=1)]  

 

df_microwave_equal=df_microwave_ratings[df_equal.eq(df_microwave_rat-

ings).any(axis=1)] 

 

df_stove_equal=df_stove_ratings[df_equal.eq(df_stove_rat-

ings).any(axis=1)] 

 

df_water_heater_equal=df_water_heater_ratings[df_equal.eq(df_wa-

ter_heater_ratings).any(axis=1)] 

 

df_washing_machine_equal=df_washing_machine_rat-

ings[df_equal.eq(df_washing_machine_ratings).any(axis=1)] 

 

df_ac_equal=df_ac_ratings[df_equal.eq(df_ac_ratings).any(axis=1)] 
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recommendations={} 

 

def recommendation_extraction(df_appliance): 
    df_appliance = df_appliance.drop(['Building Number'], axis = 1) 
    df_appliance.loc['avg'] = df_appliance.mean() 
    df_avg = df_appliance.loc[['avg']] 
    rec = df_avg.idxmax(axis=1).values[0] 
    max_rec = df_avg.max(axis=1).values[0] 
    recommendations[rec] = max_rec 

 

if 'Fridge' in appliances_list_com: 
    recommendation_extraction(df_fridge_equal) 
 
if 'Light' in appliances_list_com: 
    recommendation_extraction(df_light_equal) 
 
if 'Microwave' in appliances_list_com: 
    recommendation_extraction(df_microwave_equal) 
     
if 'Stove' in appliances_list_com: 
    recommendation_extraction(df_stove_equal) 
 
if 'AC' in appliances_list_com: 
    recommendation_extraction(df_ac_equal) 
     
if 'Washing_Machine' in appliances_list_com: 
    recommendation_extraction(df_washing_machine_equal) 
     
if 'Water_Heater' in appliances_list_com: 
    recommendation_extraction(df_water_heater_equal) 
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